MATRIX ORBITAL

VK204-25
Technical Manual

Revision: 2.2

Contents

Contents ii
1 Getting Started 1
1.1 Display Options Available 1
1.2 Accessories 2
1.3 Features 6
1.4 Connecting to a PC 6
1.5 Installing the Software 7
1.5.1 uProject 7
2 Hardware Information 8
2.1 DB-9 Connector 9
2.1.1 Power Through DB-9 Jumper 10
2.2 Power/Data Connector 10
2.3 Protocol Select Jumpers 11
2.4 General Purpose Outputs 12
2.5 Dallas 1-Wire Bridge 13
2.6 Manual Override 13
2.7 Keypad Interface Connector 15
3 Troubleshooting 15
3.1 The display does not turn on when power is applied 15
3.2 The display module is not communicating 16
3.3 The display module is communicating, however text cannot be displayed. 16
4 Communications 16
4.1 Introduction 16
4.1.1 $\quad \mathrm{I}^{2} \mathrm{C}$ Communication Summary 16
4.1.2 $\quad I^{2} \mathrm{C}$ Transaction Example 17
4.1.3 Serial Communication 18
4.2 Changing the $\mathrm{I}^{2} \mathrm{C}$ Slave Address 18
4.3 Changing the Baud Rate 18
4.4 Setting a Non-Standard Baud Rate 19
5 Text 20
5.1 Introduction 20
5.1.1 Character Set 21
5.1.2 Control Characters 21
5.2 Auto Scroll On 21
5.3 Auto Scroll Off 22
5.4 Clear Screen 22
5.5 Changing the Startup Screen 22
5.6 Set Auto Line Wrap On 23
5.7 Set Auto Line Wrap Off 23
5.8 Set Cursor Position 23
5.9 Go Home 24
5.10 Move Cursor Back 24
5.11 Move Cursor Forward 24
5.12 Blinking Block Cursor On 25
5.13 Blinking Block Cursor Off 25
6 Special Characters 25
6.1 Introduction 25
6.2 Creating a Custom Character 25
6.3 Saving Custom Characters 26
6.4 Loading Custom Characters 27
6.5 Save Startup Screen Custom Characters 27
6.6 Initialize Medium Number 28
6.7 Place Medium Numbers 28
6.8 Initialize Large Numbers 29
6.9 Place Large Number 29
6.10 Initialize Horizontal Bar 29
6.11 Place Horizontal Bar Graph 30
6.12 Initialize Narrow Vertical Bar 30
6.13 Initialize Wide Vertical Bar 30
6.14 Place Vertical Bar 31
7 General Purpose Output 31
7.1 Introduction 31
7.2 General Purpose Output Off 32
7.3 General Purpose Output On 32
7.4 Set Startup GPO state 32
8 Dallas 1-Wire 33
8.1 Introduction 33
8.2 Search for a 1-Wire Device 33
8.3 Dallas 1-Wire Transaction 34
9 Keypad 35
9.1 Introduction 35
9.1.1 $\quad I^{2} \mathrm{C}$ Interface 36
9.1.2 RS232 Interface 36
9.2 Auto Transmit Key Presses On 36
9.3 Auto Transmit Key Presses Off 36
9.4 Poll Key Press 37
9.5 Clear Key Buffer 37
9.6 Set Debounce Time 38
9.7 Set Auto Repeat Mode 38
9.8 Auto Repeat Mode Off 39
9.9 Assign Keypad Codes 39
10 Display Functions 40
10.1 Introduction 40
10.2 Display On 40
10.3 Display Off 41
10.4 Set VFD Brightness 41
10.5 Set and Save VFD Brightness 41
11 Data Security 42
11.1 Introduction 42
11.2 Set Remember 42
11.3 Data Lock 43
11.4 Set and Save Data Lock 44
11.5 Write Customer Data 45
11.6 Read Customer Data 45
12 Miscellaneous 45
12.1 Introduction 45
12.2 Read Version Number 45
12.3 Read Module Type 46
13 Command Summary 48
13.1 Communications 48
13.2 Text 48
13.3 Special Characters 49
13.4 General Purpose Output 50
13.5 Dallas 1-Wire 50
13.6 Keypad 50
13.7 Display Functions 51
13.8 Data Security 51
13.9 Miscellaneous 52
13.10Command By Number 52
14 Appendix 54
14.1 Specifications 54
14.1.1 Environmental 54
14.1.2 Electrical 54
14.2 Physical Layout 55
14.3 Optical Characteristics 56
14.4 Definitions 56
14.5 Contacting Matrix Orbital 56
14.6 Revision History 56

1 Getting Started

Figure 1: VK204-25

The VK204-25 is an intelligent VFD display designed to decrease development time by providing an instant solution to any project. With the ability to communicate via serial RS-232/TTL and $\mathrm{I}^{2} \mathrm{C}$ protocols, the versatile VK204-25 can be used with virtually any controller. The ease of use is further enhanced by an intuitive command structure to allow display settings such as brightness, and baud rate to be software controlled. Additionally, up to thirty-two custom charaters, such as character sets for bar graphs, medium and large numbers, may be stored in the non-volitile memory to be easily recalled and displayed at any time.

1.1 Display Options Available

The VK204-25 is complimented with a wide selection of filters including blue, green, grey and red. If the VFD will be in direct sunlight, the grey filter will prevent the displayed text from 'washing out'. Extended voltage, and temperature options are also available, to allow you to select the display which will best fit your project needs.

Figure 2: VK204-25 Filter Options

1.2 Accessories

NOTE Matrix Orbital provides all the interface accessories needed to get your display up and running. You will find these accessories and others on our e-commerce website at http://www.matrixorbital.com. To contact a sales associate see Section 14.5 on page 56 for contact information.

Figure 3: 5V Power Cable Adapter

Figure 4: 12V Power Cable Adapter (V/VPT Models)

Figure 5: Breadboard Cable

Figure 6: Serial Cable 4FT

Figure 7: Communication and 5V Power Cable

Figure 8: Aluminum Mountings

Figure 9: Keypad Mountings

Figure 10: 4X4 Keypad

1.3 Features

- 20 column by 4 line alphanumeric vacuum fluorescent display
- Selectable communication protocol, RS-232 or I ${ }^{2} \mathrm{C}$
- Optional One-wire interface
- Six, $5 \mathrm{~V}-20 \mathrm{~mA}$, general purpose outputs for a variety of applications
- Lightning fast communication speeds, up to 57.6 kbps for RS-232 and 400 kbps for $\mathrm{I}^{2} \mathrm{C}$
- Default 19.2 kbps serial communication speed
- Extended temperature available for extreme environments of -20C to 70C
- Extended voltage and efficient power supply available
- Built in font with provision for up to 8 user defined characters
- Use of up to 127 modules on the same 2 wire $\mathrm{I}^{2} \mathrm{C}$ interface
- 1-wire bus that is capable of communicating with many devices over a single wire plus a ground refernce
- Fully buffered so that no delays in transmission are ever necessary
- Ability to add a customized splash / startup screen
- Software controlled brightness with configurable time-out setting up to 90 minutes and software controlled speed
- Use of up to a 25 key keypad with a 10 key buffer
- Horizontal or vertical bar graphs
- Extended temperature option
- Fits Matrix Orbital's mountings without any modifications

1.4 Connecting to a PC

The VK204-25 connects seamlessly to a PC and it is an excellent means of testing the functionality. To connect your display to a PC, you will require a standard RS-232 9-pin serial cable such as the one pictured in figure 6 on page 3, as well as a modified 5 V power adapter such as the one pictured in figure 3 on page 2.

In order to connect your display to a personal computer follow these easy instructions:

1. Plug the serial cable into the com port you wish to use.
2. Connect the modified 5 V power adapter to a power lead from your PC power supply (you will have to open your computer case).
3. Connect the serial cable to the DB-9 connector on the back of the display.
4. Connect the 5 V power adapter to the 4 -pin connector on the back of the display.

WARNING DO NOT use the standard floppy drive power connector, as this will not provide you with the correct voltage and will damage the display module.

Figure 11: PC vs Matrix Orbital Display Module Wiring

1.5 Installing the Software

1.5.1 uProject

uProject was designed by Matrix Orbital to provide a simple and easy to use interface that will allow you to test all of the features of our alpha numeric displays.

To install uProject from the Matrix Orbital CD, follow the following steps:

1. Insert the Matrix Orbital CD-ROM into the CD drive
2. Locate the file, uProject.exe, which should be in the "CD-drive:\Download" directory.
3. Copy uProject.exe to a directory that you wish to run it from.
4. Double click on "uProject.exe"

Be sure to check the information selected in the COM Setup the first time uProject is run. Once this information is entered correctly the program can be used to control all functions of the graphic display.

Comport	The serial port the display is plugged in to.
Baudrate	The communication speed the display module is set to. (Default 19,200)

Figure 12: uProject Settings

NOTES

- uProject and other alphanumeric software may also be downloaded from Matrix Orbital's support site at http://www.matrixorbital.ca/software/software_alpha/

2 Hardware Information

Refer to the following diagram for this chapter:

Figure 13: VK204-25

2.1 DB-9 Connector

The VK204-25 provides a DB-9 Connector to readily interface with serial devices which use the EIA232 standard signal levels of $\pm 12 \mathrm{~V}$ to $\pm 12 \mathrm{~V}$. It is also possible to communicate at TTL levels of 0 to +5 V by setting the Protocol Select Jumpers to TTL. As an added feature it is also possible to apply power through pin 9 of the DB-9 Connector in order to reduce cable clutter. However, in order to accomplish this you must set the Power Through DB-9 Jumper.

Pin $2 R x \backslash \operatorname{SCL}\left(\mathrm{I}^{2} \mathrm{C}\right.$ clock)
Pin 3 Tx $\backslash \operatorname{SDA}\left(I^{2} C\right.$ data)
Pin 5 GND
Pin 9 PWR (Must solder Power Through DB-
9 Jumper. See table 1 on page 11 for
power requirements.)

Figure 14: RS-232 Pin out

2.1.1 Power Through DB-9 Jumper

In order to provide power through pin 9 of the $D B-9$ Connector you must place a solder jumper on the Power through DB-9 Jumper pictured in figure 15 below. The VK204-25 allows all voltage models to use the power through DB-9 option, see table 1 on the following page for display module voltage requirements.

Figure 15: Power Through DB-9 Jumper

2.2 Power/Data Connector

The Power/Data Connector provides a standard connector for powering the display module. The VK20425 requires five volts for the standard display module, between nine to fifteen for the wide voltage (V) and between nine to thirty-five volts for the wide voltage with efficient power supply module (VPT). The voltage is applied through pins one and four of the four pin Power/Data connector. Pins two and three are reserved for serial transmission, using either the RS-232/TTL or the $\mathrm{I}^{2} \mathrm{C}$ protocol, depending on what has been selected by the Protocol Select Jumpers.

Pin 1 PWR (See table 1)
Pin $2 R x \backslash$ SCL ($\mathrm{I}^{2} \mathrm{C}$ clock)
Pin $3 \mathrm{Tx} \backslash \operatorname{SDA}\left(\mathrm{I}^{2} \mathrm{C}\right.$ data)
Pin 4 GND

Figure 16: Power Connector and Pin out

Table 1: Power Requirements

	Standard	-V	-VPT
Supply Voltage	$+5 \mathrm{Vdc} \pm 0.25 \mathrm{~V}$	+9 V to +15 V	+9 V to +35 V
Supply Current	148 mA typical		
Inrush	148 mA		

WARNINGS

- Do not apply any power with reversed polarization.
- Do not apply any voltage other than the specified voltage.

2.3 Protocol Select Jumpers

The Protocol Select Jumpers, pictured below in figure 17, provide the means necessary to toggle the display module between RS-232, TTL and $\mathrm{I}^{2} \mathrm{C}$ protocols. As a default, the jumpers are set to RS-232 mode with solder jumps on the 232 jumpers. In order to place the display module in $\mathrm{I}^{2} \mathrm{C}$ mode you must first remove the solder jumps from the 232 jumpers and then place them on the I2C jumpers. The display will now be in $\mathrm{I}^{2} \mathrm{C}$ mode and have a default slave address of 0×50 unless it has been changed. Similarly, in order to change the display to TTL mode, simply remove the zero ohm resistors from the 232 or $\mathrm{I}^{2} \mathrm{C}$ jumpers and solder them to the TTL jumpers.

Figure 17: Protocol Select Jumpers

2.4 General Purpose Outputs

A unique feature of the VK204-25 is the ability to control relays and other external devices using a General Purpose Output, which can provide up to 20 mA of current and +5 Vdc from the positive side of the GPO. This is limited by a 240 ohm resistor which is located directly above the positive pin as pictured below in figure 21. If the device, which is being driven by a GPO, requires a relatively high current (such as a relay) and has an internal resistance of its own greater than 250 ohms, then the 240 ohm resistor may be removed and replaced with a Jumper.

- GND
+ MAX: $20 \mathrm{~mA},+5 \mathrm{Vdc}$

Figure 18: General Purpose Output

WARNING If connecting a relay, be sure that it is fully clamped using a diode and capacitor in order to absorb any electro-motive force (EMF) which will be generated.

2.5 Dallas 1-Wire Bridge

In addition to the six general purpose outputs the VK204-25 offers a Dallas 1-wire bridge, to allow for an aditional thirty two 1 -wire devices to be connected to the display. Please note that the display normally does not come with the Dallas 1 -wire bridge. It will have to be ordered as a custom. Please talk to your sales representative if you would like this option. See Section 8 on page 33.

Figure 19: Dallas 1-Wire Bridge

> NOTE This component is optional and must be custom ordered

2.6 Manual Override

The Manual Override is provided to allow the VK204-25 to be reset to factory defaults. This can be particularly helpful if the display module has been set to an unknown baud rate or $\mathrm{I}^{2} \mathrm{C}$ Slave Address and you are no longer able to communicate with it. If you wish to return the module to its default settings you must:

1. Power off the display module.
2. Place a Jumper on the Manual Override pins.
3. Power up the display module.
4. The display module is now set to its default values listed below in table 2.
5. Edit and save settings.

Figure 20: Manual Override Jumper

Table 2: Default Values

Brightness	0×03
Baud Rate	19.2 kbps
$\mathbf{I}^{2} \mathbf{C}$ Slave Address	0×50
Data Lock	False
RS232AutoTransmitData	True

NOTE The display module will revert back to the old settings once turned off, unless the settings are saved.

2.7 Keypad Interface Connector

The VK204-25 provides a Keypad Interface Connector which allows for up to a five by five matrix style keypad to be directly connected to the display module. Key presses are generated when a short is detected between a row and a column. When a key press is generated a character, which is associated with the particular key press, is automatically sent on the Tx communication line. If the display module is running in I ${ }^{2} \mathrm{C}$ mode, the "Auto Transmit Keypress" function may be turned off, to allow the key presses to remain in the buffer so that they may be polled. The character that is associated with each key press may also be altered using the "Assign Key Codes" command, for more detailed information see the Keypad Section, on page 35.

Figure 21: Keypad Interface Connector

3 Troubleshooting

3.1 The display does not turn on when power is applied.

- First, you will want to make sure that you are using the correct power connector. Standard floppy drive power cables from your PC power supply may fit on the Power/Data Connector however they do not have the correct pin out as can be seen in figure 11 on page 7. Matrix Orbital supplies power cable adapters for connecting to a PC, which can be found in the Accessories Section on page 2.
- The next step is to check the power cable which you are using for continuity. If you don't have an
ohm meter, try using a different power cable, if this does not help try using a different power supply.
- The last step will be to check the Power / Data Connector on the VK204-25. If the Power / Data Connector has become loose, or you are unable to resolve the issue, please contact Matrix Orbital, see 14.5 on page 56 for contact information.

3.2 The display module is not communicating.

- First, check the communication cable for continuity. If you don't have an ohm meter, try using a different communication cable. If you are using a PC try using a different Com Port.
- Second, please ensure that the display module is set to communicate on the protocol that you are using, by checking the Protocol Select Jumpers. To change the protocol used by the display module see Section 2.3 on page 11.
- Third, ensure that the host system and display module are both communicating on the same baud rate. The default baud rate for the display module is 19200 bps.
- If you are communicating to the display via $\mathrm{I}^{2} \mathrm{C}$ please ensure that the data is being sent to the correct address. The default slave address for the display module is 0×50.

NOTE $\quad I^{2} \mathrm{C}$ communication will always require pull up resistors.

- Finally, you may reset the display to it's default settings using the Manual Override Jumper, see Section 2.6 on page 13.

3.3 The display module is communicating, however text cannot be displayed.

- A common cause may be that the brightness settings have been set to low. The solution to this problem is to increase the brightness.

4 Communications

4.1 Introduction

The commands listed in this chapter describe how to configure data flow on the VK204-25.

4.1.1 $\quad I^{2} \mathrm{C}$ Communication Summary

The VK204-25 is capable of communicating at 100 KHz in $\mathrm{I}^{2} \mathrm{C}$ mode, with 127 units addressable on a single $I^{2} \mathrm{C}$ communication line. However, in order to communicate via $\mathrm{I}^{2} \mathrm{C}$ you must first ensure that pull up resistors, with a nominal value of 1 K to 10 K , are placed on the SCL and SDA communication lines coming from pins two and three of the Data / Power Connector respectively. Data responses by the module are automatically output via RS232, in case the host will be querying the module, it is necessary for the host
to inform the module that its responses are to be output via $\mathrm{I}^{2} \mathrm{C}$. This can be done by sending command $254 / 160 / 0$ to turn off auto transmission of data in RS232. This will keep the data in the buffer until the master clocks a read of the slave. The $\mathrm{I}^{2} \mathrm{C}$ data lines operate at 5 V normally or 3.3 V for -1 U style units. The VK204-25 uses 8-bit addressing, with the 8th or Least Significant Bit (LSB) bit designated as the read/write bit, a 0 designates a write address and a 1 designates a read address. The default read address of the display module will be 0×51, whereas the write address is 0×50 by default. This address may be changed by using cmd 254 / 51 / <address>. The VK204-25 should only be sent addresses that are even (LSB is 0). When the $\mathrm{I}^{2} \mathrm{C}$ master wishes to write to the display, the effective address is $\$ 50(01010000)$, since the LSB has to be 0 for an $\mathrm{I}^{2} \mathrm{C}$ master write. When the $\mathrm{I}^{2} \mathrm{C}$ master wishes to read the VK204-25, the effective address is $\$ 51$ (0101 0001), since the LSB has to be 1 for an $\mathrm{I}^{2} \mathrm{C}$ master read.

If we take a standard Phillips 7 bit address of \$45 (100 0101), Matrix Orbital's VK204-25 would describe this Phillips I^{2} C address as \$8A (1000 1010). The read address would be \$8B (1000 1011).

The unit does not respond to general call address (\$00).
When communicating in $\mathrm{I}^{2} \mathrm{C}$ the VK204-25 will send an ACK on the 9th clock cycle when addressed. When writing to the display module, the display will respond with a ACK when the write has successfully been completed. However if the buffer has been filled, or the module is too busy processing data it will respond with a NAK. When performing a multiple byte read within one $I^{2} \mathrm{C}$ transaction, each byte read from the slave should be followed by an ACK to indicate that the master still needs data, and a NAK to indicate that the transmission is over.

The VK204-25 has some speed limitations, especially when run in $\mathrm{I}^{2} \mathrm{C}$ mode. Here are some considerations when writing $\mathrm{I}^{2} \mathrm{C}$ code:

* to be able to read the replies of query commands (eg. cmds 54,55) the following command must be sent (only needs to be sent once, so this can be done somewhere in init): $254 / 160 / 0$ this command puts the reply data in the $\mathrm{I}^{2} \mathrm{C}$ output buffer instead of the RS232 output buffer. Please note that due to a 16 byte output buffer, query commands that reply with more than 16 bytes cannot be read (eg cmd Get FileSystem Directory)
* 3 ms delay between the read commands
* 625us delay in between data bytes within a transaction is necessary
* 375 us between transactions is necessary

NOTE These delays are consrevative, and may be decreased based on performance

4.1.2 $I^{2} \mathrm{C}$ Transaction Example

The typical $\mathrm{I}^{2} \mathrm{C}$ transaction contains four parts: the start sequence, addressing, information, and stop sequence. To begin a transaction the data line, SDA, must toggle from high to low while the clock line, SCL, is high. Next, the display must be addressed using a one byte hexadecimal value, the default to write to the unit is 0×50, while read is 0×51. Then information can be sent to the unit; even when reading, a command must first be sent to let the unit know what type of information it is required to return. After each bit is sent, the display will issue an ACK or NACK as described above. Finally, when communication is complete, the transaction is ended by toggling the data line from low to high while the clock line is high. An example of the use of this algorithm to write a simple "HELLO" message can be seen in 3.

Table 3: $\mathrm{I}^{2} \mathrm{C}$ Transaction Algorithm

START	Toggle SDA high to low
Address	0x50
Information	0×48 0x45 0x4C 0x4C 0x4F
STOP	Toggle SDA low to high

4.1.3 Serial Communication

In addition to being able to communicate via $\mathrm{I}^{2} \mathrm{C}$ the VK204-25 communicates natively through the RS-232 protocol at at a default baud rate of $19,200 \mathrm{bps}$ and is capable of standard baud rates from 9600 to $115,200 \mathrm{bps}$. Furthermore the VK204-25 is also capable of reproducing any non-standard baud rate in between using values entered into our baud rate generation algorithm and set through command 164 ($0 x \mathrm{~A} 4$). The display module communicates at standard voltage levels of -30 V to +30 V or at TTL levels of 0 to +5 V by setting the Protocol Select Jumpers to TTL.

4.2 Changing the $\mathrm{I}^{2} \mathrm{C}$ Slave Address

NOTE The change in address is immediate.

Remembered	Always
Default	0×50

4.3 Changing the Baud Rate

Syntax	Hexadecimal Decimal ASCII	0xFE 0x39 [speed] 25457 [speed] $254 ~ " 9 " ~[s p e e d] ~$
Matrix Orbital		VK204-25

Parameter	Length	Description
speed	1	Hex value corresponding to a baud rate.

This command sets the RS-232 port to the specified [speed]. The change takes place immediately. [speed] is a single byte specifying the desired port speed. Valid speeds are shown in the table below. The display module can be manually reset to 19,200 baud in the event of an error during transmission, including transmitting a value not listed below, by setting the manual override jumper during power up. However, it should be noted that this command will be ignored until the manual override jumper is removed again.

Hex Value	Baud Rate
53	1200
29	2400
CF	4800
67	9600
33	19200
22	28800
19	38400
10	57600
8	115200

NOTE This command is not available in $\mathrm{I}^{2} \mathrm{C}$ mode.

Remembered Always
Default
19,200 bps

4.4 Setting a Non-Standard Baud Rate

Remembered
Always
Examples

Crystal Speed 16 Mhz
Desired BAUD 13,500

$$
\begin{aligned}
& \text { speed }=\frac{\text { crystalspeed }}{8 * \text { DesiredBaud }}-1 \quad \text { speed }=\frac{16,000,000}{8 * 13,500}-1 \\
& \qquad \text { speed }=148.15-1 \\
& \text { - } \mathbf{\text { LSB }}=0 \times 93 \text { (rounded }) \\
& \text { - MSB }=0 \times 147.15 \\
& \text { - Intended Baud Rate: } 13,500 \text { baud } \quad \text { Actual Baud Rate: } \\
& \frac{16,000,000}{8(147+1)}=13,514 \quad \text { Percent Difference: } 0.1 \%
\end{aligned}
$$

NOTES

- Results from the formula are rounded down to the nearest whole number (i.e 73.07 $=73$).
- This formula becomes less acurate as baud rates increase, due to rounding.
- Place the speed result backwards into the formula to receive the actual baud rate. $\left(\right.$ Baud $\left.=\frac{\text { CrystalSpeed }}{8(\text { speed }+1)}\right)$
- The actual baud rate must be within 3% of the intended baud rate for the device to communicate.

NOTES

- This command is not available in $\mathrm{I}^{2} \mathrm{C}$ mode.

5 Text

5.1 Introduction

The VK204-25 is an intelligent display module, designed to reduce the amount of code necessary to begin displaying data. This means that it is able to display all ASCII formated characters and strings that are sent to it, which are defined in the current character set. The display module will begin displaying text at the top left corner of the display area, known as home, and continue to print to the display as if it was a page on a typewriter. When the text reaches the bottom right row, it is able to automatically scroll all of the lines up and continue to display text, with the auto scroll option set to on.

5.1.1 Character Set

Figure 22: Character Set

5.1.2 Control Characters

In addition to a full text set, the VK204-25 display supports the following ASCII Control characters:
0x08 Backspace
0x0C Clear screen / New page
0x0D Carriage return
0x0A Line feed / New line

5.2 Auto Scroll On

Syntax	Hexadecimal	0xFE 0x51
Decimal	25481	
	ASCII	254 "Q"

Description When auto scrolling is on, it causes the display to shift the entire display's contents up to make room for a new line of text when the text reaches the end of the last row.

Remembered Yes
Default On

5.3 Auto Scroll Off

Syntax	Hexadecimal	0xFE 0x52
	Decimal	25482
	ASCII	254 "R"

Description When auto scrolling is disabled the text will wrap to the top left corner of the display area when the text reaches the end of last row.

Remembered Yes

5.4 Clear Screen

Syntax

Description
Remembered
No

5.5 Changing the Startup Screen

Syntax	Hexadecimal 0xFE 0x40
	Decimal 25464
	ASCII 254 "@"
Description	In order to change the text that is displayed by the VK204-25 when it starts up simply send the command bytes 25464 followed by the characters that you wish to display, starting from the top left. This command will automatically line wrap the characters that are sent to it
Remembered	Yes

5.6 Set Auto Line Wrap On

Syntax	Hexadecimal	0xFE 0x43
Decimal	25467	
	ASCII	254 "C"

Description
Enabling Auto Line Wrap will allow the cursor to automatically wrap over to the next line when the current line is full.

NOTE Line wraps may occur in the middle of a word.

Remembered Yes

5.7 Set Auto Line Wrap Off

Syntax	Hexadecimal	0xFE 0x44
Decimal	25468	
	ASCII	254 "D"

Description

Remembered Yes

5.8 Set Cursor Position

Syntax	Hexadecimal	0xFE 0x47 [col] [row]	
	Decimal	$25471[\mathrm{col}][\mathrm{row}]$	
Parameters	ASCII	254 "G" Gcol$][\mathrm{row}]$	
	Parameter	Length	
	col	Description	
	row	1	Column
		1	Row

Description This command will allow you to manually set the cursor position, which controls the text insertion point, by specifying the [col] and [row] of the new proposed cursor position.

NOTE If the cursor position is set past the end of a line it will wrap to the beginning of the next line.

Remembered
No

5.9 Go Home

Syntax
Hexadecimal 0xFE 0x48
Decimal 25472
ASCII 254 "H"
Description This command will return the cursor to the top left corner of the display area, identified as row one, column one.

Remembered No

5.10 Move Cursor Back

Syntax	Hexadecimal Decimal	25476

ASCII 254 "L"

Description This command will move the cursor back one space. If this command is sent when the cursor is at the home position the cursor will wrap to the last row / column position if line wrap is on. Sending this command will not effect the text displayed on the module, however any characters that are sent will over write the current characters that are being displayed.

Remembered No

5.11 Move Cursor Forward

Syntax	Hexadecimal	0xFE 0x4D
	Decimal	25477
	ASCII	254 "M"

Description This command will move the cursor forward one space. If this command is sent when the cursor is at the bottom right position the cursor will wrap back to the home position if line wrap is on. Sending this command will not effect the text displayed on the module, however any characters that are sent will over write the current characters that are being displayed.

Remembered
No

5.12 Blinking Block Cursor On

Syntax	Hexadecimal	0xFE 0x53
Decimal	25483	
	ASCII	$254 " S "$

Description This command will cause the VK204-25 to display a block cursor at the current text insertion point.

Remembered Yes

5.13 Blinking Block Cursor Off

Syntax

Description

Remembered

6 Special Characters

6.1 Introduction

The VK204-25 has the ability to create four different sets of eight custom characters and save them to internal banks of memory. Each set of eight can be recalled from memory at any time, and selected characters can be written to the display screen. Characters and sets can be created at any time, saved for later use, and displayed to the screen through the intuitive command structure described below.

6.2 Creating a Custom Character

Hexadecimal	0xFE 0x4E [refID] [data]	
Decimal	25478 [refID] [data]	
ASCII	254 "N" [refID] [data]	
Parameter	Length	Description
refID	1	Character reference ID (0-7).
data	8	Character data.
The VK204-25 allows for upta to eight custom defined characters to be		
added onto the the character set. A custom character is a five by eight		
pixel matrix with each row represented by a byte value. For example:		

Custom Character'h'					Decimal	Hex
$\mathbf{1}$	0	0	0	0	16	0×10
$\mathbf{1}$	0	0	0	0	16	0×10
$\mathbf{1}$	0	0	0	0	16	0×10
$\mathbf{1}$	0	0	0	0	16	0×10
$\mathbf{1}$	0	$\mathbf{1}$	$\mathbf{1}$	0	22	0×16
$\mathbf{1}$	$\mathbf{1}$	0	0	$\mathbf{1}$	25	0×19
$\mathbf{1}$	0	0	0	$\mathbf{1}$	17	0×11
$\mathbf{1}$	0	0	0	$\mathbf{1}$	17	0×11

Each bit value of one, in the table, represents an on pixel, whereas a value of zero represents a pixel that is turned off. Therefore in order to define custom character 'h' you would send the command byte prefix 254 followed by the command 78. Next, you will have to select the memory location in which you wish to save the character in. The available memory locations for this command are zero through to seven. After sending the memory location, or [refID], you may then send the eight byte custom character data in sequence from the top to the bottom. Once you have defined a custom character you may display it by sending the display module the [refID]. For example if a custom character was saved in position one, the command to display the custom character, at the current cursor position, would be simply to send the number one to the display module without quotes. No

6.3 Saving Custom Characters

Syntax	Hexadecimal Decimal	0xFE 0xC1 [Bank] [ID] [Data] 254 193 [Bank] [ID] [Data]	
Parameters	Parameter	Length	Description
	Bank	1	Memory bank to save to (0-4).
	ID	1	Character ID (0-7)
	Data	8	Character Definition

Description New to the VK204-25 has added five non-volatile memory banks for custom character storage. This is intended to allow you to create your own custom bar graphs, medium/large numbers and startup screen. However, each memory bank may be used to store a set of any eight custom characters; with the only provision being that memory bank zero contains the characters that will be used in the startup screen. By default the memory banks will be loaded as follows:

[Bank]	Description
$\mathbf{0}$	Startup screen characters.
$\mathbf{1}$	Horizontal bars
$\mathbf{2}$	Vertical bars
$\mathbf{3}$	Medium numbers
$\mathbf{4}$	Large numbers

In order to save new custom characters into a memory bank, follow the same process as you would for creating a custom character, see Section 6.2 on page 25, only use 254193 [Bank Number] before sending the [ID] and character [Data].
Remembered Yes

6.4 Loading Custom Characters

Syntax
Parameters

Hexadecimal	0xFE 0xC0 [Bank]
Decimal	$254192[$ Bank]

Description

Parameter	Length	Description
Bank	1	Memory bank to save to (0-4).

Remembered No

6.5 Save Startup Screen Custom Characters

Syntax
Parameters

Hexadecimal Decimal	0xFE 0xC2 [refID] [data]						
254 194 [refID] [data]			$	$	Parameter	Length	Description
:---	:---:	:---					
refID	1	Character reference ID (0-7).					
data	8	Character data.					

Description Using this command you may create the custom characters. that will be stored in memory bank zero, which will be used in the startup screen. For more information about creating custom characters see Section 6.2 on page 25 .

NOTES

- Changes only take place once the power has been cycled.
- This command is the same as sending CMD 254 / 193 / 0 / [ID] / [DATA]

Remembered Yes

6.6 Initialize Medium Number

Syntax	Hexadecimal	0xFE 0x6D
	Decimal	254109
	ASCII	254 "m"

Description

Remembered No

6.7 Place Medium Numbers

Syntax	Hexadecimal	0xFE 0x6F [Row] [Col] [Digit]
	Decimal	254111 [Row] [Col] [Digit]
	ASCII	254 "o" [Row] [Col] [Digit]
Parameters	Parameter	Length Description
	Row	1 The row number.
	Col	1 The column number.
	Digit	1 Medium number to place (0-9).
Description	This command [row] and [col]	ill place a medium number (two columns high) at the secified.

NOTE Medium Numbers must be initialized before this command is executed.

Remembered
No

6.8 Initialize Large Numbers

Syntax	Hexadecimal $0 x F E 0 x 6 E$ Decimal ASCII 254110		
Description 254 " n "		\quad	This command will load the default large number characters into the
:---			
volatile memory. If you have stored your own custom large numbers,			
use the 'Load Custom Characters' command instead to load your			
custom character data into the volatile memory. This command will			
allow you to use the 'Place Large Numbers' command.			

Remembered No

6.9 Place Large Number

Syntax	Hexadecimal 0xFE 0x23 [Col] [Digit]		
	Decimal	25435 [Col]	igit]
	ASCII	254 "\#" [Col]	Digit]
Parameters	Parameter	Length	Descripti
	Col	1	The colu
	Digit	1	Large nu
Description	This command will place a large number (four columns high) at the [row] and [col] specified.		

NOTE Large Numbers must be initialized before this command is executed.

Remembered
No

6.10 Initialize Horizontal Bar

Syntax

Description This command will load the default horizontal bar characters into the volatile memory. If you have stored your own custom horizontal bar data, use the 'Load Custom Characters' command instead to load your custom bar data into the volatile memory. This command will allow you to use the 'Place Horizontal Bar' command.

Remembered No

6.11 Place Horizontal Bar Graph

Syntax	Hexadecimal	0xFE 0x7C] [Row] [Dir] [Length]
	Decimal	254124 [C	Row] [Dir] [Length]
	ASCII	254 "" [Co	ow] [Dir] [Length]
Parameters	Parameter	Length	Description
	Col	1	The column number.
	Row	1	The row number.
	Dir	1	The direction of the ba $1)$.
	Length	1	The length of the bar d
Description	This command will place a bar graph at [row], [column]. A [Dir] value of zero will cause the bar to go right, and one will cause the bar to go left. The [Length] is the size in pixels of the bar graph.		

NOTES

- Horizontal Bars must be initialized before this command is executed.
- Bar graphs may be one directional only.

Remembered
No

6.12 Initialize Narrow Vertical Bar

Syntax	Hexadecimal	0xFE 0x73
	Decimal	254115
	ASCII	254 "s"
Description	This command will load the narrow vertical bar characters into the volatile memory. If you have stored your own custom vertical bar data, use the 'Load Custom Characters' command instead to load your custom bar data into the volatile memory. This command will allow you to use the 'Place Vertical Bar' command.	

NOTE Narrow bars have a width of two pixels.

Remembered No

6.13 Initialize Wide Vertical Bar

Syntax	Hexadecimal	0xFE 0x76
	Decimal	254118
	ASCII	254 " v "

Description This command will load the wide vertical bar characters into the volatile memory. If you have stored your own custom vertical bar data, use the 'Load Custom Characters' command instead to load your custom bar data into the volatile memory. This command will allow you to use the 'Place Vertical Bar' command.

NOTE Wide bars have a width of five pixels.

Remembered
No

6.14 Place Vertical Bar

Syntax	Hexadecimal	0xFE 0x3D	lumn] [Length]
	Decimal	25461 [Col] [Length]
	ASCII	254 "=" [Co	n] [Length]
Parameters	Parameter	Length	Description
	Column	1	The column nu
	Length	1	The length of
Description	This command will place a bar graph at the specified [Column] with the specified [Length]. The [Length] is the size in pixels of the bar graph.		

NOTES

- A Vertical Bar style must be initialized before this command is executed.
- Bar graphs may be one directional only.

7 General Purpose Output

7.1 Introduction

General purpose outputs allow you to connect devices, such as LEDs, to the VK204-25 and supply them with up to 20 mA of current at 5 V . The VK204-25 has 6 GPOs which are software controlled, with functions to turn them on/off and set the power state for the next startup.

7.2 General Purpose Output Off

Syntax	Hexadecimal Decimal	0xFE 0x56[Num]
	ASCII	254 "V" Vum$]$
Parameters	Parameter	Length

NOTE OFF means that the output is pulled LOW.
Remembered

7.3 General Purpose Output On

Syntax	Hexadecimal Decimal	0xFE 0x57 [Num]
	254 87 [Num]	
ASCII	254 "W" [Num]	
Parameters	Parameter	Length
	Num	Description
Description	This command turns ON general purpose output [num]. The standard	
	GPO's on the VK204-25 output 20mA of current at 5V.	

NOTE ON means the output is pulled HIGH.
Remembered
Yes

7.4 Set Startup GPO state

Syntax	Hexadecimal Decimal	0xFE 0xC3 [Num] [state]	
254 195 [Num] [state]			
	Parameter	Length	Description
	Num	1	GPO number.
state	1	Startup state (0: Off, 1: On)	

Description This command will set the startup state for the GPO on the next power up. A value of one will cause the GPO to be off on the next startup while a value of one will cause the GPO to be on.

NOTE This command does not affect the current state of the GPO.
Remembered
Always

8 Dallas 1-Wire

8.1 Introduction

Another convenient feature of the VK204-25 is that it provides a Dallas 1-wire interface in order to readily communicate with up to thirty two 1 -wire devices on a single bus. 1-wire communication is begun by discovering the address of the device that you wish to communicate with. To do this you must send the "Search for a 1-Wire Device' command. After you have established the address of the device that you wish to communicate with, you may begin a transaction with the device

8.2 Search for a 1-Wire Device

```
Syntax Hexadecimal 0xFE 0xC8 0x2
    Decimal 2542002
```

Description This command will allow you to begin communicating with the devices on the 1 -wire bus by returning a packet containing device information for each 1-wire device on the bus in the form of:

Search Return Packet

Offset (Bytes)	Offset (Bytes)	Description
0	2	$\mathbf{0 x 2 3 2 A}$ Preamble
2	1	$\mathbf{0 x 8 A}$ Packet is 10 bytes long, an- other address will follow $\mathbf{0 x 0 A}$ Packet is 10 bytes long, this is the last address
3	1	0x31 - 1-Wire Packet Type
4	1	Error Code (0x00 for success)
5	8	CRC8 0x00 means the last address was valid
13	1	

Remembered
No

8.3 Dallas 1-Wire Transaction

Syntax	Hexadecimal Decimal	0xFE 0xC8 0x1 [flags] [SndBits] [RcvBits] [Data] 254 200 1 [flags] [SndBits] [RcvBits] [Data]	
Parameters	Parameter	Length	Description
flags	1	Flags to control optional components of the transaction.	
SndBits	1	The number of bits you will be transmitting on the bus.	
RcvBits	1	The number of bits you will be reading on the bus. Data to be transmitted, LSB to MSB.	

Description This command will perform a single transaction on the 1-wire bus in this order:

1. Bus Reset.
2. Transmit data onto the bus.
3. Receive data from the bus.

The number of bits to be transmitted and read must be specified for this command to be successful.

NOTE To determine what functions the device will respond to, consult the devices' data sheet.

1-Wire Flags

Bit	Description
7	Unused
6	(0 for future compatibility)
5	
4	(0 for future compatibility)
3	Add a CRC8 to the end of the transmitted data
2	Reset bus before transaction
1	Assume last received byte is a CRC8 and valide it
0	

1-Wire Error Codes

Code	Description
0x00	Success
0x01	Unknown 1-Wire Command
0x02	No devices on the bus
0x03	Fatal search error

Remembered
No

9 Keypad

9.1 Introduction

The VK204-25 supports up to a 25 key, matrix style, keypad and may be configured to allow key presses to be automatically transmitted via RS-232 or polled through $\mathrm{I}^{2} \mathrm{C}$. The VK204-25 also allows for autorepeating key presses, and remapping of all keypad character codes.

The connector is not keyed so the keypad will probably plug in either of two ways. The display will not be damaged by reversing the connector. However, the keypad will generate a different ASCII character mapping for each position. If the connector has fewer than 10 pins it should be centered on the display
connector. The keypad is scanned whenever a key is pressed;there is no continuous key scan. This means that key presses are dealt with immediately without any appreciable latency. This also prevents electrical noise which is often caused by continuous key scans.

9.1.1 I ${ }^{2}$ C Interface

The keypad is read by $I^{2} \mathrm{C}$ master read. In short, this means that a read of the module will always return the first unread key press. A read is initiated by writing to the module with its base address plus 1 , then clocking the module's return byte after the module releases the SDA line. Much more detail on this basic $I^{2} \mathrm{C}$ function can be found in the $\mathrm{I}^{2} \mathrm{C}$ specification by Phillips.

9.1.2 RS232 Interface

By default on any press of a key, the module will immediately send out the key code at the selected baud rate. This behavior can be modified using commands found in the next section.

9.2 Auto Transmit Key Presses On

Syntax	Hexadecimal 0xFE 0x41
	Decimal 25465
	ASCII 254 "A"
Description	In this mode, all key presses are sent immediately to the host system
without the use of the poll keypad command. This is the default mode	
on power up.	

NOTE This command is not available in $\mathrm{I}^{2} \mathrm{C}$.
Remembered Yes
Default
On

9.3 Auto Transmit Key Presses Off

Syntax	Hexadecimal	$0 x F E$ 0x4F
Decimal	25479	
	ASCII	254 "O"

Description In this mode, up to 10 key presses are buffered until the unit is polled by the host system, via the poll keypad command 254 38. Issuing this command places the unit in polled mode.

NOTE This command is not available in $\mathrm{I}^{2} \mathrm{C}$.

Remembered
Yes

9.4 Poll Key Press

Syntax	Hexadecimal 0xFE 0x26 Decimal ASCII 25438		
Description 254 "\&"			This command returns any buffered key presses via the serial interface.
:---			
The host system must be set up to receive key codes. When the display			
receives this command, it will immediately return any buffered key			
presses which may have not been read already. If there is more than one			
key press buffered, then the high order bit (MSB) of the returned key			
code will be set (1). If this is the only buffered key press, then the MSB			
will be cleared (0). If there are no buffered key presses, then the			
returned code will be 0x00. Please note that to make use of this			
command, the "Auto Transmit Key Presses" mode should be off.			

NOTE This command is not available in $\mathrm{I}^{2} \mathrm{C}$. To read keys in $\mathrm{I}^{2} \mathrm{C}$ mode, one just needs to address the module and read a byte. No preceding commands are necessary. If there are no keys pressed the read will result in a $0 x 00$.

Remembered
No

9.5 Clear Key Buffer

Syntax	Hexadecimal	0xFE 0x45
Decimal	25469	
	ASCII	254 "E"

Description This command clears any unread key presses. In a menu application, if the user presses a key which changes the menu context, any following key presses may be inaccurate and can be cleared out of the buffer between menu changes to prevent jumping around the menu tree. It may also be used, in effect, to reset the keypad in case the host application resets for whatever reason.

9.6 Set Debounce Time

9.7 Set Auto Repeat Mode

Two auto repeat modes are available and are set via the same command:

- Resend Key Mode: 0x00
- Key Up/Down Mode: 0x01

Resend Key Mode This mode is similar to the action of a keyboard on a PC. In this mode, when a key is held down, the key code is transmitted immediately followed by a $1 / 2$ second delay. After this delay, key codes will be sent via the RS-232 interface at a rate of about 5 codes per second. This mode has no effect if polling or if using the $\mathrm{I}^{2} \mathrm{C}$ interface.

Key Up/Down Mode This mode may be used when the typematic parameters of the "Resend Key Code" mode are unacceptable or if the unit is being operated in polled mode. The host system detects the press of a key and simulates an auto repeat inside the host system until the key release is detected. In this mode, when a key is held down, the key code is transmitted immediately and no other codes will be sent until the key is released. On the release of the key, the key release code transmitted will be a value equal to the key down code plus 20 hex.

Remembered Yes
Examples
When the key code associated with key ' P ' $(0 x 50)$ is pressed, the release code is 'p' (0x70). In RS-232 polled mode or via the $\mathrm{I}^{2} \mathrm{C}$, the "Key Down / Key Up" codes are used; however, the user should be careful of timing details. If the poll rate is slower than the simulated auto-repeat it is possible that polling for a key up code will be delayed long enough for an unwanted key repeat to be generated.

9.8 Auto Repeat Mode Off

Syntax	Hexadecimal	0xFE 0x60
Decimal	25496	
	ASCII	254 "‘""

Description
This command turns auto repeat mode off. See Set Auto Repeat Mode.
Remembered No

9.9 Assign Keypad Codes

Syntax Hexadecimal 0xFE 0xD5 [KDown] [KUp]
Decimal 254213 [KDown] [KUp]

Parameter	Length	Description
KDown	25	Key down codes
KUp	25	Key up codes

Description This command will allow you to reassign the key codes that correspond to the key presses on the matrix style key pad. The first 25 bytes that are transmitted will be used for the key down codes and the next 25 bytes that are transmitted will be used for the key up codes.

Key Down					
	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
$\mathbf{1}$	A	B	C	D	E
$\mathbf{2}$	F	G	H	I	J
$\mathbf{3}$	K	L	M	N	O
$\mathbf{4}$	P	Q	R	S	T
$\mathbf{5}$	U	V	W	X	Y

Key Up					
	1	2	3	4	5
1	a	b	c	d	e
2	f	g	h	i	j
3	k	1	m	n	0
4	p	q	r	S	t
5	u	v	w	x	y

Remembered
Always

10 Display Functions

10.1 Introduction

The VK204-25 employs software controlled display settings, which allow for control over, clearing the screen, changing the brightness and contrast or setting timers for turning it on or off. The combination of these allow you complete software control over your display's appearance.

10.2 Display On

10.3 Display Off

Syntax	Hexadecimal	0xFE 0x46
	Decimal	25470
	ASCII	254 "F"
Description	This command turns the backlight off immediately. The backlight will remain off until a 'Display On' command has been received.	
Remembered	Yes	

10.4 Set VFD Brightness

Syntax	Hexadecimal Decimal	0xFE 0x59 [brightness]	
	254 89 [brightness]		
Parameters	ASCII	254 "Y" [brightness]	
	Parameter	Length	Description
	brightness	1	Brightness setting (0 to 3).

Description This command sets and saves the display's brightness to [brightness], where [brightness] is a value between 0x00 and $0 x 03$ (between 0 and 3) according to the table below:

Value	Brightness
$0 x 03$	25%
0×02	50%
$0 x 01$	75%
$0 x 00$	100%

If the remember function is on, this command acts the same as 'Set and Save VFD Brightness’.
Remembered Yes
Default 255

10.5 Set and Save VFD Brightness

Syntax
Parameters

Hexadecimal Decimal	0xFE 0x91 [brightness]	
254 145 [brightness]		

Description This command sets and saves the display's brightness to [brightness], where [brightness] is a value between $0 x 00$ and $0 x 03$ (between 0 and 3) according to the table below:

Value	Brightness
0×03	25%
0×02	50%
0×01	75%
0x00	100%
Always	

11 Data Security

11.1 Introduction

Ensuring that your VK204-25 display's exactly what you want it to can be the difference between a projects success and failure. This is why we incorporate features such as Data Lock into the VK204-25 With this new feature you now are in control over of how and when settings will be changed so there is no need to worry about the module acting exactly like you expected it to because all the settings may be locked and remembered for the next power up.

11.2 Set Remember

Syntax	Hexadecimal Decimal	0xFE 0x93 [switch]	
Parameters	254 147 [switch]		
	Parameter	Length	Description
	switch	1	0: Do not remember, 1: Remember

Description This command allows you to switch the remember function on and off. To use the remember function, set remember to on, then set all of the settings that you wish to save, settings that are listed as 'Remember: Yes' support being saved into the non-volatile memory. After you have set all of the commands that you wish to save, you may then cycle the power and check the display settings to ensure that all the settings have been saved. If you wish to use remember again after cycling the power, you must set it to on again.

NOTES

- Writing to non-volatile memory is time consuming and slows down the operation of the display.
- Non-volatile memory has a 'write limit' and may only be changed approximately 100,000 times.

Remembered
Default
No
Do not remember

11.3 Data Lock

Syntax
Parameters

Hexadecimal 0xFE 0xCA 0xF5 0xA0 [level]
Decimal 254202245160 [level]

Parameter	Length	Description
level	1	Sets the data lock level

Description

Remembered	Always
Default	0
Examples	

Hex	Dec	Binary	Description
0×00	0	0	Unlock
0×50	80	01010000	Setting and Command Lock

11.4 Set and Save Data Lock

Syntax	Hexadecimal	0xFE 0xCB 0xF5 0xA0 [level]
Decimal	254203245160 [level]	

Parameters	Parameter	Length	Description
Description	level This command will set and save the data lock level. See the Data Lock section for more information.		
Remembered	Always Default	0	

11.5 Write Customer Data

$\left.\begin{array}{llc}\text { Syntax } & \begin{array}{l}\text { Hexadecimal } \\ \text { Decimal }\end{array} & \text { 0xFE 0x34 [data] } \\ & \text { 254 52 [data] } \\ \text { ASCII } & 254 \text { "4" [data] }\end{array}\right]$

11.6 Read Customer Data

Syntax	Hexadecimal $0 \times 5 E 0 \times 35$	
	Decimal	25453
	ASCII	254 " 5 "
Description	Reads whatever was written by Write Customer Data.	
Remembered	No	

12 Miscellaneous

12.1 Introduction

This chapter covers the 'Report Version Number' and 'Read Module Type' commands. These commands can be particularly useful to find out more information about the display module before contacting technical support.

12.2 Read Version Number

Syntax	Hexadecimal	0xFE 0x36
	Decimal	25454
	ASCII	$254 " 6 "$

Description
This command will return a byte representing the version of the module, see the following table as an example:

Hex Value	Version Number
0×19	Version 1.9
0×57	Version 5.7

Remembered No

12.3 Read Module Type

Syntax	Hexadecimal	$0 \times F E 0 \times 37$
Decimal	25455	
	ASCII	$254 " 7 "$

Description

Remembered

This command will return a hex value corresponding to the the model number of the module see the following table:

Hex	Product ID	Hex	Product ID
1	LCD0821	2	LCD2021
5	LCD2041	6	LCD4021
7	LCD4041	8	LK202-25
9	LK204-25	A	LK404-55
B	VFD2021	C	VFD2041
D	VFD4021	E	VK202-25
F	VK204-25	10	GLC12232
13	GLC24064	14	Unused
15	GLK24064-25	16	Unused
21	Unused	22	GLK12232-25
23	Unused	24	GLK12232-25-SM
25	GLK24064-16-1U-USB	26	GLK24064-16-1U
27	GLK19264-7T-1U-USB	28	GLK12232-16
29	GLK12232-16-SM	2A	GLK19264-7T-1U
2B	LK204-7T-1U	2C	LK204-7T-1U-USB
31	LK404-AT	32	MOS-AV-162A
33	LK402-12	34	LK162-12
35	LK204-25PC	36	LK202-24-USB
37	VK202-24-USB	38	LK204-24-USB
39	VK204-24-USB	3A	PK162-12
3B	VK162-12	3C	MOS-AP-162A
3D	PK202-25	3E	MOS-AL-162A
3F	MOS-AL-202A	40	MOS-AV-202A
41	MOS-AP-202A	42	PK202-24-USB
43	MOS-AL-082	44	MOS-AL-204
45	MOS-AV-204	46	MOS-AL-402
47	MOS-AV-402	48	LK082-12
49	VK402-12	4A	VK404-55
4B	LK402-25	4C	VK402-25
4D	PK204-25	4E	Unused
4F	MOS	50	MOI
51	XBoard-S	52	XBoard-I
53	MOU	54	XBoard-U
55	LK202-25-USB	56	VK202-25-USB
57	LK204-25-USB	58	VK204-25-USB
5B	LK162-12-TC	5C	Unused
71	Unused	72	GLK240128-25
73	LK404-25	74	VK404-25
77	Unused	78	GLT320240
79	GLT480282	7A	GLT240128

No

13 Command Summary

13.1 Communications

Description	Syntax		Page
Changing the I^{2} C Slave	Hexadecimal	0xFE 0x33 [adr]	18
Address	Decimal	25451 [adr]	
	ASCII	254 "3" [adr]	18
Changing the Baud Rate	Hexadecimal	0xFE 0x39 [speed]	
	Decimal	25457 [speed]	
	ASCII	254 "9" [speed]	19
Setting a Non-Standard	Hexadecimal	0xFE 0xA4 [speed]	
Baud Rate	Decimal	254164 [speed]	

13.2 Text

Description	Syntax		Page
Auto Scroll On	Hexadecimal	0xFE 0x51	21
	Decimal	25481	
	ASCII	254 "Q"	
Auto Scroll Off	Hexadecimal	0xFE 0x52	22
	Decimal	25482	
	ASCII	254 "R"	
Clear Screen	Hexadecimal	0xFE 0x58	22
	Decimal	25488	
	ASCII	254 "X"	
Changing the Startup	Hexadecimal	0xFE 0x40	22
Screen	Decimal	25464	
	ASCII	254 "@"	
Set Auto Line Wrap On	Hexadecimal	0xFE 0x43	23
	Decimal	25467	
	ASCII	254 "C"	
Set Auto Line Wrap Off	Hexadecimal	0xFE 0x44	23
	Decimal	25468	
	ASCII	254 "D"	
Set Cursor Position	Hexadecimal	0xFE 0x47 [col] [row]	23
	Decimal	25471 [col] [row]	
	ASCII	254 "G" [col] [row]	
Go Home	Hexadecimal	0xFE 0x48	24
	Decimal	25472	
	ASCII	254 "H"	

Description	Syntax		Page
Move Cursor Back	Hexadecimal	0xFE 0x4C	24
	Decimal	25476	
	ASCII	254 "L"	
Move Cursor Forward	Hexadecimal	0xFE 0x4D	24
	Decimal	25477	
	ASCII	254 "M"	
Blinking Block Cursor On	Hexadecimal	0xFE 0x53	25
	Decimal	25483	
	ASCII	254 "S"	
Blinking Block Cursor Off	Hexadecimal	0xFE 0x54	25
	Decimal	25484	
	ASCII	254 "T"	

13.3 Special Characters

Description	Syntax		Page
Creating a Custom	Hexadecimal	0xFE 0x4E [refID] [data]	25
Character	Decimal	25478 [refID] [data]	
	ASCII	254 "N" [refID] [data]	
Saving Custom	Hexadecimal	0xFE 0xC1 [Bank] [ID] [Data]	26
Characters	Decimal	254193 [Bank] [ID] [Data]	
Loading Custom	Hexadecimal	0xFE 0xC0 [Bank]	27
Characters	Decimal	254192 [Bank]	
Save Startup Screen	Hexadecimal	0 xFE 0 xC 2 [refID] [data]	27
Custom Characters	Decimal	254194 [refID] [data]	
Initialize Medium	Hexadecimal	0xFE 0x6D	28
Number	Decimal	254109	
	ASCII	254 "m"	
Place Medium Numbers	Hexadecimal	0xFE 0x6F [Row] [Col] [Digit]	28
	Decimal	254111 [Row] [Col] [Digit]	
	ASCII	254 "o" [Row] [Col] [Digit]	
Initialize Large Numbers	Hexadecimal	0xFE 0x6E	29
	Decimal	254110	
	ASCII	254 "n"	
Place Large Number	Hexadecimal	0xFE 0x23 [Col] [Digit]	29
	Decimal	25435 [Col] [Digit]	
	ASCII	254 "\#" [Col] [Digit]	
Initialize Horizontal Bar	Hexadecimal	0xFE 0x68	29
	Decimal	254104	
	ASCII	254 "h"	
Place Horizontal Bar Graph	Hexadecimal	0xFE 0x7C [Col] [Row] [Dir] [Length]	30
	Decimal	254124 [Col] [Row] [Dir] [Length]	
	ASCII	254 "\|" [Col] [Row] [Dir] [Length]	

Description	Syntax		Page
Initialize Narrow Vertical	Hexadecimal	0xFE 0x73	30
Bar	Decimal	254 115	
	ASCII	254 "s"	30
Initialize Wide Vertical	Hexadecimal	0xFE 0x76	
Bar	Decimal	254 118	
	ASCII	254""	31
Place Vertical Bar	Hexadecimal	0xF 0x3D [Column] [Length]	
	Decimal	254 61 [Column] [Length]	
	ASCII	254 "=" [Column] [Length]	

13.4 General Purpose Output

Description	Syntax		Page
General Purpose Output	Hexadecimal	0xFE 0x56 [Num]	32
Off	Decimal	$25486[\mathrm{Num}]$	
	ASCII	254 "V" [Num]	
General Purpose Output	Hexadecimal	0xFE 0x57 [Num]	32
On	Decimal	25487 [Num]	
	ASCII	254 "W" [Num]	
Set Startup GPO state	Hexadecimal	0xFE 0xC3 [Num] [state]	32
	Decimal	$254195[$ Num] [state]	

13.5 Dallas 1-Wire

Description	Syntax		Page
Search for a 1-Wire	Hexadecimal	0xFE 0xC8 0x2	33
Device	Decimal	254 2002	
Dallas 1-Wire	Hexadecimal	0xFE 0xC8 0x1 [flags] [SndBits] [RcvBits] [D3ła]	
Transaction	Decimal	254 200 1 [flags] [SndBits] [RcvBits] [Data]	

13.6 Keypad

Description	Syntax		Page
Auto Transmit Key	Hexadecimal	$0 \times F E$ 0x41	36
Presses On	Decimal	25465	
	ASCII	254 "A"	36
Auto Transmit Key	Hexadecimal	$0 \times 5 E 0 \times 4 \mathrm{~F}$	
Presses Off	Decimal	25479	

Description	Syntax		Page
Poll Key Press	Hexadecimal	0xFE 0x26	37
	Decimal	25438	
	ASCII	254 "\&"	
Clear Key Buffer	Hexadecimal	0xFE 0x45	37
	Decimal	25469	
	ASCII	254 "E"	
Set Debounce Time	Hexadecimal	0xFE 0x55 [time]	38
	Decimal	25485 [time]	
	ASCII	254 "U" [time]	
Set Auto Repeat Mode	Hexadecimal	0xFE 0x7E [mode]	38
	Decimal	254126 [mode]	
	ASCII	254 " \sim " [mode]	
Auto Repeat Mode Off	Hexadecimal	0xFE 0x60	39
	Decimal	25496	
	ASCII	254 "'"	
Assign Keypad Codes	Hexadecimal	0xFE 0xD5 [KDown] [KUp]	39
	Decimal	254213 [KDown] [KUp]	

13.7 Display Functions

Description	Syntax	
Display On	Hexadecimal	0xFE 0x42 [min]
	Decimal	25466 [min]
Display Off	ASCII	254 "B" [min]
	Hexadecimal	0xFE 0x46
	Decimal	25470
Set VFD Brightness	ASCII	254 "F"
	Hexadecimal	0xFE 0x59 [brightness]
	Decimal	25489 [brightness]
Set and Save VFD	ASCII	254 "Y" [brightness]
Brightness	Hexadecimal	0xFE 0x91 [brightness]
	Decimal	254145 [brightness]

13.8 Data Security

Description	Syntax		Page
Set Remember	Hexadecimal	0xFE 0x93 [switch]	42
	Decimal	254 147 [switch]	
Data Lock	Hexadecimal	0xFE 0xCA 0xF5 0xA0 [level]	43
	Decimal	254 202 245 160 [level]	
Set and Save Data Lock	Hexadecimal	0xFE 0xCB 0xF5 0xA0 [level]	44
	Decimal	254 203 245 160 [level]	

Description	Syntax		Page
Write Customer Data	Hexadecimal	0xFE 0x34 [data]	45
	Decimal	25452 [data]	
	ASCII	254 " 4 " [data]	45
Read Customer Data	Hexadecimal	$0 \times \mathrm{FE} 0 \times 35$	
	Decimal	25453	

13.9 Miscellaneous

Description	Syntax		Page
Read Version Number	Hexadecimal	0xFE 0x36	45
	Decimal	25454	
	ASCII	254 "6"	46
Read Module Type	Hexadecimal	0xFE 0x37	
	Decimal	25455	

13.10 Command By Number

Command Description Page				
Hex	Dec	ASCII		
0x23	35	"\#"	Place Large Number	29
0x26	38	"\&"	Poll Key Press	37
0x33	51	" 3 "	Changing the $\mathrm{I}^{2} \mathrm{C}$ Slave Address	18
0x34	52	"4"	Write Customer Data	45
0x35	53	" 5 "	Read Customer Data	45
0x36	54	" 6 "	Read Version Number	45
0x37	55	"7"	Read Module Type	46
0x39	57	"9"	Changing the Baud Rate	18
0x3D	61	" $=$ "	Place Vertical Bar	31
0x40	64	"@"	Changing the Startup Screen	22
0x41	65	"A"	Auto Transmit Key Presses On	36
0x42	66	"B"	Display On	40
0x43	67	"C"	Set Auto Line Wrap On	23
0x44	68	"D"	Set Auto Line Wrap Off	23
0x45	69	"E"	Clear Key Buffer	37
0x46	70	"F"	Display Off	41
0x47	71	"G"	Set Cursor Position	23
0x48	72	"H"	Go Home	24
0x4C	76	"L"	Move Cursor Back	24
0x4D	77	"M"	Move Cursor Forward	24
0x4E	78	"N"	Creating a Custom Character	25

Command Description Page				
Hex	Dec	ASCII		
0x4F	79	"O"	Auto Transmit Key Presses Off	36
0x51	81	"Q"	Auto Scroll On	21
0x52	82	"R"	Auto Scroll Off	22
0x53	83	"S"	Blinking Block Cursor On	25
0x54	84	"T"	Blinking Block Cursor Off	25
0x55	85	"U"	Set Debounce Time	38
0x56	86	"V"	General Purpose Output Off	32
0x57	87	"W"	General Purpose Output On	32
0x58	88	"X"	Clear Screen	22
0x59	89	"Y"	Set VFD Brightness	41
0x60	96	"،"	Auto Repeat Mode Off	39
0x68	104	"h"	Initialize Horizontal Bar	29
0x6D	109	"m"	Initialize Medium Number	28
0x6E	110	"n"	Initialize Large Numbers	29
0x6F	111	"o"	Place Medium Numbers	28
0x73	115	"s"	Initialize Narrow Vertical Bar	30
0x76	118	"v"	Initialize Wide Vertical Bar	30
0x7C	124	" ${ }^{\prime}$	Place Horizontal Bar Graph	30
0x7E	126	"~"	Set Auto Repeat Mode	38
0x91	145		Set and Save VFD Brightness	41
0x93	147		Set Remember	42
0xA4	164		Setting a Non-Standard Baud Rate	19
0xC0	192		Loading Custom Characters	27
0xC1	193		Saving Custom Characters	26
0xC2	194		Save Startup Screen Custom Characters	27
0xC3	195		Set Startup GPO state	32
0xC8	200		Dallas 1-Wire Transaction	34
0xCA	202		Data Lock	43

14 Appendix

14.1 Specifications

14.1.1 Environmental

Table 66: Environmental Specifications

	Standard Temperature	Extended Temperature
Operating Temperature	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature	$-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$	$-50^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Operating Relative Humidity	80% max non-condensing	
Vibration (Operating)	$4.9 \mathrm{~m} / \mathrm{s}^{2}$ XYZ directions	
Vibration (Non-Operating)	$19.6 \mathrm{~m} / \mathrm{s}^{2} \mathrm{XYZ}$ directions	
Shock (Operating)	$29.4 \mathrm{~m} / \mathrm{s}^{2} \mathrm{XYZ}$ directions	
Shock (Non-Operating)	$59.3 \mathrm{~m} / \mathrm{s}^{2} \mathrm{XYZ}$ directions	

14.1.2 Electrical

Table 67: Electrical Specifications

	Standard	Wide Voltage (V)	Wide Voltage with Efficient Switching Power Supply (VPT)	
Supply Voltage	$+5 \mathrm{Vdc} \pm 0.25 \mathrm{~V}$	+9 V to +15 V		
Supply Current	148 mA typical			
Inrush to +35V				

14.2 Physical Layout

14.3 Optical Characteristics

Table 68: Optical Characteristics

Number of Characters	40 (20 characters by 2 lines)
Matrix Format	5×7 with underline
Display Area	70.8×20.9
Character Size	$2.95 \times 4.75 \mathrm{~mm}(\mathrm{XxY})$
Character Pitch	3.6 mm
Line Pitch	6.1 mm
Dot Size	$0.55 \times 0.55 \mathrm{~mm}(\mathrm{XxY})$
Dot Pitch	$0.5 \times 0.7 \mathrm{~mm}(\mathrm{XxY})$
Luminance	$350 \mathrm{~cd} / \mathrm{m}^{2}(100 \mathrm{fL}) \mathrm{min}$
Color of Illumination	Blueish Green

14.4 Definitions

E Extended Temperature (-40C to 85C)
VPT Wide Voltage with Efficient Switching Power Supply (+9 to +35 Vdc)
V Wide Voltage (+9 to +15 Vdc)
MSB Most Significant Byte
LSB Least Significant Byte

14.5 Contacting Matrix Orbital

Telephone

Sales and Support: 1(403)229-2737

On The Web

Sales: http://www.MatrixOrbital.com
Support: http://www.MatrixOrbital.ca
Forums: http://www.lcdforums.com

14.6 Revision History

Revision 2.0	Initial Revision
Revision 2.1	Updated extended temperature range
Revision 2.2	Updated communication summary

Table 69: Revision History

