

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X Data Sheet

High-Performance, 16-bit Digital Signal Controllers and Microcontrollers

© 2011 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION. QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2009

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2011, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 978-1-61341-421-7

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mnufacture of development systems is ISO 9001:2000 certified.

High-Performance, 16-bit Digital Signal Controllers and Microcontrollers

Key Features:

- High accuracy less than ±1% internal FRC oscillator
- · Up to 60 MIPS operation
- High-performance Motor Control PWM
- Three Op amps/Comparators
- One Analog Comparator
- Charge Time Measurement Unit (CTMU) with mTouch™ capacitive sensing capability
- 10-bit and 12-bit ADC Modules with up to four Sample and Hold (S&H) Circuits
- On-Chip Temperature Measurement Capability (CTMU)
- Peripheral Trigger Generator (PTG)

System Management:

- High accuracy, less than ±1% internal FRC from -40°C to +85°C
- · Flexible clock options:
 - High accuracy, less than $\pm 15\%$ internal LPRC from -40°C to $+85^\circ\text{C}$
 - External, crystal, resonator, internal FRC
 - Fully integrated Phase-Locked Loop (PLL)
 - Extremely low-jitter PLL
- Power-up Timer (PWRT)
- Oscillator start-up timer/stabilizer
- · Watchdog Timer with its own RC oscillator
- Class B, Fail-Safe Clock Monitor (FSCM), IEC 60730 compliant
- Multiple sources for Reset

Operating Range:

- Up to 60 MIPS operation (at 3.0V-3.6V):
 - Industrial temperature range (-40°C to +85°C)
 - Extended temperature range (-40°C to +125°C)

Analog Peripherals:

- One 10-bit, 1.1 Msps ADC (with four simultaneous samples using four S&H circuits) and one 12-bit, 500 Ksps ADC (with one S&H circuit):
 - Up to 16 input channels with auto-scanning
 - Conversion start can be manual or synchronized with one of 13 trigger sources
 - Conversion possible in Sleep mode

Analog Peripherals (Cont.):

- Four Op amps/Comparators:
 - Three Comparators that can be configured as Op amps
 - One dedicated comparator
 - Multiple input sources
 - Blanking and filtering options
 - Internal or external voltage references
- Charge Time Measurement Unit (CTMU):
 - mTouch capacitive sensing
 - Supports capacitive touch sensing for touch screens and capacitive switches
 - Provides high-resolution time measurement
 - 1 ns resolution for time measurement
 - On-chip temperature measurement capability

Motor Control Peripherals:

- High-performance Motor Control PWM:
 - Up to three PWM generators with two outputs per generator
 - Individual time base and duty cycle for each PWM generator
 - Independent PWM frequency, duty cycle and phase shift changes
 - Duty cycle, dead time, phase shift and frequency resolution of 8.33 ns
 - Independent Fault and current-limit inputs
 - Dual trigger from PWM to ADC per PWM period
 - Enhanced Leading-Edge Blanking (LEB) functionality
- Quadrature Encoder Interface (QEI):
 - Four input channels for two phase signals, index pulse, and home pulse
 - 32-bit up/down position counter
 - Count direction status
 - Position Measurement (x2 and x4) mode
 - Programmable digital noise filters on inputs
 - Alternate Timer/Counter mode
 - Multiple interrupt sources

High-Performance MCU CPU Features (All Devices):

- Modified Harvard architecture
- C Compiler optimized instruction set
- · 16-bit wide data path
- · 24-bit wide instructions
- Linear program memory addressing up to 4M instruction words
- Linear data memory addressing up to 64 Kbytes
- 73 base instructions: most with an effective instruction execution throughput of one instruction per cycle
- · Flexible and powerful Indirect Addressing mode
- Software stack
- 16x16 integer multiply operations
- · 32/16 and 16/16 integer divide operations
- Up to ±16-bit shifts

Additional High-Performance DSC CPU Features (dsPIC33EPXXGP30X and dsPIC33EPXXMC30X Devices Only):

- 11 additional instructions to support DSP functions
- Two 40-bit accumulators with rounding and saturation options
- Additional flexible and powerful addressing modes:
 - Modulo
 - Bit-Reversed
- Single-cycle multiply and accumulate:
 - Accumulator write back for DSP operations
 - Dual data fetch
- Shifts for up to 40-bit data in one cycle
- · 16x16 fractional multiply/divide operations

Timers/PTG/Capture/Compare:

- 15 user-definable Timers/Counters:
 - Timer/Counters, up to five 16-bit Timers
 - Can pair up to make two 32-bit timers
 - Programmable prescaler
 - Peripheral Trigger Generator (PTG):
 - Provides the ability to schedule complex peripheral operations
 - Can trigger peripherals such as Output Compare, Input Capture, Op Amp/Comparator, ADC, and PWM
 - Input Capture (up to four channels):
 - Dedicated 16-bit timers/counters
 - · Capture on up, down or both edges
 - · 4-deep FIFO on each channel
 - Synchronous, Triggered and Cascaded modes
 - Configurable as independent general purpose timers

Timers/PTG/Capture/Compare (Cont.):

- Output Compare (up to four channels):
 - Dedicated 16-bit timer/counter
 - Single or Dual 16-bit Compare mode
 - 16-bit Glitchless PWM mode
 - Synchronous, Triggered and Cascaded modes
 - Configurable as independent general purpose timers

Interrupt Controller:

- 13-cycle fixed latency or nine to 13-cycle variable latency (user-selectable)
- Up to 115 Available Interrupt Sources
- · Up to three external interrupts
- Seven programmable priority levels
- Seven processor exceptions

Digital I/O:

- · Peripheral Pin Select (PPS) functionality:
 - PPS allows remapping of most of the input and output function pins of peripherals for maximum utilization and flexibility
- Up to 53 programmable digital I/O pins
- · Wake-up/interrupt-on-change for up to 53 pins
- · Output pins can drive up to 3.6V
- Up to 5V output with open drain configuration
- 20 mA sink on all I/O pins

On-Chip Flash and SRAM:

- · Flash program memory (up to 64 Kbytes)
- Data SRAM (up to 8 Kbytes)
- · Code security for program Flash

Power Management:

- Single-supply on-chip 1.8V voltage regulator
- · Switch between clock sources in real-time
- · Idle, Sleep, and Doze modes with fast wake-up

CMOS Flash Technology:

- · Low-power, high-speed Flash technology
- · Fully static design
- 3.0V-3.6V operating voltage
- Industrial and Extended temperature ranges
- Low-power consumption (0.5 mA per MIPS)

Communication Modules:

- 4-wire SPI (two modules):
 - Up to 25 MHz operation
 - Framing supports I/O interface to simple codecs
 - Supports 8-bit and 16-bit data formats
 - Supports all serial clock formats and sampling modes
- I²C[™] (two modules):
 - Full Multi-Master Slave mode support
 - 7-bit and 10-bit addressing modes
 - Bus collision detection and arbitration
 - Integrated signal conditioning
 - Slave address masking
- UART (two modules):
 - Interrupt on address bit detect
 - Interrupt on UART error
 - Wake-up on START bit from Sleep mode
 - 4-character TX and RX FIFO buffers
 - LIN bus support
 - IrDA[®] encoding and decoding in hardware
 - High-Speed Baud mode, up to 15 Mbps
 - Hardware flow control with CTS and RTS
- Enhanced CAN (ECAN[™]) 2.0B active:
 - Multiple transmit and receive buffers
 - 16 receive filters and three masks
 - Loopback, Listen Only and Listen All Messages modes for diagnostics and bus monitoring
 - Wake-up on CAN message
 - Automatic processing of remote transmission requests
 - FIFO mode using DMA
 - DeviceNet[™] addressing support
- Programmable Cyclic Redundancy Check (CRC):
 - Programmable bit length for the CRC generator polynomial (up to 32-bit length)
 - 8-deep, 32-bit FIFO for data input

Packaging:

- 28-pin SPDIP/SOIC/SSOP
- 28-pin QFN-S, 6x6 mm
- 36-pin TLA, 5x5 mm
- 44-pin TQFP, 10x10 mm
- 44-pin QFN, 8x8 mm
- 44-pin TLA, 6x6 mm
- 64-pin TQFP, 10x10 mm
- 64-pin QFN, 9x9 mm

Example Applications:

- Induction heating
- Uninterruptable Power Supplies (UPS)
- DC/AC inverters
- · Compressor motor control
- · Washing machine 3-phase motor control
- BLDC motor control
- · Automotive HVAC, cooling fans, fuel pumps
- Stepper motor control
- Audio and fluid sensor monitoring
- · Camera lens focus and stability control
- Speech (playback, hands-free kits, answering machines, VoIP)
- · Consumer audio
- Industrial and building control (security systems and access control)
- Barcode reading
- · Networking: LAN switches, gateways
- · Data storage device management
- Smart cards and smart card readers

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, AND PIC24EPXXXGP/MC20X PRODUCT FAMILIES

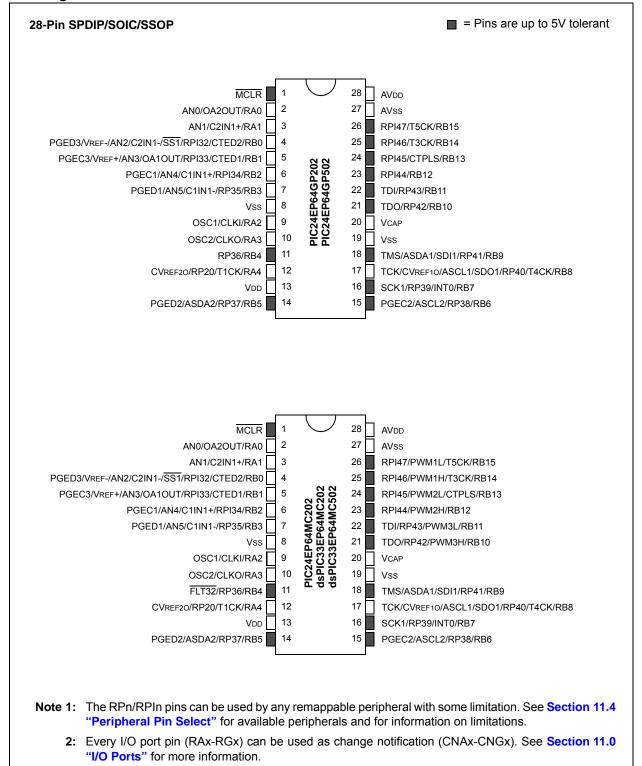
The device names, pin counts, memory sizes, and peripheral availability of each device are listed in Table 1 (General Purpose Families) and Table 2 (Motor Control Families). Their pinout diagrams appear on the following pages.

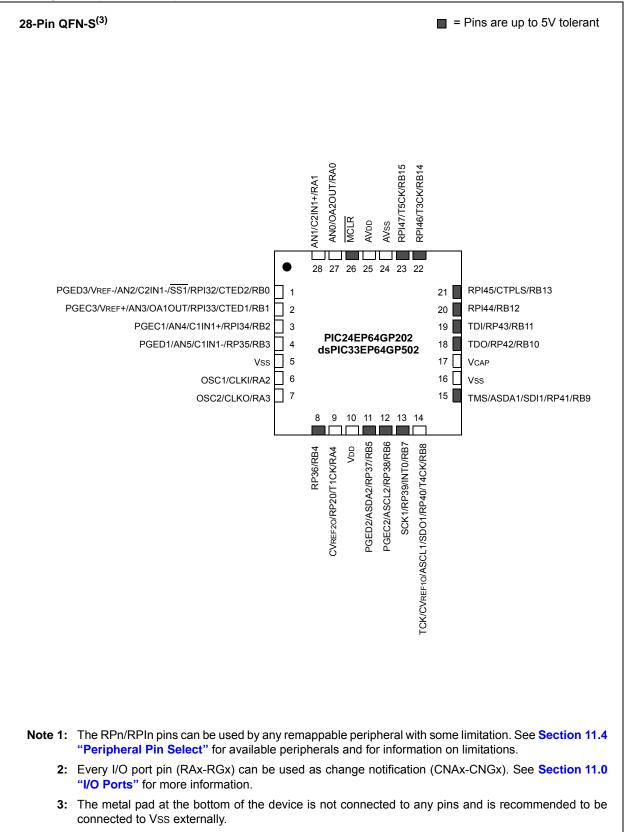
IADLE I. USPICJJEF04GFJUA dIIU PICZ4EF04GFZUA GENERAL PURPUJE FAMILIEG	TABLE 1:	dsPIC33EP64GP50X and PIC24EP64GP20X GENERAL PURPOSE FAMILIES
--	----------	--

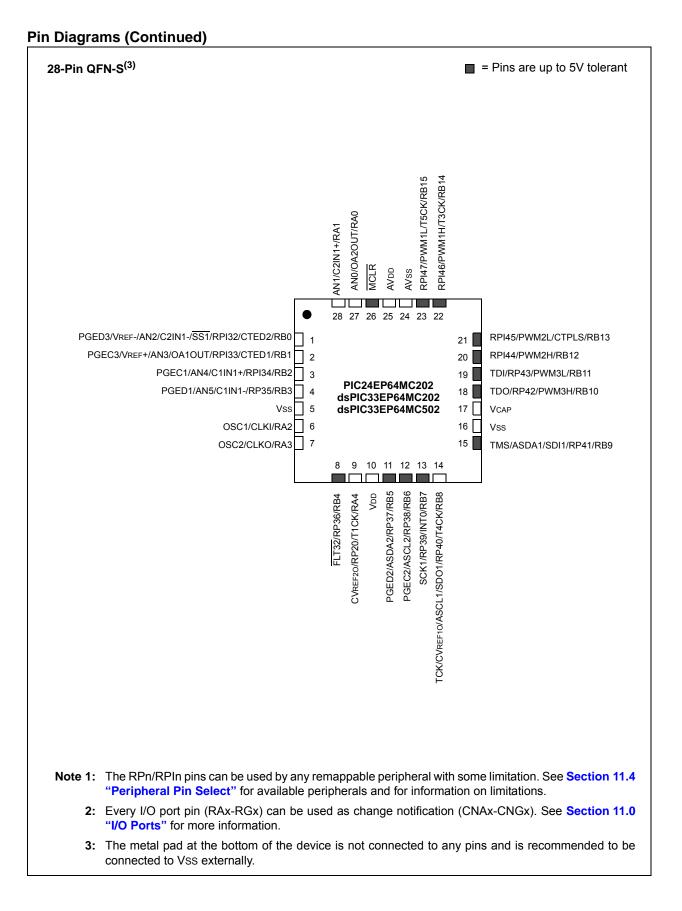
					Re	emappa	ble Pe	eripher	als				els)						
Device	Pins	Program Flash Memory (Kbyte)	RAM (Kbyte)	16-bit/32-bit Timer	Input Capture	Output Compare	UART	(5) SPI	ECAN TM Technology	External Interrupts ⁽³⁾	I²C™	CRC Generator	10-bit/12-bit ADC (Channels)	Analog Comparator	Op amp/Comparator	CTMU	ЭТЧ	I/O Pins	Packages
PIC24EP64GP202	28	64	8	5	4	4	2	2	1	3	2	1	6	1 ⁽¹⁾	2	Yes	Yes	21	SPDIP, SOIC, SSOP, QFN-S
PIC24EP64GP203	36	64	8	5	4	4	2	2	_	3	2	1	8	1	3	Yes	Yes	25	TLA
PIC24EP64GP204	44	64	8	5	4	4	2	2		3	2	1	9	1	3	Yes	Yes	35	tla, TQFP, QFN
PIC24EP64GP206	64	64	8	5	4	4	2	2		3	2	1	16	1	3	Yes	Yes	53	TQFP, QFN
dsPIC33EP64GP502	28	64	8	5	4	4	2	2	1	3	2	1	6	1(1)	2	Yes	Yes	21	SPDIP, SOIC, SSOP, QFN-S
dsPIC33EP64GP503	36	64	8	5	4	4	2	2	1	3	2	1	8	1	3	Yes	Yes	25	TLA
dsPIC33EP64GP504	44	64	8	5	4	4	2	2	1	3	2	1	9	1	3	Yes	Yes	35	TLA, TQFP, QFN
dsPIC33EP64GP506	64	64	8	5	4	4	2	2	1	3	2	1	16	1	3	Yes	Yes	53	TQFP, QFN

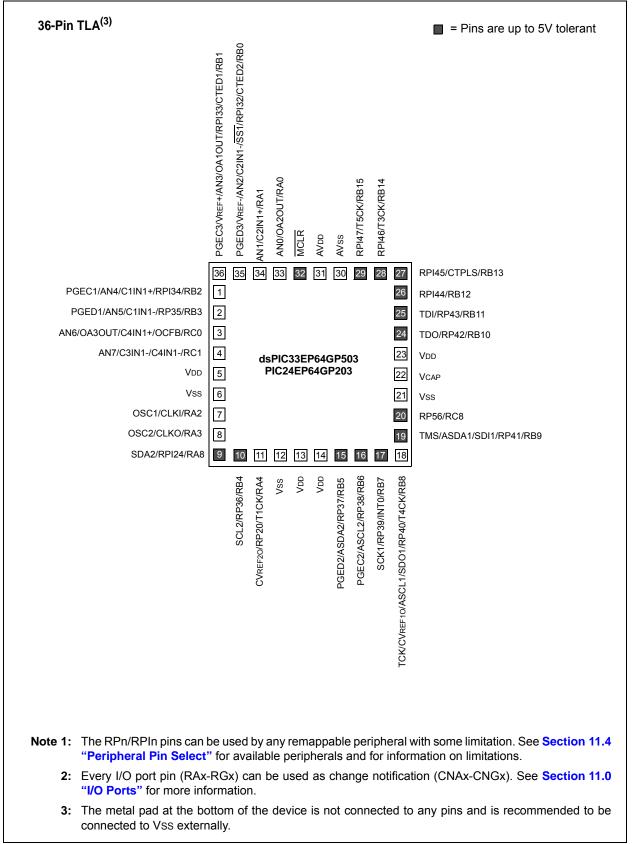
Note 1: On 28-pin devices, Comparator 4 does not have external connections. Refer to Section 25.0 "Op amp/Comparator Module" for details.

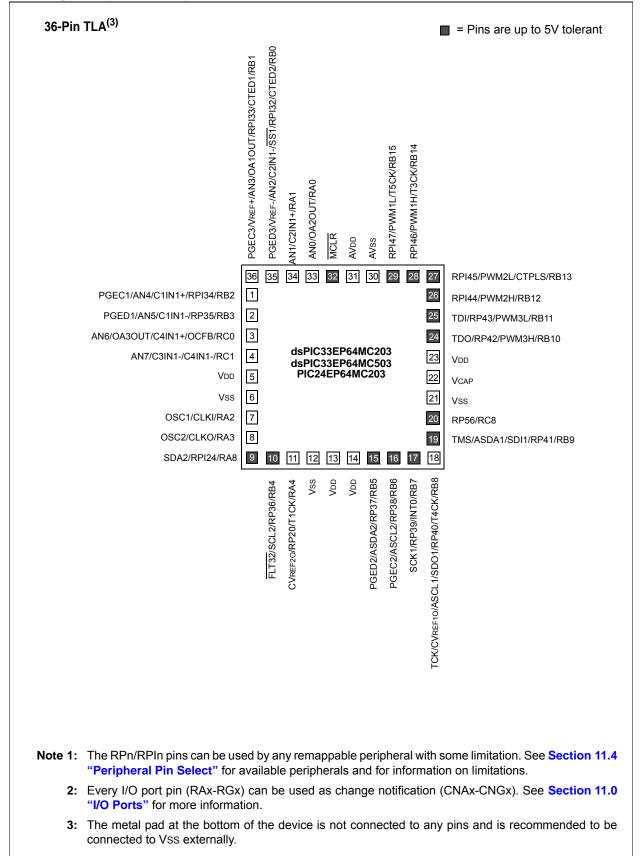
2: Only SPI2 is remappable.

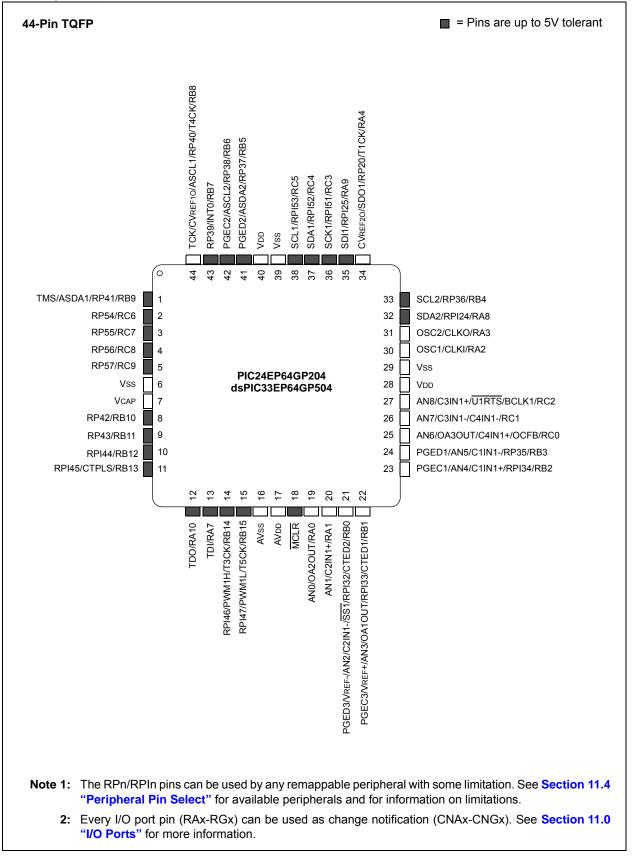

3: INT0 is not remappable.

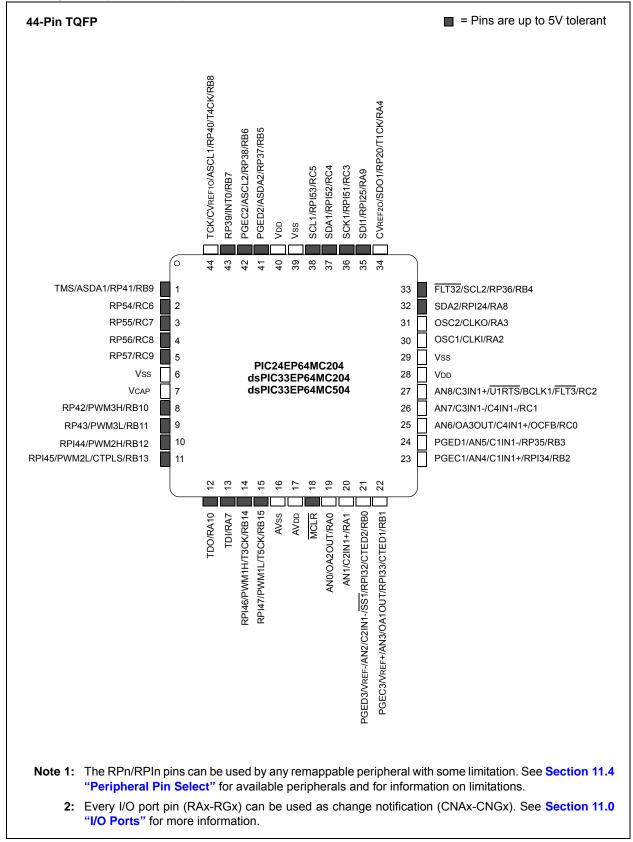

						Ren	nappal	ble Per	ipher	als					ls)						
Device	Pins	Program Flash Memory (Kbyte)	RAM (Kbyte)	16-bit/32-bit Timer	Input Capture	Output Compare	Motor Control PWM ⁽⁴⁾ (Channels)	Quadrature Encoder Interface	UART	SPI ⁽²⁾	ECAN™ Technology	External Interrupts ⁽³⁾	I ² C TM	CRC Generator	10-bit/12-bit ADC (Channels)	Analog Comparator	Op amp/Comparator	CTMU	РТС	I/O Pins	Packages
PIC24EP64MC202	28	64	8	5	4	4	6	1	2	2	—	3	2	1	6	1 ⁽¹⁾	2	Yes	Yes	21	SPDIP, SOIC, SSOP, QFN-S
PIC24EP64MC203	36	64	8	5	4	4	6	1	2	2	-	3	2	1	8	1	3	Yes	Yes	25	TLA
PIC24EP64MC204	44	64	8	5	4	4	6	1	2	2	-	3	2	1	9	1	3	Yes	Yes	35	tla, TQFP, QFN
PIC24EP64MC206	64	64	8	5	4	4	6	1	2	2	—	3	2	1	16	1	3	Yes	Yes	53	TQFP, QFN
dsPIC33EP64MC202	28	64	8	5	4	4	6	1	2	2	_	3	2	1	6	1 ⁽¹⁾	2	Yes	Yes	21	SPDIP, SOIC, SSOP, QFN-S
dsPIC33EP64MC203	36	64	8	5	4	4	6	1	2	2	—	3	2	1	8	1	3	Yes	Yes	25	TLA
dsPIC33EP64MC204	44	64	8	5	4	4	6	1	2	2	—	3	2	1	9	1	3	Yes	Yes	35	tla, TQFP, QFN
dsPIC33EP64MC206	64	64	8	5	4	4	6	1	2	2	_	3	2	1	16	1	3	Yes	Yes	53	TQFP, QFN
dsPIC33EP64MC502	28	64	8	5	4	4	6	1	2	2	1	3	2	1	6	1 ⁽¹⁾	2	Yes	Yes	21	SPDIP, SOIC, SSOP, QFN-S
dsPIC33EP64MC503	36	64	8	5	4	4	6	1	2	2	1	3	2	1	8	1	3	Yes	Yes	25	TLA
dsPIC33EP64MC504	44	64	8	5	4	4	6	1	2	2	1	3	2	1	9	1	3	Yes	Yes	35	tla, tqfp, qfn
dsPIC33EP64MC506	64	64	8	5	4	4	6	1	2	2	1	3	2	1	16	1	3	Yes	Yes	53	TQFP, QFN

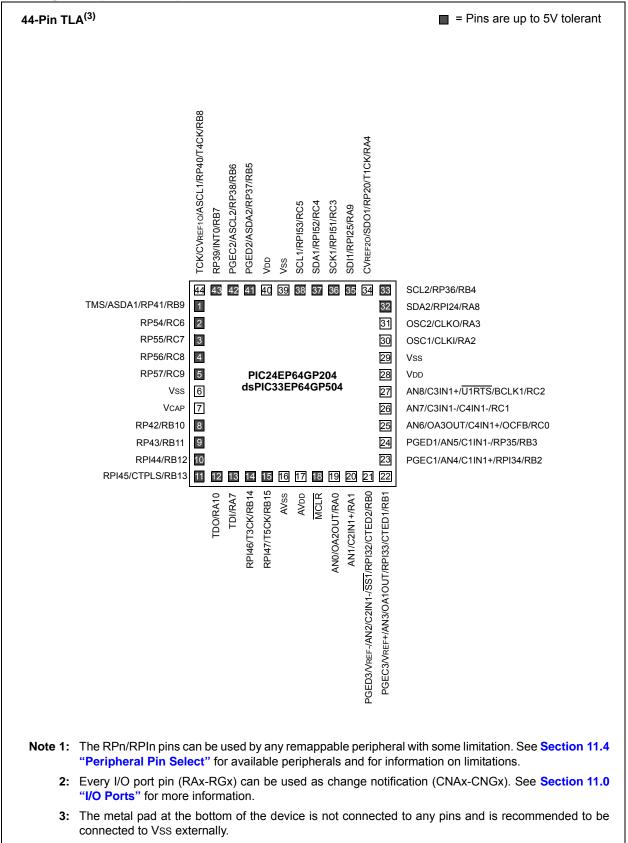

TABLE 2: dsPIC33EP64MC20X/50X and PIC24EP64MC20X MOTOR CONTROL FAMILIES

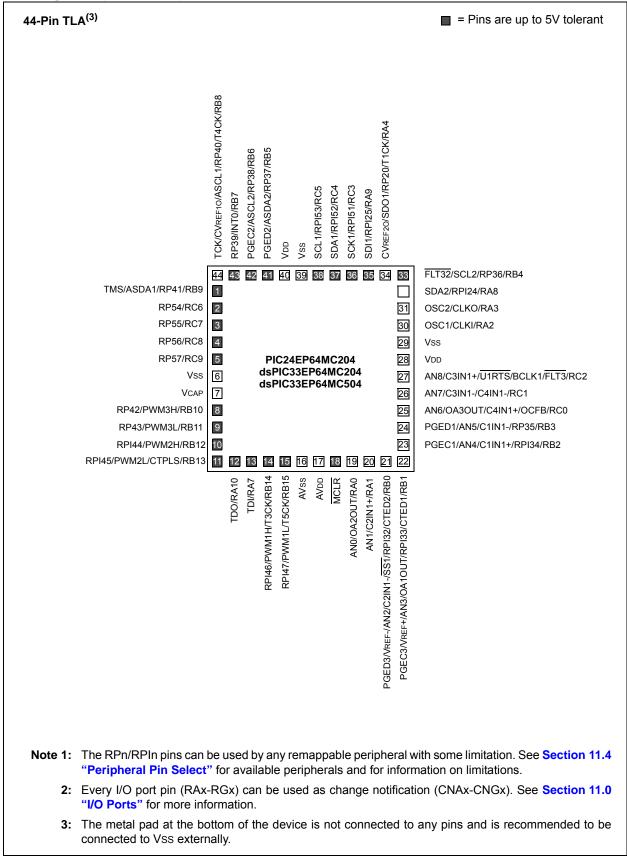

Only the PWM Faults are remappable. 4:

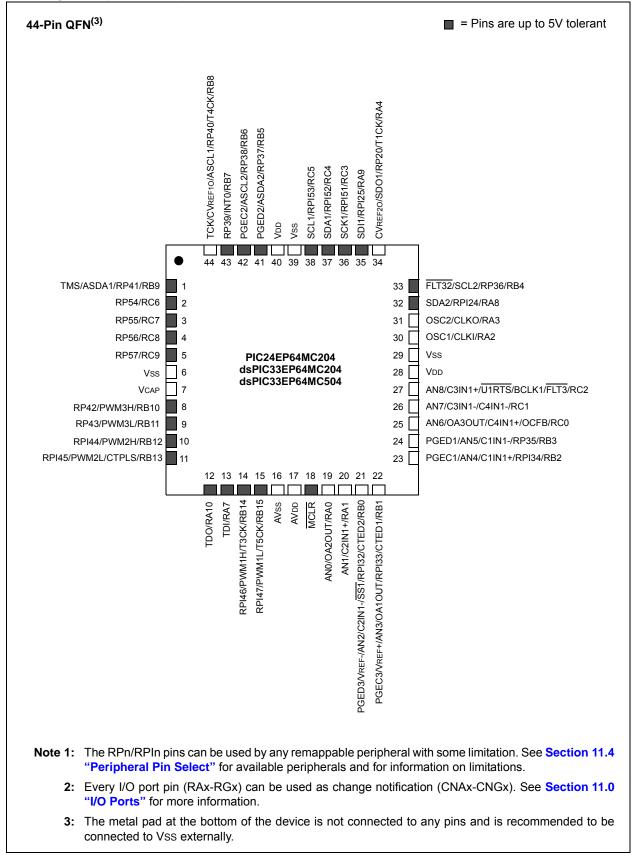

Pin Diagrams

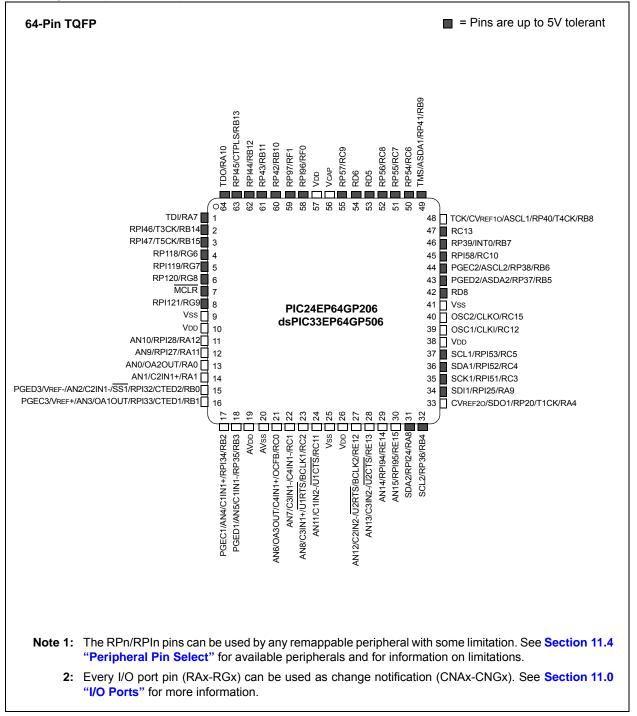


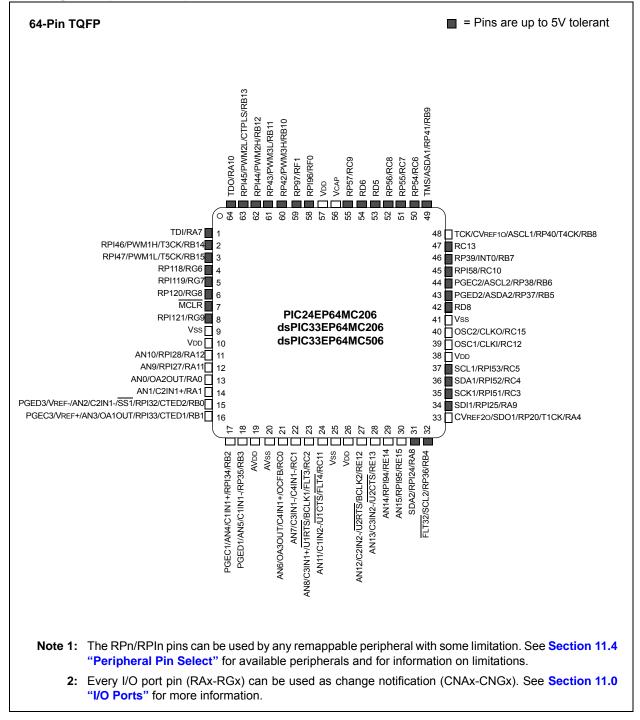


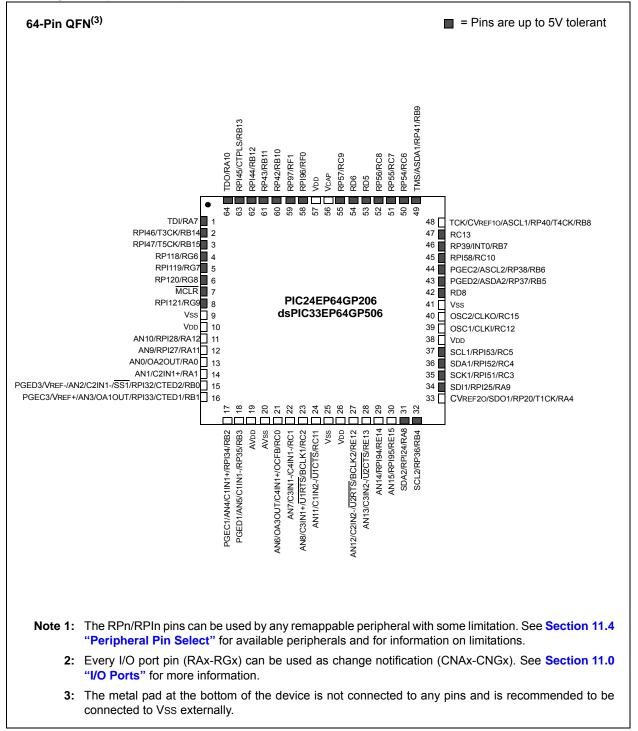


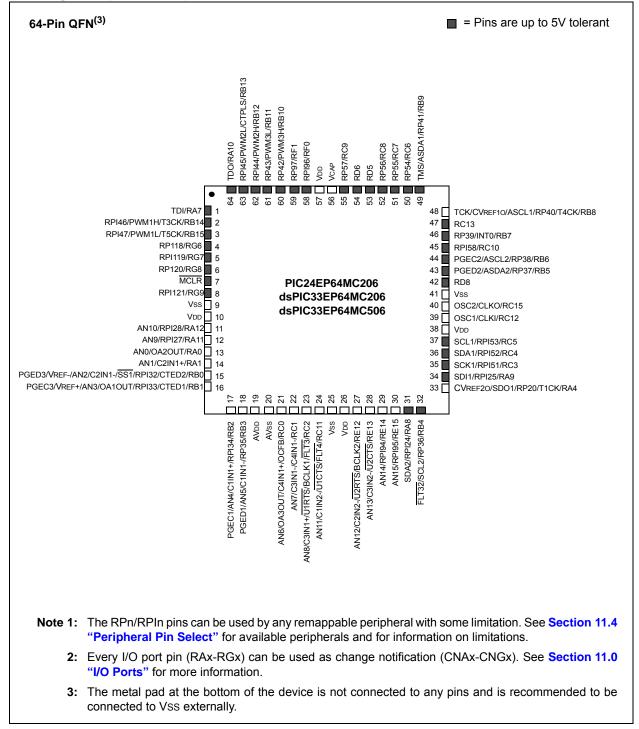











Pin Diagrams (Continued)

© 2011 Microchip Technology Inc.

Table of Contents

dsPIC	C33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X Product Families	6
1.0	Device Overview	
2.0	Guidelines for Getting Started with 16-bit Digital Signal Controllers and Microcontrollers	31
3.0	CPU	
4.0	Memory Organization	47
5.0	Flash Program Memory	109
6.0	Resets	113
7.0	Interrupt Controller	
8.0	Direct Memory Access (DMA)	129
9.0	Oscillator Configuration	143
10.0	Power-Saving Features	153
11.0	I/O Ports	163
12.0	Timer1	
13.0	Timer2/3 and Timer4/5	195
14.0	Input Capture	201
	Output Compare	
16.0	High-Speed PWM Module (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X Devices Only)	211
17.0	Quadrature Encoder Interface (QEI) Module (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X Devices Only)	231
18.0	Serial Peripheral Interface (SPI)	
19.0		
20.0	Universal Asynchronous Receiver Transmitter (UART)	261
21.0	Enhanced CAN™ (ECAN™) Module (dsPIC33EPXXXGP/MC50X Devices Only)	267
22.0	Charge Time Measurement Unit (CTMU)	293
	10-bit/12-bit Analog-to-Digital Converter (ADC)	
	Peripheral Trigger Generator (PTG) Module	
	Op amp/Comparator Module	
26.0	Programmable Cyclic Redundancy Check (CRC) Generator	343
27.0	Special Features	349
28.0	Instruction Set Summary	357
29.0	Development Support	367
	Electrical Characteristics	
31.0	Packaging Information	435
Appe	ndix A: Revision History	459
Index	<	461
The N	Vicrochip Web Site	467
Custo	omer Change Notification Service	467
Custo	omer Support	467
Read	ler Response	468
Produ	uct Identification System	469

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at docerrors@microchip.com or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

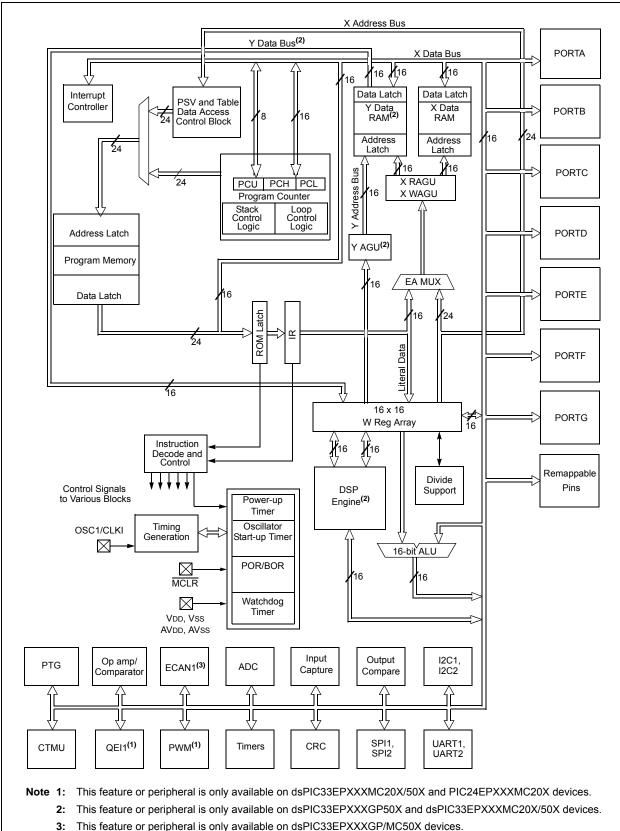
To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- · Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.


1.0 DEVICE OVERVIEW

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive resource. To complement the information in this data sheet, refer to the related section of the "*dsPIC33E*/ *PIC24E Family Reference Manual*", which is available from the Microchip web site (www.microchip.com)
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This document contains device-specific information for the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X, and PIC24EPXXXGP/MC20X Digital Signal Controller (DSC) and Microcontroller (MCU) devices. The dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices contain extensive Digital Signal Processor (DSP) functionality with a high-performance 16-bit MCU architecture.

Figure 1-1 illustrates a general block diagram of the core and peripheral modules in the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X families of devices.

 Table 1-1 lists the functions of the various pins shown in the pinout diagrams.

FIGURE 1-1: dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, AND PIC24EPXXXGP/MC20X BLOCK DIAGRAM

Pin Name	Pin Type	Buffer Type	PPS	Description				
AN0-AN15	I	Analog	No	Analog input channels.				
CLKI	Ι	ST/ CMOS	No	External clock source input. Always associated with OSC1 pin function Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes.				
CLKO	0		No	Always associated with OSC2 pin function.				
OSC1	I	ST/	No	Oscillator crystal input. ST buffer when configured in RC mode; CMOS				
OSC2	I/O	CMOS —	No	otherwise. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes.				
REFCLKO	0		Yes	Reference clock output.				
IC1-IC4	I	ST	Yes	Capture inputs 1 through 4.				
OCFA OCFB OC1-OC4	 	ST ST	Yes No Yes	Compare Fault A input (for Compare channels). Compare Fault B input (for Compare channels). Compare outputs 1 through 4.				
INT0		ST	No	External interrupt 0.				
INT0 INT1		ST	Yes	External interrupt 1.				
INT2	i	ST	Yes	External interrupt 2.				
RA0-RA4, RA7-RA12	I/O	ST	No	PORTA is a bidirectional I/O port.				
RB0-RB15	I/O	ST	No	PORTB is a bidirectional I/O port.				
RC0-RC13, RC15	I/O	ST	No	PORTC is a bidirectional I/O port.				
RD5, RD6, RD8	I/O	ST	No					
RE12-RE15	I/O	ST	No	PORTE is a bidirectional I/O port.				
RF0, RF1	I/O	ST	No	PORTF is a bidirectional I/O port.				
RG6-RG9	I/O	ST	No	PORTG is a bidirectional I/O port.				
T1CK	I	ST	No	Timer1 external clock input.				
T2CK	I.	ST	Yes	Timer2 external clock input.				
ТЗСК	I	ST	No	Timer3 external clock input.				
T4CK		ST	No	Timer4 external clock input.				
T5CK		ST	No	Timer5 external clock input.				
CTPLS	0	ST	No	CTMU pulse output.				
CTED1 CTED2		ST ST	No No	CTMU external edge input 1. CTMU external edge input 2.				
U1CTS		ST	No	UART1 clear to send.				
U1RTS	0		No					
U1RX		ST	Yes					
U1TX BCLK1	0	ST	No					
	-							
Legend: CMOS = CM ST = Schmi PPS = Perip	itt Trigg	jer input v	with CN					

TABLE 1-1: PINOUT I/O DESCRIPTIONS⁽⁵⁾

Note 1: This pin is available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

2: This pin is available on dsPIC33EPXXXGP/MC50X devices only.

4: Output of Comparator when configured as an Op amp.

5: Not all pins are available in all packages variants. See the "Pin Diagrams" section for pin availability.

^{3:} This is the default Fault on Reset for dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices. See Section 16.0 "High-Speed PWM Module (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X Devices Only)" for more information.

Pin Name	Pin Type	Buffer Type	PPS	Description
U2CTS	I	ST	No	UART2 clear to send.
J2RTS	0	—	No	UART2 ready to send.
J2RX	I	ST	Yes	UART2 receive.
J2TX	0	_	Yes	UART2 transmit.
BCLK2	0	ST	No	UART2 IrDA baud clock output.
SCK1	I/O	ST	No	Synchronous serial clock input/output for SPI1.
SDI1	I	ST	No	SPI1 data in.
SDO1	0	—	No	SPI1 data out.
SS1	I/O	ST	No	SPI1 slave synchronization or frame pulse I/O.
SCK2	I/O	ST	Yes	Synchronous serial clock input/output for SPI2.
SDI2	I	ST	Yes	SPI2 data in.
SDO2	0	—	Yes	SPI2 data out.
SS2	I/O	ST	Yes	SPI2 slave synchronization or frame pulse I/O.
SCL1	I/O	ST	No	Synchronous serial clock input/output for I2C1.
SDA1	I/O	ST	No	Synchronous serial data input/output for I2C1.
ASCL1	I/O	ST	No	Alternate synchronous serial clock input/output for I2C1.
ASDA1	I/O	ST	No	Alternate synchronous serial data input/output for I2C1.
SCL2	I/O	ST	No	Synchronous serial clock input/output for I2C2.
SDA2	I/O	ST	No	Synchronous serial data input/output for I2C2.
ASCL2 I/O ST			No	Alternate synchronous serial clock input/output for I2C2.
ASDA2	I/O	ST	No	Alternate synchronous serial data input/output for I2C2.
TMS	I	ST	No	JTAG Test mode select pin.
TCK	1	ST	No	JTAG test clock input pin.
TDI	I	ST	No	JTAG test data input pin.
TDO	0	—	No	JTAG test data output pin.
C1RX ⁽²⁾	I	ST	Yes	ECAN1 bus receive pin.
C1TX ⁽²⁾	0	—	Yes	ECAN1 bus transmit pin.
FLT1 ⁽¹⁾ , FLT2 ⁽¹⁾	I	ST	Yes	PWM Fault input 1 and 2.
FLT3(1), FLT4(1)	1	ST	No	PWM Fault input 3 and 4.
-LT32 ^(1,3)	I	ST	No	PWM Fault input 32 (Class B Fault).
DTCMP1-DTCMP3 ⁽¹⁾	I	ST	Yes	PWM Dead Time Compensation Input 1 through 3.
PWM1L-PWM3L ⁽¹⁾	0	_	No	PWM Low Output 1 through 3.
PWM1H-PWM3H ⁽¹⁾	0	_	No	PWM High Output 1 through 3.
SYNCI1 ⁽¹⁾	I	ST	Yes	PWM Synchronization Input 1.
SYNCO1 ⁽¹⁾	0	—	Yes	PWM Synchronization Output 1.
NDX1 ⁽¹⁾	1	ST	Yes	Quadrature Encoder Index1 Pulse input.
HOME1''	I	ST	Yes	Quadrature Encoder Home1 Pulse input.
QEA1 ⁽¹⁾	I	ST	Yes	Quadrature Encoder Phase A input in QEI1 mode. Auxiliary Timer
o = p (1)				External Clock/Gate input in Timer mode.
QEB1 ⁽¹⁾		ST	Yes	Quadrature Encoder Phase A input in QEI1 mode. Auxiliary Timer
CNTCMP1 ⁽¹⁾	ο	_	Yes	External Clock/Gate input in Timer mode. Quadrature Encoder Compare Output 1.
Legend: CMOS = CN		mnatible		
ST = Schmi				

TABLE 1-1: PINOUT I/O DESCRIPTIONS ⁽⁵⁾ (CONTINUE	D)
---	----

Note 1: This pin is available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

2: This pin is available on dsPIC33EPXXXGP/MC50X devices only.

3: This is the default Fault on Reset for dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices. See Section 16.0 "High-Speed PWM Module (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X Devices Only)" for more information.

TTL = TTL input buffer

4: Output of Comparator when configured as an Op amp.

PPS = Peripheral Pin Select

5: Not all pins are available in all packages variants. See the "Pin Diagrams" section for pin availability.

TABLE 1-1:	PINOUT I/	O DESC	RIPT	IONS ⁽⁵⁾ (CONTINUED)			
Pin Name	Pin Type	Buffer Type	PPS	Description			
C1IN1-	1	ANA	No	Op amp/Comparator 1 Negative Input 1.			
C1IN2-	1	ANA	No	Op amp/Comparator 1 Negative Input 2.			
C1IN1+	1	ANA	No	Op amp/Comparator 1 Positive Input 1.			
OA1OUT ⁽⁴⁾	0	ANA	No	Op amp/Comparator 1 Output ⁽⁵⁾ .			
C1OUT	0	—	Yes	Comparator 1 Output.			
C2IN1-	1	ANA	No	Op amp/Comparator 2 Negative Input 1.			
C2IN2-	1	ANA	No	Op amp/Comparator 2 Negative Input 2.			
C2IN1+	1	ANA	No	Op amp/Comparator 2 Positive Input 1.			
0A2OUT ⁽⁴⁾	0	ANA	No	Op amp/Comparator 2 Output.			
C2OUT	0	—	Yes	Comparator 2 Output.			
C3IN1-	1	ANA	No	Op amp/Comparator 3 Negative Input 1.			
C3IN2-	1	ANA	No	Op amp/Comparator 3 Negative Input 2.			
C3IN1+	1	ANA	No	Op amp/Comparator 3 Positive Input 1.			
0A30UT ⁽⁴⁾	0	ANA	No	p amp/Comparator 3 Output.			
C3OUT	0	—	Yes	Comparator 3 Output.			
C4IN1-		ANA	No	Comparator 4 Negative Input 1.			
C4IN1+	1	ANA	No	Comparator 4 Positive Input 1.			
C4OUT	0	—	Yes	Comparator 4 Output.			
CVREF10	0	ANA	No	Op amp/Comparator Voltage Reference Output.			
CVREF20	0	ANA	No	Op amp/Comparator Voltage Reference divided by 2 Output.			
PGED1	I/O	ST	No	Data I/O pin for programming/debugging communication channel 1.			
PGEC1	1	ST	No	Clock input pin for programming/debugging communication channel 1.			
PGED2	I/O	ST	No	Data I/O pin for programming/debugging communication channel 2.			
PGEC2	1	ST	No	Clock input pin for programming/debugging communication channel 2.			
PGED3	I/O	ST	No	Data I/O pin for programming/debugging communication channel 3.			
PGEC3	I	ST	No	Clock input pin for programming/debugging communication channel 3.			
MCLR	I/P	ST	No	Master Clear (Reset) input. This pin is an active-low Reset to the device.			
AVdd	Р	Р	No	Positive supply for analog modules. This pin must be connected at all times.			
AVss	Р	Р	No	Ground reference for analog modules. This pin must be connected at all times.			
Vdd	Р	—	No	Positive supply for peripheral logic and I/O pins.			
VCAP	Р	_	No	CPU logic filter capacitor connection.			
Vss	Р	_	No	Ground reference for logic and I/O pins.			
VREF+		Analog	No	Analog voltage reference (high) input.			
VREF-	· ·	Analog	No	Analog voltage reference (low) input.			
Legend: CMO	•	0					

TABLE 1-1: PINOUT I/O DESCRIPTIONS⁽⁵⁾ (CONTINUED)

 ST = Schmitt Trigger input with CMOS levels
 O = Output
 I = Input

 PPS = Peripheral Pin Select
 TTL = TTL input buffer

 Note 1:
 This pin is available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

2: This pin is available on dsPIC33EPXXXGP/MC50X devices only.

This pin is available on dis 1055E1 XXXCI / MOSOX devices only.
 This is the default Fault on Reset for dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices. See

Section 16.0 "High-Speed PWM Module (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X Devices Only)" for more information.

4: Output of Comparator when configured as an Op amp.

5: Not all pins are available in all packages variants. See the "Pin Diagrams" section for pin availability.

1.1 Referenced Sources

This device data sheet is based on the following individual chapters of the *"dsPIC33E/PIC24E Family Reference Manual"*. These documents should be considered as the general reference for the operation of a particular module or device feature.

Note:	To acce	ess the docume	ents listed	below,
	browse	to the docume	ntation see	ction of
	the	Microchip	web	site
	(www.m	icrochip.com).		

- Section 1. "Introduction" (DS70573)
- Section 2. "CPU" (DS70359)
- Section 3. "Data Memory" (DS70595)
- Section 4. "Program Memory" (DS70613)
- Section 5. "Flash Programming" (DS70609)
- Section 6. "Interrupts" (DS70600)
- Section 7. "Oscillator" (DS70580)
- Section 8. "Reset" (DS70602)
- Section 9. "Watchdog Timer and Power-Saving Modes" (DS70615)
- Section 10. "I/O Ports" (DS70598)
- Section 11. "Timers" (DS70362)
- Section 12. "Input Capture" (DS70352)
- Section 13. "Output Compare" (DS70358)
- Section 14. "High-Speed PWM" (DS70645)
- Section 15. "Quadrature Encoder Interface (QEI)" (DS70601)
- Section 16. "Analog-to-Digital Converter (ADC)" (DS70621)
- Section 17. "UART" (DS70582)
- Section 18. "Serial Peripheral Interface (SPI)" (DS70569)
- Section 19. "Inter-Integrated Circuit (I²C[™])" (DS70330)
- Section 20. "Data Converter Interface (DCI)" (DS70356)
- Section 21. "Enhanced Controller Area Network (ECAN™)" (DS70353)
- Section 22. "Direct Memory Access (DMA)" (DS70348)
- Section 23. "CodeGuard™ Security" (DS70634)
- Section 24. "Programming and Diagnostics" (DS70608)
- Section 25. "USB On-The-Go (OTG)" (DS70571)
- Section 26. "Op amp/Comparator" (DS70357)
- Section 27. "Programmable Cyclic Redundancy Check (CRC)" (DS70346)
- Section 30. "Device Configuration" (DS70618)
- Section 32. "Peripheral Trigger Generator (PTG)" (document publication pending)
- Section 33. "Charge Time Measurement Unit (CTMU)" (DS70661)

2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT DIGITAL SIGNAL CONTROLLERS AND MICROCONTROLLERS

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXGP/MC20X/50X, and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com)
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

2.1 Basic Connection Requirements

Getting started with the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X families requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected:

- All VDD and VSS pins (see Section 2.2 "Decoupling Capacitors")
- All AVDD and AVss pins (regardless if ADC module is not used)
- (see Section 2.2 "Decoupling Capacitors")
 VCAP

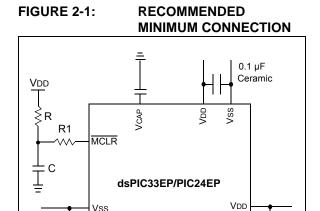
(see Section 2.3 "CPU Logic Filter Capacitor Connection (VCAP)")

- MCLR pin (see Section 2.4 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see Section 2.5 "ICSP Pins")
- OSC1 and OSC2 pins when external oscillator source is used

(see Section 2.6 "External Oscillator Pins")

Additionally, the following pins may be required:

• VREF+/VREF- pins are used when external voltage reference for ADC module is implemented


Note: The AVDD and AVSS pins must be connected independent of the ADC voltage reference source.

2.2 Decoupling Capacitors

The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSs is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: Recommendation of 0.1 μ F (100 nF), 10-20V. This capacitor should be a low-ESR and have resonance frequency in the range of 20 MHz and higher. It is recommended to use ceramic capacitors.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high frequency noise: If the board is experiencing high frequency noise, above tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, 0.1 μ F in parallel with 0.001 μ F.
- **Maximizing performance:** On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB track inductance.

AVSS

0.1 µF

Ceramic

Vs

/SS

5

0.1 µF

Ceramic

0.1 µF

Ceramic

2.2.1 TANK CAPACITORS

VDD

 $\Lambda \Lambda$

10 Ω

0.1 µF

Ceramic

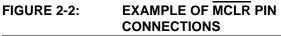
On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits including DSCs to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device, and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μ F to 47 μ F.

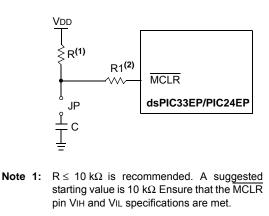
2.3 CPU Logic Filter Capacitor Connection (VCAP)

A low-ESR (< 1 Ohms) capacitor is required on the VCAP pin, which is used to stabilize the voltage regulator output voltage. The VCAP pin must not be connected to VDD, and must have a capacitor greater than 4.7 μ F (10 μ F is recommended), 16V connected to ground. The type can be ceramic or tantalum. See **Section 30.0** "Electrical Characteristics" for additional information.

The placement of this capacitor should be close to the VCAP pin. It is recommended that the trace length not exceeds one-quarter inch (6 mm). See **Section 27.2 "On-Chip Voltage Regulator"** for details.

2.4 Master Clear (MCLR) Pin


The MCLR pin provides two specific device functions:


- Device Reset
- · Device Programming and Debugging.

During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.

For example, as shown in Figure 2-2, it is recommended that the capacitor C, be isolated from the $\overline{\text{MCLR}}$ pin during programming and debugging operations.

Place the components as shown in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin.

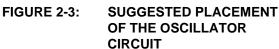
2: $\underline{R1} \leq 470\Omega$ will limit any current flowing into \overline{MCLR} from the external capacitor C, in the event of \overline{MCLR} pin breakdown, due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS). Ensure that the \overline{MCLR} pin VIH and VIL specifications are met.

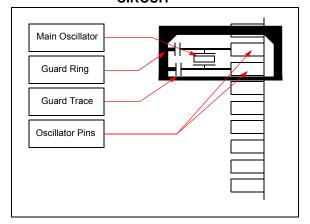
2.5 ICSP Pins

The PGECx and PGEDx pins are used for ICSP and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin input voltage high (VIH) and input low (VIL) requirements.

Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB[®] PICkit[™] 3, MPLAB ICD 3, or MPLAB REAL ICE[™].


For more information on ICD 2, ICD 3 and REAL ICE connection requirements, refer to the following documents that are available on the Microchip web site.


- "Using MPLAB[®] ICD 3" (poster) DS51765
- "MPLAB[®] ICD 3 Design Advisory" DS51764
- "MPLAB[®] REAL ICE™ In-Circuit Emulator User's Guide" DS51616
- *"Using MPLAB[®] REAL ICE™"* In-Circuit Emulator (poster) DS51749

2.6 External Oscillator Pins

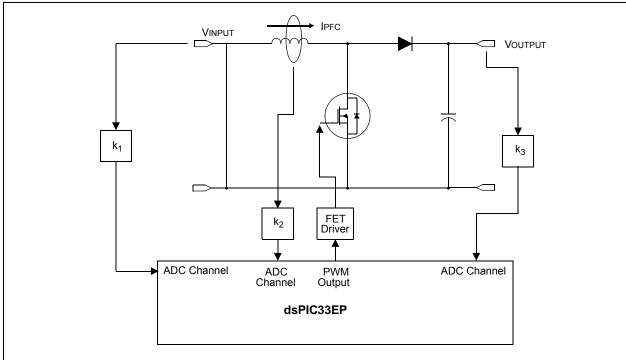
Many DSCs have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator. For details, see **Section 9.0 "Oscillator Configuration"** for details.

The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is shown in Figure 2-3.

2.7 Oscillator Value Conditions on Device Start-up

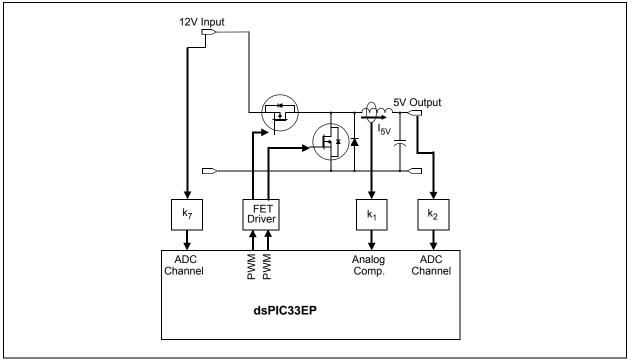
If the PLL of the target device is enabled and configured for the device start-up oscillator, the maximum oscillator source frequency must be limited to 3 MHz < FIN < 5.5 MHz to comply with device PLL start-up conditions. This means that if the external oscillator frequency is outside this range, the application must start-up in the FRC mode first. The default PLL settings after a POR with an oscillator frequency outside this range will violate the device operating speed.

Once the device powers up, the application firmware can initialize the PLL SFRs, CLKDIV and PLLDBF to a suitable value, and then perform a clock switch to the Oscillator + PLL clock source. Note that clock switching must be enabled in the device Configuration Word.

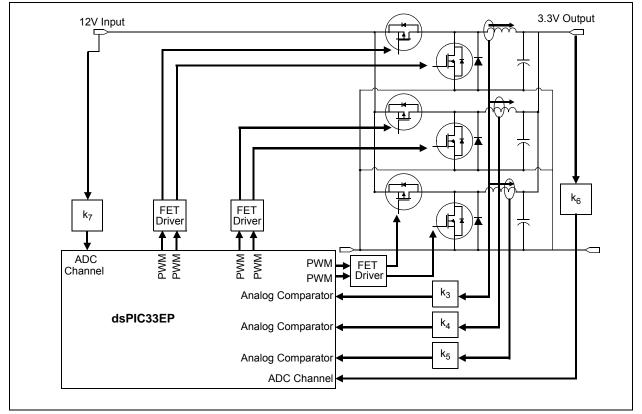

2.8 Unused I/Os

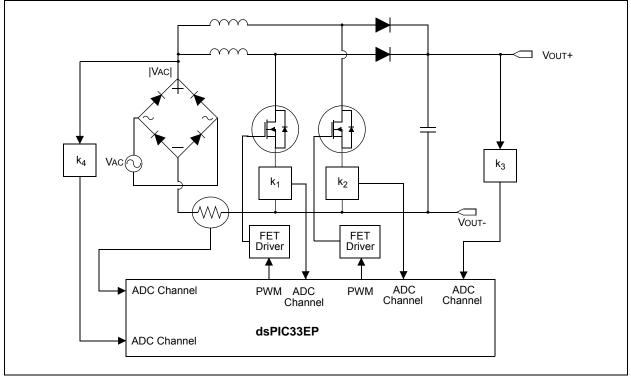
Unused I/O pins should be configured as outputs and driven to a logic-low state.

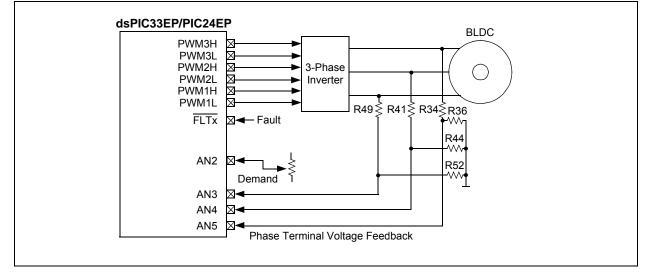
Alternatively, connect a 1k to 10k resistor between Vss and unused pins and drive the output to logic low.


2.9 Application Examples

Examples of typical application connections are shown in Figure 2-4 through Figure 2-8.




FIGURE 2-5: SINGLE-PHASE SYNCHRONOUS BUCK CONVERTER



3.0 CPU

- **Note 1:** This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 2. "CPU" (DS70359) in the "dsPIC33E/PIC24E Family Reference Manual', which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X, and PIC24EPXXXGP/MC20X CPU have a 16-bit (data) modified Harvard architecture with an enhanced instruction set, including significant support for digital signal processing. The CPU has a 24-bit instruction word, with a variable length opcode field. The Program Counter (PC) is 24 bits wide and addresses up to 4M x 24 bits of user program memory space.

An instruction prefetch mechanism helps maintain throughput and provides predictable execution. Most instructions execute in a single-cycle effective execution rate, with the exception of instructions that change the program flow, the double-word move (MOV.D) instruction, PSV accesses, and the table instructions. Overhead free program loop constructs are supported using the DO and REPEAT instructions, both of which are interruptible at any point.

3.1 Registers

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X, and PIC24EPXXXGP/MC20X devices have sixteen 16-bit Working registers in the programmer's model. Each of the Working registers can act as a data, address or address offset register. The 16th Working register (W15) operates as a software Stack Pointer for interrupts and calls.

3.2 Instruction Set

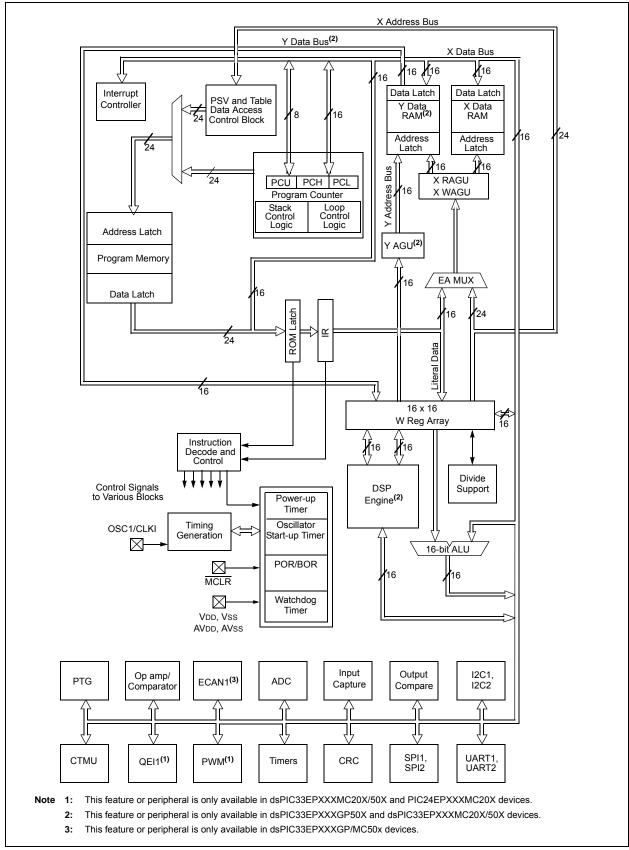
The instruction set for dsPIC33EPXXXGP50X and dsPIC33EPXXXMC20X/50X devices has two classes of instructions: the MCU class of instructions and the DSP class of instructions. The instruction set for PIC24EPXXXGP/MC20X devices has the MCU class of instructions only and does not support DSP instructions. These two instruction classes are seamlessly integrated into the architecture and execute from a single execution unit. The instruction set includes many addressing modes and was designed for optimum C compiler efficiency.

3.3 Data Space Addressing

The base data space can be addressed as 4K words or 8 Kbytes and is split into two blocks, referred to as X and Y data memory. Each memory block has its own independent Address Generation Unit (AGU). The MCU class of instructions operate solely through the X memory AGU, which accesses the entire memory map as one linear data space. On dsPIC33EPXXXMC20X/ 50X and dsPIC33EPXXXGP50X devices, certain DSP instructions operate through the X and Y AGUs to support dual operand reads, which splits the data address space into two parts. The X and Y data space boundary is device specific.

The upper 4 Kbytes of the data space memory map can optionally be mapped into program space at any 16K program word boundary. The program-to-data-space mapping feature, known as Program Space Visibility (PSV), lets any instruction access program space as if it were data space. Moreover, the Base Data Space address is used in conjunction with a read or write page register (DSRPAG or DSWPAG) to form an Extended Data Space (EDS) address. The EDS can be addressed as 8 Mwords or 16 Mbytes. Refer to **Section 3. "Data Memory"** (DS70595) and **Section 4. "Program Memory"** (DS70613) in the *"dsPIC33E/ PIC24E Family Reference Manual"* for more details on EDS, PSV and table accesses.

On dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices, overhead-free circular buffers (Modulo Addressing) are supported in both X and Y address spaces. The Modulo Addressing removes the software boundary-checking overhead for DSP algorithms. The X AGU circular addressing can be used with any of the MCU class of instructions. The X AGU also supports Bit-Reverse Addressing to greatly simplify input or output data reordering for radix-2 FFT algorithms. PIC24EPXXXGP/MC20X devices do not support Modulo and Bit-Reverse Addressing.


3.4 Addressing Modes

The CPU supports these addressing modes:

- Inherent (no operand)
- Relative
- Literal
- Memory Direct
- Register Direct
- Register Indirect

Each instruction is associated with a predefined Addressing mode group, depending upon its functional requirements. As many as six Addressing modes are supported for each instruction.

FIGURE 3-1: dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, AND PIC24EPXXXGP/MC20X CPU BLOCK DIAGRAM

3.5 **Programmer's Model**

The programmer's model for the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X is shown in Figure 3-2. All registers in the programmer's model are memory mapped and can be manipulated directly by instructions. Table 3-1 lists a description of each register.

In addition to the registers contained in the programmer's model, the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/ MC20X devices contain control registers for Modulo Addressing (dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices only), Bit-Reversed Addressing (dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices only) and interrupts. These registers are described in subsequent sections of this document.

All registers associated with the programmer's model are memory mapped, as shown in Table 4-1.

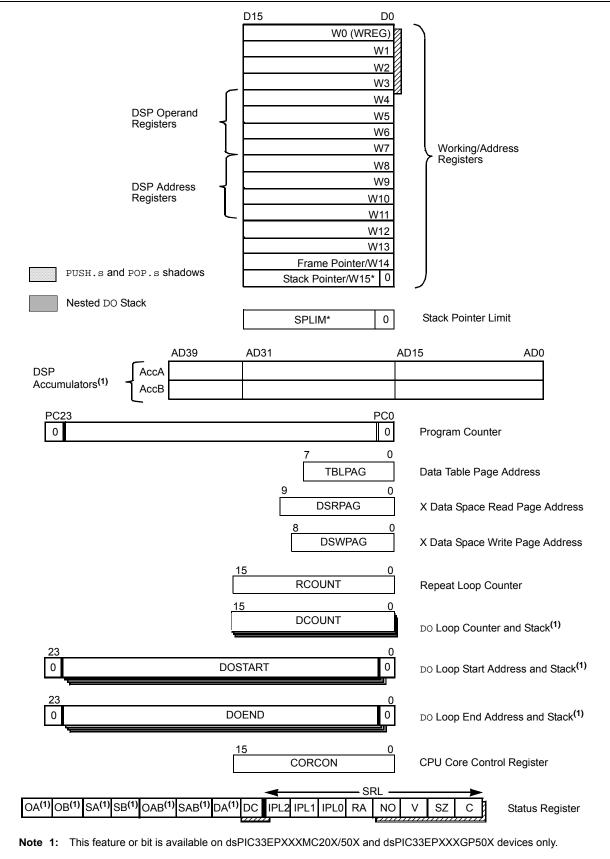

Register(s) Name	Description
W0 through W15	Working register array
ACCA, ACCB	40-bit DSP Accumulators
PC	23-bit Program Counter
SR	ALU and DSP Engine Status register
SPLIM	Stack Pointer Limit Value register
TBLPAG	Table Memory Page Address register
DSRPAG	Extended Data Space (EDS) Read Page register
DSWPAG	Extended Data Space (EDS) Write Page register
RCOUNT	REPEAT Loop Count register
DCOUNT ⁽¹⁾	DO Loop Count register
DOSTARTH ^(1,2) , DOSTARTL ^(1,2)	DO Loop Start Address register (High and Low)
DOENDH ⁽¹⁾ , DOENDL ⁽¹⁾	DO Loop End Address register (High and Low)
CORCON	Contains DSP Engine, DO Loop control and trap status bits

TABLE 3-1: PROGRAMMER'S MODEL REGISTER DESCRIPTIONS

Note 1: This register is available on dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices only.

2: The DOSTARTH and DOSTARTL registers are read-only.

3.6 CPU Control Registers

REGISTER 3-1: SR: CPU STATUS REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/C-0	R/C-0	R -0	R/W-0
0A ⁽¹⁾	OB ⁽¹⁾	SA ^(1,4)	SB ^(1,4)	OAB ⁽¹⁾	SAB ⁽¹⁾	DA ⁽¹⁾	DC
bit 15	-						bit 8
R/W-0 ^(2,3)	R/W-0 ^(2,3)	R/W-0 ^(2,3)	R-0	R/W-0	R/W-0	R/W-0	R/W-0
	IPL<2:0>		RA	N	OV	Z	С
bit 7				•			bit 0

Legend:		U = Unimplemented bit,	read as '0'
R = Readable bit	W = Writable bit	C = Clearable bit	
-n = Value at POR	'1'= Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	OA: Accumulator A Overflow Status bit ⁽¹⁾ 1 = Accumulator A has overflowed 0 = Accumulator A has not overflowed
bit 14	OB: Accumulator B Overflow Status bit ⁽¹⁾ 1 = Accumulator B has overflowed 0 = Accumulator B has not overflowed
bit 13	 SA: Accumulator A Saturation 'Sticky' Status bit^(1,4) 1 = Accumulator A is saturated or has been saturated at some time 0 = Accumulator A is not saturated
bit 12	 SB: Accumulator B Saturation 'Sticky' Status bit^(1,4) 1 = Accumulator B is saturated or has been saturated at some time 0 = Accumulator B is not saturated
bit 11	OAB: OA OB Combined Accumulator Overflow Status bit ⁽¹⁾ 1 = Accumulators A or B have overflowed 0 = Neither Accumulators A or B have overflowed
bit 10	 SAB: SA SB Combined Accumulator 'Sticky' Status bit⁽¹⁾ 1 = Accumulators A or B are saturated or have been saturated at some time 0 = Neither Accumulator A or B are saturated
bit 9	DA: DO Loop Active bit ⁽¹⁾ 1 = DO loop in progress 0 = DO loop not in progress
bit 8	 DC: MCU ALU Half Carry/Borrow bit 1 = A carry-out from the 4th low order bit (for byte-sized data) or 8th low order bit (for word-sized data) of the result occurred 0 = No carry-out from the 4th low order bit (for byte-sized data) or 8th low order bit (for word-sized data) data) of the result occurred
Note 1: 2:	This bit is available on dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices only. The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL, if IPL<3> = 1. User interrupts are disabled when

IPL<3> = 1.

- 3: The IPL<2:0> Status bits are read only when the NSTDIS bit (INTCON1<15>) = 1.
- **4:** A data write to the SR register can modify the SA and SB bits by either a data write to SA and SB or by clearing the SAB bit. To avoid a possible SA or SB bit write race condition, the SA and SB bits should not be modified using bit operations.

REGISTER 3-1: SR: CPU STATUS REGISTER (CONTINUED)

bit 7-{	5	IPL<2:0>: CPU Interrupt Priority Level Status bits ^(1,2) 111 = CPU Interrupt Priority Level is 7 (15). User interrupts disabled 110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9) 000 = CPU Interrupt Priority Level is 0 (8)
bit 4		RA: REPEAT Loop Active bit 1 = REPEAT loop in progress 0 = REPEAT loop not in progress
bit 3		N: MCU ALU Negative bit 1 = Result was negative 0 = Result was non-negative (zero or positive)
bit 2		 OV: MCU ALU Overflow bit This bit is used for signed arithmetic (2's complement). It indicates an overflow of the magnitude that causes the sign bit to change state. 1 = Overflow occurred for signed arithmetic (in this arithmetic operation) 0 = No overflow occurred
bit 1		 Z: MCU ALU Zero bit 1 = An operation that affects the Z bit has set it at some time in the past 0 = The most recent operation that affects the Z bit has cleared it (i.e., a non-zero result)
bit 0		C: MCU ALU Carry/Borrow bit 1 = A carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred
Note	1: 2:	This bit is available on dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices only. The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority

- 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL, if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
- 3: The IPL<2:0> Status bits are read only when the NSTDIS bit (INTCON1<15>) = 1.
- **4:** A data write to the SR register can modify the SA and SB bits by either a data write to SA and SB or by clearing the SAB bit. To avoid a possible SA or SB bit write race condition, the SA and SB bits should not be modified using bit operations.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, AND PIC24EPXXXGP/MC20X

REGISTER 3-	2: CORC	ON: CORE C	ONTROL RI	EGISTER						
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0			
VAR	—	US<1	:0> ⁽¹⁾	EDT ^(1,2)		DL<2:0> ⁽¹⁾				
bit 15							bit			
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R-0	R/W-0	R/W-0			
SATA ⁽¹⁾	SATB ⁽¹⁾	SATDW ⁽¹⁾	ACCSAT ⁽¹⁾	IPL3 ⁽³⁾	SFA	RND ⁽¹⁾	IF ⁽¹⁾			
bit 7		I					bit			
Legend:										
R = Readable b	bit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'				
-n = Value at Po	OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkno	own			
bit 15	1 = Variable e	e Exception Pro exception proce	essing enabled							
bit 14	Unimplemen	ted: Read as '	0'							
bit 13-12	11 = Reserve 10 = DSP eng 01 = DSP eng 00 = DSP eng	gine multiplies gine multiplies gine multiplies	are mixed-sigr are unsigned are signed	1						
bit 11		D Loop Termina e executing DO		current loop ite	eration					
bit 10-8	DL<2:0>: DO 111 = 7 DO lo	Loop Nesting I ops active	_evel Status bi	ts ⁽¹⁾						
	•									
	•									
	• 001 = 1 DO lo 000 = 0 DO lo									
bit 7	SATA: AccA S 1 = Accumula	Saturation Ena Itor A saturatio	n enabled							
bit 6	1 = Accumula	Saturation Ena itor B saturatio itor B saturatio	n enabled							
bit 5	1 = Data space	a Space Write f ce write saturat ce write saturat	ion enabled	ine Saturation	Enable bit ⁽¹⁾					
bit 4	ACCSAT: Accumulator Saturation Mode Select bit ⁽¹⁾ 1 = 9.31 saturation (super saturation) 0 = 1.31 saturation (normal saturation)									
bit 3	1 = CPU inter	terrupt Priority rupt priority lev rupt priority lev	/el is greater th							
Note 1: This	bit is available	e on dsPIC33E	PXXXMC20X/	50X and dsPIC	C33EPXXXGI	P50X devices only	Ι.			

REGISTER 3-2: CORCON: CORE CONTROL REGISTER

- **2:** This bit is always read as '0'.
- 3: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level.

REGISTER 3-2: CORCON: CORE CONTROL REGISTER (CONTINUED)

- bit 2 SFA: Stack Frame Active Status bit
 - 1 = Stack frame is active. W14 and W15 address 0x0000 to 0xFFFF, regardless of DSRPAG and DSW-PAG values
 - 0 = Stack frame is not active. W14 and W15 address of EDS or Base Data Space
- bit 1 RND: Rounding Mode Select bit⁽¹⁾
 - 1 = Biased (conventional) rounding enabled
 - 0 = Unbiased (convergent) rounding enabled
- bit 0 IF: Integer or Fractional Multiplier Mode Select bit⁽¹⁾ 1 = Integer mode enabled for DSP multiply 0 = Fractional mode enabled for DSP multiply
- Note 1: This bit is available on dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices only.
 - 2: This bit is always read as '0'.
 - 3: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level.

3.7 Arithmetic Logic Unit (ALU)

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X, and PIC24EPXXXGP/MC20X ALU is 16 bits wide and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. Depending on the operation, the ALU can affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the <u>SR register</u>. The <u>C and DC</u> Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.

The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location.

Refer to the *"16-bit MCU and DSC Programmer's Reference Manual"* (DS70157) for information on the SR bits affected by each instruction.

The core CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16-bit divisor division.

3.7.1 MULTIPLIER

Using the high-speed 17-bit x 17-bit multiplier, the ALU supports unsigned, signed, or mixed-sign operation in several MCU multiplication modes:

- 16-bit x 16-bit signed
- 16-bit x 16-bit unsigned
- 16-bit signed x 5-bit (literal) unsigned
- 16-bit signed x 16-bit unsigned
- 16-bit unsigned x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit signed
- 8-bit unsigned x 8-bit unsigned

3.7.2 DIVIDER

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes:

- 32-bit signed/16-bit signed divide
- 32-bit unsigned/16-bit unsigned divide
- · 16-bit signed/16-bit signed divide
- 16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in W0 and the remainder in W1. 16-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn) and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

3.8 DSP Engine (dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X Devices Only)

The DSP engine consists of a high-speed 17-bit x 17-bit multiplier, a 40-bit barrel shifter and a 40-bit adder/subtracter (with two target accumulators, round and saturation logic).

The DSP engine can also perform inherent accumulator-to-accumulator operations that require no additional data. These instructions are ADD, SUB and NEG.

The DSP engine has options selected through bits in the CPU Core Control register (CORCON), as listed below:

- Fractional or integer DSP multiply (IF)
- Signed, unsigned, or mixed-sign DSP multiply (US)
- Conventional or convergent rounding (RND)
- · Automatic saturation on/off for ACCA (SATA)
- Automatic saturation on/off for ACCB (SATB)
- Automatic saturation on/off for writes to data memory (SATDW)
- Accumulator Saturation mode selection (ACCSAT)

TABLE 3-2:	DSP INSTRUCTIONS
	SUMMARY

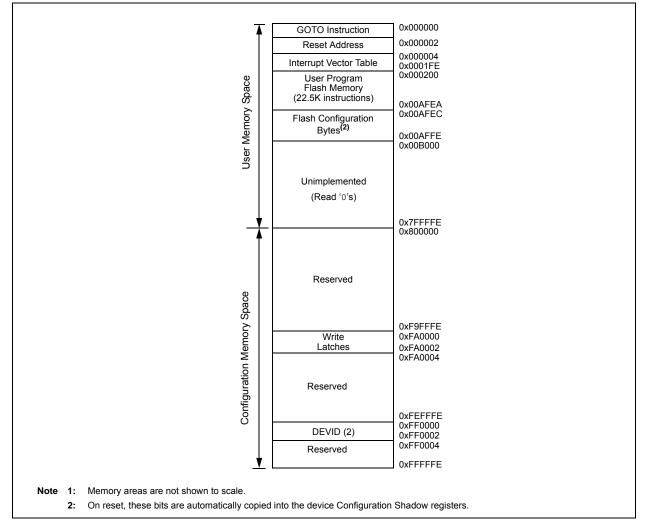
Instruction	Algebraic Operation	ACC Write Back
CLR	A = 0	Yes
ED	$A = (x - y)^2$	No
EDAC	$A = A + (x - y)^2$	No
MAC	$A = A + (x \bullet y)$	Yes
MAC	$A = A + x^2$	No
MOVSAC	No change in A	Yes
MPY	$A = x \bullet y$	No
MPY	$A = x^2$	No
MPY.N	$A = -x \bullet y$	No
MSC	$A = A - x \bullet y$	Yes

NOTES:

4.0 MEMORY ORGANIZATION

Note: This data sheet summarizes the features dsPIC33EPXXXGP50X. of the dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to 4. "Program Memory" Section (DS70613) of the "dsPIC33E/PIC24E Family Reference Manual', which is available from the Microchip web site (www.microchip.com).

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X, and PIC24EPXXXGP/MC20X architecture features separate program and data memory spaces and buses. This architecture also allows the direct access of program memory from the data space during code execution.


4.1 Program Address Space

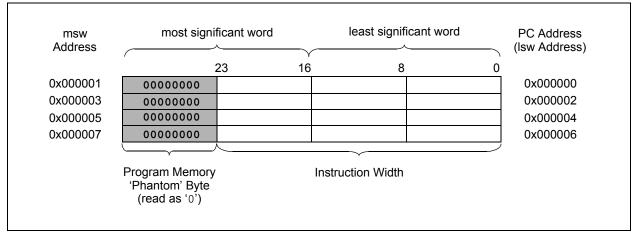
The program address memory space of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X devices is 4M instructions. The space is addressable by a 24-bit value derived either from the 23-bit PC during program execution, or from table operation or data space remapping as described in Section 4.6 "Interfacing Program and Data Memory Spaces".

User application access to the program memory space is restricted to the lower half of the address range (0x000000 to 0x7FFFF). The exception is the use of TBLRD operations, which use TBLPAG<7> to read Device ID sections of the configuration memory space.

The memory map for the dsPIC33EP64GP50X, dsPIC33EP64MC20X/50X, and PIC24EP64GP/ MC20X devices is shown in Figure 4-1.

FIGURE 4-1: PROGRAM MEMORY MAP FOR dsPIC33EP64GP50X, dsPIC33EP64MC20X/50X, AND PIC24EP64GP/MC20X DEVICES⁽¹⁾

4.1.1 PROGRAM MEMORY ORGANIZATION


The program memory space is organized in wordaddressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 4-2).

Program memory addresses are always word-aligned on the lower word, and addresses are incremented or decremented by two during code execution. This arrangement provides compatibility with data memory space addressing and makes data in the program memory space accessible.

4.1.2 INTERRUPT AND TRAP VECTORS

All dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X, and PIC24EPXXXGP/MC20X devices reserve the addresses between 0x00000 and 0x000200 for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user application at address 0x000000 of Flash memory, with the actual address for the start of code at address 0x000002 of Flash memory.

A more detailed discussion of the interrupt vector tables is provided in **Section 7.1** "Interrupt Vector **Table**".

FIGURE 4-2: PROGRAM MEMORY ORGANIZATION

4.2 Data Address Space

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X, and PIC24EPXXXGP/MC20X CPU has a separate 16-bit wide data memory space. The data space is accessed using separate Address Generation Units (AGUs) for read and write operations. The data memory maps are shown in Figure 4-3 and Figure 4-4.

All Effective Addresses (EAs) in the data memory space are 16 bits wide and point to bytes within the data space. This arrangement gives a base data space address range of 8 Kbytes or 4K words.

The base data space address is used in conjunction with a read or write page register (DSRPAG or DSWPAG) to form an extended data space, which has a total address range of 16 MB.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X devices implement up to 56 Kbytes of data memory. If an EA point to a location outside of this area, an all-zero word or byte is returned.

4.2.1 DATA SPACE WIDTH

The data memory space is organized in byte addressable, 16-bit wide blocks. Data is aligned in data memory and registers as 16-bit words, but all data space EAs resolve to bytes. The Least Significant Bytes (LSBs) of each word have even addresses, while the Most Significant Bytes (MSBs) have odd addresses.

4.2.2 DATA MEMORY ORGANIZATION AND ALIGNMENT

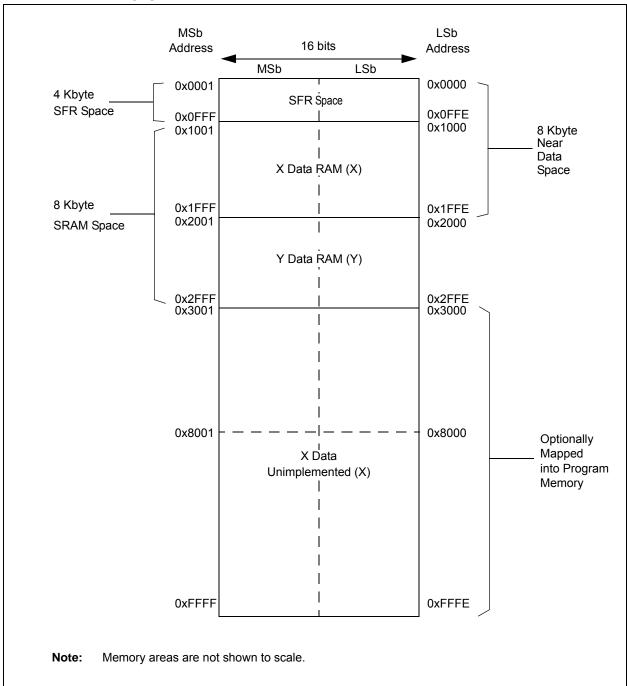
To maintain backward compatibility with PIC[®] MCU devices and improve data space memory usage efficiency, the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/ MC20X instruction set supports both word and byte operations. As a consequence of byte accessibility, all effective address calculations are internally scaled to step through word-aligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode [Ws++] results in a value of Ws + 1 for byte operations and Ws + 2 for word operations.

A data byte read, reads the complete word that contains the byte, using the LSB of any EA to determine which byte to select. The selected byte is placed onto the LSB of the data path. That is, data memory and registers are organized as two parallel byte-wide entities with shared (word) address decode but separate write lines. Data byte writes only write to the corresponding side of the array or register that matches the byte address. All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations, or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap is generated. If the error occurred on a read, the instruction underway is completed. If the error occurred on a write, the instruction is executed but the write does not occur. In either case, a trap is then executed, allowing the system and/or user application to examine the machine state prior to execution of the address Fault.

All byte loads into any W register are loaded into the LSB. The MSB is not modified.

A Sign-Extend instruction (SE) is provided to allow user applications to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, user applications can clear the MSB of any W register by executing a Zero-Extend (ZE) instruction on the appropriate address.

4.2.3 SFR SPACE


The first 4 Kbytes of the Near Data Space, from 0x0000 to 0x0FFF, is primarily occupied by Special Function Registers (SFRs). These are used by the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X core and peripheral modules for controlling the operation of the device.

SFRs are distributed among the modules that they control, and are generally grouped together by module. Much of the SFR space contains unused addresses; these are read as '0'.

Note: The actual set of peripheral features and interrupts varies by the device. Refer to the corresponding device tables and pinout diagrams for device-specific information.

4.2.4 NEAR DATA SPACE

The 8 Kbyte area between 0x0000 and 0x1FFF is referred to as the near data space. Locations in this space are directly addressable through a 13-bit absolute address field within all memory direct instructions. Additionally, the whole data space is addressable using MOV instructions, which support Memory Direct Addressing mode with a 16-bit address field, or by using Indirect Addressing mode using a working register as an Address Pointer.

FIGURE 4-3: DATA MEMORY MAP FOR dsPIC33EP64MC20X/50X AND dsPIC33EP64GP50X DEVICES

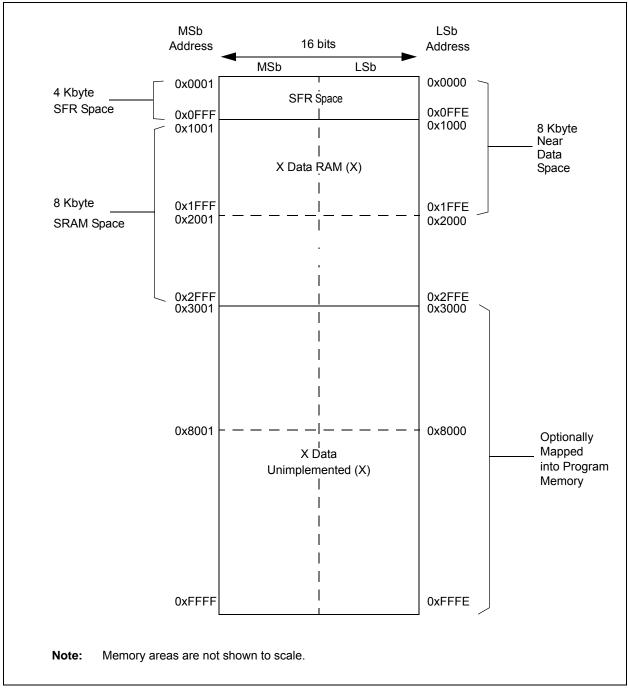


FIGURE 4-4: DATA MEMORY MAP FOR PIC24EP64GP/MC20X/50X DEVICES

4.2.5 X AND Y DATA SPACES

The dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X core has two data spaces, X and Y. These data spaces can be considered either separate (for some DSP instructions), or as one unified linear address range (for MCU instructions). The data spaces are accessed using two Address Generation Units (AGUs) and separate data paths. This feature allows certain instructions to concurrently fetch two words from RAM, thereby enabling efficient execution of DSP algorithms such as Finite Impulse Response (FIR) filtering and Fast Fourier Transform (FFT).

The X data space is used by all instructions and supports all addressing modes. X data space has separate read and write data buses. The X read data bus is the read data path for all instructions that view data space as combined X and Y address space. It is also the X data prefetch path for the dual operand DSP instructions (MAC class).

The Y data space is used in concert with the X data space by the MAC class of instructions (CLR, ED, EDAC, MAC, MOVSAC, MPY, MPY.N and MSC) to provide two concurrent data read paths.

Both the X and Y data spaces support Modulo Addressing mode for all instructions, subject to addressing mode restrictions. Bit-Reversed Addressing mode is only supported for writes to X data space. Modulo Addressing and Bit-Reversed Addressing are not present in PIC24EPXXXGP/ MC20X devices.

All data memory writes, including in DSP instructions, view data space as combined X and Y address space. The boundary between the X and Y data spaces is device-dependent and is not user-programmable.

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
W0	0000		W0 (WREG) x											xxxx				
W1	0002								W1									xxxx
W2	0004								W2									xxxx
W3	0006								W3									xxxx
W4	8000								W4									xxxx
W5	000A		W5 ×											xxxx				
W6	000C		W6 x											xxxx				
W7	000E								W7									xxxx
W8	0010								W8									xxxx
W9	0012								W9									xxxx
W10	0014								W10									xxxx
W11	0016								W11									xxxx
W12	0018								W12									xxxx
W13	001A								W13									xxxx
W14	001C								W14									xxxx
W15	001E								W15									xxxx
SPLIM	0020								SPLIN	Λ								0000
ACCAL	0022								ACCA	L								0000
ACCAH	0024								ACCA	Н								0000
ACCAU	0026			Sig	gn-extensio	n of ACCA<	39>						AC	CAU				0000
ACCBL	0028								ACCB	L								0000
ACCBH	002A								ACCB	Н								0000
ACCBU	002C			Sig	gn-extensio	n of ACCB<	39>						AC	CBU				0000
PCL	002E								PCL								_	0000
PCH	0030	_	_	_	_	_	_	_	_	_				PCH				0000
DSRPAG	0032	_	_	_		_	_					DSRF	PAG					0001
DSWPAG	0034	DSWPAG 00									0001							
RCOUNT	0036										0000							
DCOUNT	0038	DCOUNT										0000						
DOSTARTL	003A	DOSTARTL – 0										0000						
DOSTARTH	003C	_		_	_	_				_				DOST	ARTH			0000
DOENDL	003E								DOENDL								_	0000
DOENDH	0040	_	_	_	_	_		_	_	_	_			DOE	NDH			0000

TABLE 4-1: CPU CORE REGISTER MAP FOR dsPIC33EPXXXMC20X/50X AND dsPIC33EPXXXGP50X DEVICES ONLY

TABLE 4-	·1:	CPU C	ORE RE	EGISTE	r map f	OR dsF	PIC33EP	XXXMC	20X/50X	AND d	sPIC33	EPXXX	GP50X	DEVICE	S ONL	Y (CON	TINUE	(כ
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1									Bit 0	All Resets		
SR	0042	OA	OB	SA	SB	OAB	SAB	DA	DC	IPL2	IPL1	IPL0	RA	Ν	OV	Z	С	0000
CORCON	0044	VAR	_	US<	:1:0>	EDT	EDT DL<2:0>				SATB	SATDW	ACCSAT	IPL3	SFA	RND	IF	0020
MODCON	0046	XMODEN	MODEN YMODEN BWM<3:0> YWM<3:0> XWM<3:0>											•	0000			
XMODSRT	0048	XMODSRT<15:0>												0000				
XMODEND	004A							XMC	DEND<15:0)>								0001
YMODSRT	004C							YMC	DSRT<15:0)>								0000
YMODEND	004E							YMC	DEND<15:0)>								0001
XBREV	0050	BREN							XBF	REV<14:0>								0000
DISICNT	0052	_	_							DISICNT<	13:0>							0000
TBLPAG	0054	_	TBLPAG<7:0> 00											0000				
MSTRPR	0058		MSTRPR<15:0> 00											0000				
Legend:	=	implomonto	d road as '	0' Posot v	aluge arg ch	own in hove	docimal											

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

DS70657B-page 54

TABLE	4-2:	CPU (CORE RE	EGISTE	R MAP F	OR PIC	24EPX	XXGP/M	C20X D	EVICES	ONLY						-	
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
W0	0000		W0 (WREG)												xxxx			
W1	0002								W1									xxxx
W2	0004								W2									xxxx
W3	0006		W3												xxxx			
W4	0008		W4												xxxx			
W5	000A		W5 x												xxxx			
W6	000C		W6 xx											xxxx				
W7	000E								W7									xxxx
W8	0010								W8									xxxx
W9	0012		W9 x											xxxx				
W10	0014								W10									xxxx
W11	0016								W11									xxxx
W12	0018								W12									xxxx
W13	001A								W13									xxxx
W14	001C								W14									xxxx
W15	001E								W15									xxxx
SPLIM	0020								SPLIN	1							•	0000
PCL	002E								PCL								—	0000
PCH	0030	_	_	—	—	—	—	—	_	—				PCH				0000
DSRPAG	0032	_	_	—	—	—	—					DSRI	PAG					0001
DSWPAG	0034	—	—	—	—	—	—	—					DSWPAG					0001
RCOUNT	0036								RCOUN	T				•			T	0000
SR	0042	_	_	—	—	—	—	—	DC	IPL2	IPL1	IPL0	RA	Ν	OV	Z	С	0000
CORCON	0044	VAR	—	—	—	—	—	—	—	—	—	—	_	IPL3	SFA	—	—	0020
DISICNT	0052	—	_							DISICNT<	<13:0>							0000
TBLPAG	0054	TBLPAG<7:0> 0									0000							
MSTRPR	0058			(.) D					MSTRPR<	15:0>								0000

- = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

TABLE 4-3:	INTERRUPT CONTROLLER REGISTER MAP FOR PIC24EPXXXGP20X DEVICES ONLY
------------	--

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IFS0	0800	_	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INT0IF	0000
IFS1	0802	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	_	_	_	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
IFS2	0804	_	—				_	_	_	_	IC4IF	IC3IF	DMA3IF	_	_	SPI2IF	SPI2EIF	0000
IFS3	0806	_	_				_	_	_	_	_	_		_	MI2C2IF	SI2C2IF	-	0000
IFS4	0808	_	_	CTMUIF	_	_	_	_	_		_	_	_	CRCIF	U2EIF	U1EIF		0000
IFS8	0810	JTAGIF	ICDIF	-	_	_	_	_	_		_	_	_		_	_		0000
IFS9	0812	_	_	-	_	_	_	_	_		PTG3IF	PTG2IF	PTG1IF	PTG0IF	PTGWDTIF	PTGSTEPIF		0000
IEC0	0820	_	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0822	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	_	_	_	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
IEC2	0824	_	_	_	_	_		_	_	_	IC4IE	IC3IE	DMA3IE	_		SPI2IE	SPI2EIE	0000
IEC3	0826	_	—	_	_	_	—	—	—	_	—	—		—	MI2C2IE	SI2C2IE	—	0000
IEC4	0828	_	—	CTMUIE	_	_	—	—	—	_	—	—		CRCIE	U2EIE	U1EIE	—	0000
IEC8	0830	JTAGIE	ICDIE	_	_	_	—	—	—	_	—	—		—		—	—	0000
IEC9	0832	_	_	_	_	_	_	—	—	_	PTG3IE	PTG2IE	PTG1IE	PTG0IE	PTGWDTIE	PTGSTEPIE	_	0000
IPC0	0840	_		T1IP<2:0>		_		OC1IP<2:0	>	_		IC1IP<2:0>		—		INT0IP<2:0>		4444
IPC1	0842	_		T2IP<2:0>		_		OC2IP<2:0	>	_		IC2IP<2:0>		—		DMA0IP<2:0>		4444
IPC2	0844	_	ι	J1RXIP<2:0	>	_	:	SPI1IP<2:0)>		9	SPI1EIP<2:0	>			T3IP<2:0>		4444
IPC3	0846	_	_	_	_		C	MA1IP<2:	0>	_		AD1IP<2:0>	•	_		U1TXIP<2:0>		0444
IPC4	0848	_		CNIP<2:0>		_		CMIP<2:0	>	_	N	/II2C1IP<2:0	>	—		SI2C1IP<2:0>		4444
IPC5	084A	_	—	—	—	_	—	—	—	_	—	—	—	—		INT1IP<2:0>		0004
IPC6	084C	_		T4IP<2:0>		_		OC4IP<2:0	>	_		OC3IP<2:0>		—		DMA2IP<2:0>		4444
IPC7	084E	_	ι	J2TXIP<2:0	>	_	ι	J2RXIP<2:	0>	_		INT2IP<2:0>	•	_		T5IP<2:0>		4444
IPC8	0850	_	_	_	_	_	_	—	—	_		SPI2IP<2:0>	•	_		SPI2EIP<2:0>		0044
IPC9	0852	_	—	_	_	_		IC4IP<2:0	>	_		IC3IP<2:0>		—		DMA3IP<2:0>		0444
IPC12	0858	_	—	—	—	_	N	112C2IP<2:	0>	_	5	SI2C2IP<2:0	>	—	—	—	—	0440
IPC16	0860	_		CRCIP<2:0	>	_		U2EIP<2:0	>	_		U1EIP<2:0>		—	—	—	—	4440
IPC19	0866	_	—	—	—	_	—	—	_		(CTMUIP<2:0	>	_	—	—	_	0040
IPC35	0886	—	J	ITAGID<2:0	>	_		ICDIP<2:0	>	_	_	_	—	-	—	_	_	4400
IPC36	0888	—	F	PTG0IP<2:0	>	_	P	GWDTIP<2	:0>		PT	GSTEPIP<2	:0>	_	_	_	_	4440
IPC37	088A	—	_	_	_	_	F	PTG3IP<2:	0>		I	PTG2IP<2:0	>			PTG1IP<2:0>		0444

TABLE 4-3: INTERRUPT CONTROLLER REGISTER MAP FOR PIC24EPXXXGP20X DEVICES ONLY (CONTINUED)

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	08C0	NSTDIS	OVAERR	OVBERR	—	_	—	—	—		DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL		0000
INTCON2	08C2	GIE	DISI	SWTRAP	_	_	_	—	_			_	_	_	INT2EP	INT1EP	INT0EP	8000
INTCON3	08C4	_	_	_	_	_	_	—	_			DAE	DOOVR	_	_			0000
INTCON4	08C6	_	_	_	_	_	_	_	_			_	—	_	_		SGHT	0000
INTTREG	08C8	_	_	_	_		ILR<	3:0>					VECN	JM<7:0>				0000

TABLE 4-4:	INTERRUPT CONTROLLER REGISTER MAP FOR PIC24EPXXXMC20X DEVICES ONLY
------------	--

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IFS0	0800	_	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INT0IF	0000
IFS1	0802	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	_	_	_	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
IFS2	0804	-	_	_	_	_	_	_	—	_	IC4IF	IC3IF	DMA3IF	_	_	SPI2IF	SPI2EIF	0000
IFS3	0806	_	_	_	—	—	QEI1IF	PSEMIF	_	_	_	_	_	_	MI2C2IF	SI2C2IF	_	0000
IFS4	0808	_	_	CTMUIF	_	_		_	—	—	_	_	_	CRCIF	U2EIF	U1EIF		0000
IFS5	080A	PWM2IF	PWM1IF	_	_	_		_		_	_	_	_	_	_	_		0000
IFS6	080C	_	_	_	_	_	_	_		_	_	_	—	_	_	_	PWM3IF	0000
IFS8	0810	JTAGIF	ICDIF	_	_	_	_	_		_	_	_	—	_	_	_	_	0000
IFS9	0812	_	_	—	_	_		_	—	—	PTG3IF	PTG2IF	PTG1IF	PTG0IF	PTGWDTIF	PTGSTEPIF		0000
IEC0	0820	_	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INTOIE	0000
IEC1	0822	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	_	_	_	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
IEC2	0824	_	_	_	_	_	_	_		_	IC4IE	IC3IE	DMA3IE	_	_	SPI2IE	SPI2EIE	0000
IEC3	0826	_	_	_	_	_	QEI1IE	PSEMIE		_	_	_	—	_	MI2C2IE	SI2C2IE	_	0000
IEC4	0828	_	_	CTMUIE	_	_	_	_		_	_	_	—	CRCIE	U2EIE	U1EIE	_	0000
IEC5	082A	PWM2IE	PWM1IE		—	—	—	—	—	—		—	—	—	—	—	—	0000
IEC6	082C	—	—		—	—	—	—	—	—		—	—	—	—	—	PWM3IE	0000
IEC8	0830	JTAGIE	ICDIE		—	—	—	—	—	—		—	—	—	—	—	_	0000
IEC9	0832	_	_	_	_	_	_	_		_	PTG3IE	PTG2IE	PTG1IE	PTG0IE	PTGWDTIE	PTGSTEPIE	_	0000
IPC0	0840	_		T1IP<2:0>		_	(OC1IP<2:0)>	_		IC1IP<2:0>		_		INT0IP<2:0>		4444
IPC1	0842	_		T2IP<2:0>		_	(OC2IP<2:0)>	_		IC2IP<2:0>		_	[OMA0IP<2:0>		4444
IPC2	0844	_	ι	J1RXIP<2:0	>	_	9	SPI1IP<2:0)>	_	9	SPI1EIP<2:0	>	_		T3IP<2:0>		4444
IPC3	0846	_	_	_	_	_	D	MA1IP<2:	0>	_		AD1IP<2:0>	>	_		U1TXIP<2:0>		0444
IPC4	0848	_		CNIP<2:0>		_		CMIP<2:0	>	_	Ν	MI2C1IP<2:0)>	_		SI2C1IP<2:0>		4444
IPC5	084A	_	_		—	_			—	—		—	—	_		INT1IP<2:0>		0004
IPC6	084C	—		T4IP<2:0>		—	(OC4IP<2:0)>	—		OC3IP<2:0>	>	—	1	OMA2IP<2:0>		4444
IPC7	084E	—	ι	J2TXIP<2:0	>	—	L	J2RXIP<2:	0>	—		INT2IP<2:0>	>	—		T5IP<2:0>		4444
IPC8	0850	—	—		—	—	—	—	—	—		SPI2IP<2:0>	>	—	5	SPI2EIP<2:0>		0044
IPC9	0852	_	_		—	_		IC4IP<2:0	>	—		IC3IP<2:0>		_		DMA3IP<2:0>		0444
IPC12	0858	—	—		—	—	N	112C2IP<2:	0>	—	5	SI2C2IP<2:0	>	—	—	—	_	0440
IPC14	085C	_	_	_	_	_	(QEI1IP<2:()>	_	F	PSEMIP<2:0	>	_	_	_	_	0440
IPC16	0860	—	(CRCIP<2:0	>	_	U2EIP<2:0>			_		U1EIP<2:0>	>	—	—	—	_	4440
IPC19	0866	_	—	_	_	_	_	_	_	_	(CTMUIP<2:0	>	_	_	_	-	0040
IPC23	086E	_	Р	WM2IP<2:0)>	_	Р	WM1IP<2:	0>	_	_	_	_	—	_		—	4400
IPC24	0870	_		_	_	_	_	_		_	_	_	_	_	F	WM3IP<2:0>		4004
IPC35	0886			TAGID<2:0	、 			ICDIP<2:0	`		_		_				_	4400

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, AND PIC24EPXXXGP/MC20X

TABLE 4-4: INTERRUPT CONTROLLER REGISTER MAP FOR PIC24EPXXXMC20X DEVICES ONLY (CONTINUED)

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IPC36	0888	_	F	PTG0IP<2:0	>		PG	WDTIP<2	::0>		PT	GSTEPIP<2	:0>	_	_	_		4440
IPC37	088A	_	_	_	_	—	Р	TG3IP<2:	0>		I	PTG2IP<2:0	>	_	I	PTG1IP<2:0>		0444
INTCON1	08C0	NSTDIS	OVAERR	OVBERR	_	—		—			DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL		0000
INTCON2	08C2	GIE	DISI	SWTRAP	_	—		—			_	_		_	INT2EP	INT1EP	INT0EP	8000
INTCON3	08C4	_	_	_	_	—		—			_	DAE	DOOVR	_	_			0000
INTCON4	08C6	_	_	_	_	_	_	_		_	_	_	_	_	_	_	SGHT	0000
INTTREG	08C8	_	_	_	_		ILR<	3:0>					VECNU	JM<7:0>				0000

TABLE 4-5:	INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXGP50X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IFS0	0800		DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INT0IF	0000
IFS1	0802	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	_	_	_	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
IFS2	0804	_	_	_	_	_	_	_	_	_	IC4IF	IC3IF	DMA3IF	C1IF	C1RXIF	SPI2IF	SPI2EIF	0000
IFS3	0806	_		_		_	_	_	_	—	_	_	-		MI2C2IF	SI2C2IF	-	0000
IFS4	0808	_		CTMUIF		_	_	_	_	_	C1TXIF	_	_	CRCIF	U2EIF	U1EIF		0000
IFS6	080C	_	-	_	_		_	_	_	_	_	_	_	_	_	—	PWM3IF	0000
IFS8	0810	JTAGIF	ICDIF	_	_		_	_	_	_	_	_	_	_	_	—		0000
IFS9	0812	_	-	_	_		_	_	_	_	PTG3IF	PTG2IF	PTG1IF	PTG0IF	PTGWDTIF	PTGSTEPIF		0000
IEC0	0820		DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0822	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	—	—	—	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
IEC2	0824		_	—	_	—	—	—	—	_	IC4IE	IC3IE	DMA3IE	C1IE	C1RXIE	SPI2IE	SPI2EIE	0000
IEC3	0826	_	-	_	_		_	_	_	_	_	_	_	_	MI2C2IE	SI2C2IE		0000
IEC4	0828	_	-	CTMUIE	_		_	_	_	_	C1TXIE	_	_	CRCIE	U2EIE	U1EIE		0000
IEC8	0830	JTAGIE	ICDIE	—	_	—	—	—	—	—	—	—	—	_	—	—	—	0000
IEC9	0832		_	—	—	—	—	—	—	—	PTG3IE	PTG2IE	PTG1IE	PTG0IE	PTGWDTIE	PTGSTEPIE	—	0000
IPC0	0840	_		T1IP<2:0>			(OC1IP<2:0>		_		IC1IP<2:0>		_		INT0IP<2:0>		4444
IPC1	0842	_		T2IP<2:0>			(OC2IP<2:0	>	_		IC2IP<2:0>		_		DMA0IP<2:0>		4444
IPC2	0844		ι	J1RXIP<2:0	>	—		SPI1IP<2:0)>	_	5	SPI1EIP<2:0	>	_		T3IP<2:0>		4444
IPC3	0846	_	-	_	_		D	MA1IP<2:	0>	_		AD1IP<2:0>	•	_		U1TXIP<2:0>		0444
IPC4	0848	_		CNIP<2:0>				CMIP<2:0	>	_	Ν	MI2C1IP<2:0	>	_	:	SI2C1IP<2:0>		4444
IPC5	084A	_	_	_		_	—	—	—	_	_	_	—	_		INT1IP<2:0>		0004
IPC6	084C			T4IP<2:0>		—		OC4IP<2:0	>	_		OC3IP<2:0>	•	_		DMA2IP<2:0>		4444
IPC7	084E		ι	J2TXIP<2:0	>	—	ι	J2RXIP<2:	0>	—		INT2IP<2:0>	•	_		T5IP<2:0>		4444
IPC8	0850	_		C1IP<2:0>			C	1RXIP<2:	0>	_		SPI2IP<2:0>	>	_		SPI2EIP<2:0>		4444
IPC9	0852	_	-	_	_			IC4IP<2:0	>	_		IC3IP<2:0>		_		DMA3IP<2:0>		0444
IPC11	0856	_	_	_		_	—	—	—	_	_	_	—	_	—	_		0000
IPC12	0858	_		_		_	N	112C2IP<2:	0>	_	Ş	SI2C2IP<2:0	>		—	_		0440
IPC16	0860			CRCIP<2:0>	>	_		U2EIP<2:0	>	—		U1EIP<2:0>		_	_	—	_	4440
IPC17	0862	_	_	_		_	C	C1TXIP<2:)>		_	_	_	_	_	_	_	0400
IPC19	0866	_	_	_	_	_	_	_	_	_	(CTMUIP<2:0	>		_	_		0040
IPC35	0886	_		JTAGID<2:0	>	_		ICDIP<2:0	>	_	_	_	_	_	_	—	_	4400
IPC36	0888	_	F	PTG0IP<2:0	>		PC	GWDTIP<2	2:0>	_	PT	GSTEPIP<2	:0>	_	_	_	_	4440
IPC37	088A	_	_	_	_		F	TG3IP<2:	0>	_	1	PTG2IP<2:0	>			PTG1IP<2:0>		0444

TABLE 4-5: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXGP50X DEVICES ONLY (CONTINUED)

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	08C0	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	_	0000
INTCON2	08C2	GIE	DISI	SWTRAP	_	_	_	_	_	_	_	_	_	_	INT2EP	INT1EP	INT0EP	8000
INTCON3	08C4	_	_	_	_	_	_	_	_	_	_	DAE	DOOVR	_	_	_		0000
INTCON4	08C6	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	SGHT	0000
INTTREG	08C8	_	_	_	_		ILR<	3:0>					VECNU	JM<7:0>				0000

TABLE 4-6:	INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXMC20X DEVICES ONLY
------------	--

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IFS0	0800	_	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INTOIF	0000
IFS1	0802	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	_	_	_	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
IFS2	0804		_	_	_	_		_		_	IC4IF	IC3IF	DMA3IF	_	_	SPI2IF	SPI2EIF	0000
IFS3	0806	_	_	_	_	_	QEI1IF	PSEMIF	_	_	_	_	_	_	MI2C2IF	SI2C2IF	_	0000
IFS4	0808	_	_	CTMUIF		_	_		_		_		_	CRCIF	U2EIF	U1EIF	_	0000
IFS5	080A	PWM2IF	PWM1IF	_		_	_		_		_		_		_	_	_	0000
IFS6	080C	_	_	_		_	_		_		_		_		_	_	PWM3IF	0000
IFS8	0810	JTAGIF	ICDIF	_		_	_		_		_		_		_	_	_	0000
IFS9	0812	_	_	_	_	_	_		_	_	PTG3IF	PTG2IF	PTG1IF	PTG0IF	PTGWDTIF	PTGSTEPIF	_	0000
IEC0	0820	_	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INTOIE	0000
IEC1	0822	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE		_	_	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
IEC2	0824	_	_	_		_	_		_		IC4IE	IC3IE	DMA3IE		_	SPI2IE	SPI2EIE	0000
IEC3	0826	_	_	_		_	QEI1IE	PSEMIE	_		_		_		MI2C2IE	SI2C2IE	_	0000
IEC4	0828	_	_	CTMUIE	_	_	_		_	_	_	_	_	CRCIE	U2EIE	U1EIE	_	0000
IEC5	082A	PWM2IE	PWM1IE	_		_	_		_		_		_		_	_	_	0000
IEC6	082C	_	_	_		_	_		_		_		_		_	_	PWM3IE	0000
IEC8	0830	JTAGIE	ICDIE	_		_			_		_	_	_		_	_		0000
IEC9	0832	_	_	_		_			_		PTG3IE	PTG2IE	PTG1IE	PTG0IE	PTGWDTIE	PTGSTEPIE		0000
IPC0	0840	_		T1IP<2:0>		_	(OC1IP<2:0)>	_		IC1IP<2:0>		_		INT0IP<2:0>		4444
IPC1	0842	_		T2IP<2:0>		_	(C2IP<2:0)>	_		IC2IP<2:0>		_		DMA0IP<2:0>		4444
IPC2	0844	_	L	J1RXIP<2:0	>	_	5	SPI1IP<2:0)>	_	5	SPI1EIP<2:0	>	_		T3IP<2:0>		4444
IPC3	0846	_	_	_	_	_	D	MA1IP<2:	0>	_		AD1IP<2:0>		_		U1TXIP<2:0>		0444
IPC4	0848	_		CNIP<2:0>		_		CMIP<2:0	>	_	Ν	/II2C1IP<2:0	>	_		SI2C1IP<2:0>		4444
IPC5	084A	_	_	_	_	_		—	_	_	_	_	_	_		INT1IP<2:0>		0004
IPC6	084C	_		T4IP<2:0>		_	(C4IP<2:0)>	_		OC3IP<2:0>		_		DMA2IP<2:0>		4444
IPC7	084E	_	ι	J2TXIP<2:0	>	_	L	2RXIP<2:	0>	_		INT2IP<2:0>	•	_		T5IP<2:0>		4444
IPC8	0850		_	_	_	_	C	1RXIP<2:	0>	_		SPI2IP<2:0>	•	_		SPI2EIP<2:0>		0444
IPC9	0852	_	_	_	_	_		IC4IP<2:0	>	_		IC3IP<2:0>		_		DMA3IP<2:0>		0444
IPC12	0858	_	_	_	_	_	N	12C2IP<2:	:0>	_	5	SI2C2IP<2:0	>	_	_	_		0440
IPC14	085C	_	_	_	_	_	(QEI1IP<2:0)>	_	F	PSEMIP<2:0	>	_	_	_		0440
IPC16	0860	_	(CRCIP<2:0>	>	_	U2EIP<2:0>			_		U1EIP<2:0>		_	_	_		4440
IPC19	0866	_	_	_	_	—		_	_	_	(CTMUIP<2:0	>	_	_	_		0040
IPC23	086E	_	Р	WM2IP<2:0)>	_	Р	WM1IP<2:	:0>		_	_		_	_			4400
IPC24	0870	_			_	_		_	_		_	_			F			0004
IPC35	0886	_	J	ITAGID<2:0	>	_		ICDIP<2:0	>	_	_	_	_	_	_	_		4400

TABLE 4-6:	INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXMC20X DEVICES ONLY (CONTINUED)
------------	--

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IPC36	0888	_	F	PTG0IP<2:0	>	_	PC	GWDTIP<2	2:0>	_	PT	GSTEPIP<2:	:0>	_	_	_		4440
IPC37	088A	_	_		_	_	P	TG3IP<2:	0>	-		PTG2IP<2:0>	>	_	F	PTG1IP<2:0>		0444
INTCON1	08C0	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL		0000
INTCON2	08C2	GIE	DISI	SWTRAP	_	_	_		—	_	_	_	_	_	INT2EP	INT1EP	INT0EP	8000
INTCON3	08C4	_	-		_	-		-	—	_		DAE	DOOVR	_		_		0000
INTCON4	08C6	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	SGHT	0000
INTTREG	08C8	—	-	_	_		ILR<	3:0>					VECNU	JM<7:0>				0000

TABLE 4-7:	INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXMC50X DEVICES ONLY
------------	--

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IFS0	0800	_	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INTOIF	0000
IFS1	0802	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	_	_	_	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
IFS2	0804	_	_	_	_	_	_	_	_	_	IC4IF	IC3IF	DMA3IF	C1IF	C1RXIF	SPI2IF	SPI2EIF	0000
IFS3	0806	_	_	_	_	_	QEI1IF	PSEMIF	_	_	_	_	_	_	MI2C2IF	SI2C2IF	_	0000
IFS4	0808	_	_	CTMUIF	_	_	_	_	—	_	C1TXIF	_	_	CRCIF	U2EIF	U1EIF	_	0000
IFS5	080A	PWM2IF	PWM1IF	_	_	_	_	_	—	_	_	_	_	_	_	_		0000
IFS6	080C	_	_	_	_	_	_	_	—	_	_	_	_	_	_	_	PWM3IF	0000
IFS8	0810	JTAGIF	ICDIF	_	_	_	_	_	—	_	_	_	_	_	_	_	_	0000
IFS9	0812	_	_	_	_	_	_	_	—	_	PTG3IF	PTG2IF	PTG1IF	PTG0IF	PTGWDTIF	PTGSTEPIF	_	0000
IEC0	0820	_	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0822	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	_	—	_	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
IEC2	0824	_	_	_	_	_	_	_	—	_	IC4IE	IC3IE	DMA3IE	C1IE	C1RXIE	SPI2IE	SPI2EIE	0000
IEC3	0826	_	_	_	_	_	QEI1IE	PSEMIE	_	_	_	_	_	_	MI2C2IE	SI2C2IE		0000
IEC4	0828	_	_	CTMUIE	_	_	_	_	—	_	C1TXIE	_	_	CRCIE	U2EIE	U1EIE	_	0000
IEC5	082A	PWM2IE	PWM1IE	_	_	_	_	_	—	_	_	_	-	_	-	_	_	0000
IEC6	082C	_	_	_	_	_	_	_	—	_	_	_	_	_	_	_	PWM3IE	0000
IEC7	082E	_	_	_	_	_	_	_	—	_	_	_	_	_	_	_	_	0000
IEC8	0830	JTAGIE	ICDIE	_	_	_	_	_	—	_	_	_	_	_	_	_	_	0000
IEC9	0832	_	_	_	_	_	_	_	—	_	PTG3IE	PTG2IE	PTG1IE	PTG0IE	PTGWDTIE	PTGSTEPIE	_	0000
IPC0	0840	_		T1IP<2:0>		_	(OC1IP<2:0)>	_		IC1IP<2:0>		_		INT0IP<2:0>		4444
IPC1	0842	—		T2IP<2:0>		_	(OC2IP<2:0)>	_		IC2IP<2:0>		-		DMA0IP<2:0>		4444
IPC2	0844	—	ι	J1RXIP<2:0	>	_	5	SPI1IP<2:0)>	_	5	SPI1EIP<2:0	>	-		T3IP<2:0>		4444
IPC3	0846	_	_	_	_	_	D	MA1IP<2:	0>	_		AD1IP<2:0>	>	_		U1TXIP<2:0>		0444
IPC4	0848	_		CNIP<2:0>		_		CMIP<2:0	>	_	Γ	MI2C1IP<2:0)>		:	SI2C1IP<2:0>		4444
IPC5	084A	_	_		_	_			—	_	—	_	_			INT1IP<2:0>		0004
IPC6	084C	_		T4IP<2:0>		_	(C4IP<2:0)>	_		OC3IP<2:0>	>	_		DMA2IP<2:0>		4444
IPC7	084E	_	ι	J2TXIP<2:0	>	_	L	I2RXIP<2:	0>	_		INT2IP<2:0	>	_		T5IP<2:0>		4444
IPC8	0850			C1IP<2:0>		_	C	1RXIP<2:	0>	_		SPI2IP<2:0	>	_		SPI2EIP<2:0>		4444
IPC9	0852	_	_	_	_	_		IC4IP<2:0	>	_		IC3IP<2:0>		_		DMA3IP<2:0>		0444
IPC12	0858	_	_	_	_	_	MI2C2IP<2:0>		_	5	SI2C2IP<2:0	>	_	_	_		0440	
IPC14	085C		_	_	_	_	QEI1IP<2:0>		_	F	PSEMIP<2:0	>	_	_	_		0440	
IPC16	0860	_	(CRCIP<2:0	>	_	1	U2EIP<2:0	>	_		U1EIP<2:0>	`	_	_	_	_	4440
IPC17	0862	_	_	—	—	—	C	1TXIP<2:	0>	_	_	—	_	_	_	_	_	0400
IPC19	0866	_	_	_	—	—	_	—	_	_	(CTMUIP<2:0)>	_	_	_	_	0040
IPC23	086E	_	Р	WM2IP<2:0)>	_	Р	WM1IP<2:	0>	_	_	_	_	_	_	_	_	4400

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, AND PIC24EPXXXGP/MC20X

TABLE 4-7: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXMC50X DEVICES ONLY (CONTINUED)

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IPC24	0870		_		_	_		_	_	_		_		_	F	WM3IP<2:0>		0004
IPC35	0886		J	TAGID<2:0	>	-		ICDIP<2:0	>	-	-	_		_	_	_	-	4400
IPC36	0888	_	F	PTG0IP<2:0	>	_	– PGWDTIP<2:0>				PT	GSTEPIP<2	:0>	_	_	_	_	4440
IPC37	088A	_	_	_	_	_	F	PTG3IP<2:0	0>	_	I	PTG2IP<2:0	>	_	I	PTG1IP<2:0>		0444
INTCON1	08C0	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	_	0000
INTCON2	08C2	GIE	DISI	SWTRAP	_	_	_	_	_	_	_	_	_	_	INT2EP	INT1EP	INT0EP	8000
INTCON3	08C4	_	_	_	_	_	_	_	_	_	_	DAE	DOOVR	_	_	_	_	0000
INTCON4	08C6	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	SGHT	0000
INTTREG	08C8	_	_	_	_		ILR<	3:0>					VECN	JM<7:0>				0000
Lanandi				1 (-1 D														

TABLE 4-8:	TIMER1 THROUGH TIMER5 REGISTER MAP
------------	------------------------------------

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100								Timer1	Register								xxxx
PR1	0102								Period F	Register 1								FFFF
T1CON	0104	TON	—	TSIDL	—	—	—	—	_	_	TGATE	TCKP	S<1:0>	—	TSYNC	TCS	_	0000
TMR2	0106								Timer2	Register								xxxx
TMR3HLD	0108						Time	r3 Holding I	Register (fo	r 32-bit time	r operations	s only)						xxxx
TMR3	010A								Timer3	Register								xxxx
PR2	010C		5														FFFF	
PR3	010E		Period Register 2 Period Register 3															FFFF
T2CON	0110	TON	_	TSIDL	_	—	_	_	_	_	TGATE	TCKP	S<1:0>	T32	_	TCS	_	0000
T3CON	0112	TON		TSIDL	_	_			_	_	TGATE	TCKP	S<1:0>	—	_	TCS	_	0000
TMR4	0114								Timer4	Register								xxxx
TMR5HLD	0116						Ti	mer5 Holdir	ng Register	(for 32-bit o	perations or	ıly)						xxxx
TMR5	0118								Timer5	Register								xxxx
PR4	011A								Period F	Register 4								FFFF
PR5	011C								Period F	Register 5								FFFF
T4CON	011E	TON	_	TSIDL	—	—	—	_	—	_	TGATE	TCKP	S<1:0>	T32	_	TCS	_	0000
T5CON	0120	TON		TSIDL	_	—		_	_	_	TGATE	TCKP	S<1:0>	—	_	TCS	_	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-9:	INPUT CAPTURE 1 THROUGH INPUT CAPTURE 4 REGISTER MAP
------------	--

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IC1CON1	0140	—	—	ICSIDL	l	CTSEL<2:0	>	—	—	—	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000
IC1CON2	0142	—	_	—	—	—	—	—	IC32	ICTRIG	TRIGSTAT	—		SY	NCSEL<4	:0>		000D
IC1BUF	0144							Inpu	ut Capture 1	I Buffer Reg	gister							xxxx
IC1TMR	0146								Input Capt	ure 1 Timer	•							0000
IC2CON1	0148	—	_	ICSIDL	l	CTSEL<2:0	>	_	—	_	ICI<1	1:0>	ICOV	ICBNE		ICM<2:0>		0000
IC2CON2	014A	—	_	—	—	—	—	—	IC32	ICTRIG	TRIGSTAT	—		SY	NCSEL<4	:0>		000D
IC2BUF	014C	Input Capture 2 Buffer Register															xxxx	
IC2TMR	014E	Input Capture 2 Timer																0000
IC3CON1	0150	—	—	ICSIDL	l	CTSEL<2:0	>	_	—	—	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000
IC3CON2	0152	—	_	—	—	—	—	—	IC32	ICTRIG	TRIGSTAT	—		SY	NCSEL<4	:0>		000D
IC3BUF	0154							Inpu	ut Capture 3	Buffer Reg	gister							xxxx
IC3TMR	0156								Input Capt	ure 3 Timer								0000
IC4CON1	0158	—	_	ICSIDL	l	CTSEL<2:0	>	_	—	_	ICI<1	1:0>	ICOV	ICBNE		ICM<2:0>		0000
IC4CON2	015A		_	—	_	—	—	—	IC32	ICTRIG	TRIGSTAT	_		SY	NCSEL<4	:0>		000D
IC4BUF	015C							Inpu	ut Capture 4	1 Buffer Reg	gister							xxxx
IC4TMR	015E								Input Capt	ure 4 Timer								0000

Legend: x = unknown value on Reset, -- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
OC1CON1	0900	_	—	OCSIDL	C	OCTSEL<2:0	>	_	ENFLTB	ENFLTA	—	OCFLTB	OCFLTA	TRIGMODE		OCM<2:0>		0000
OC1CON2	0902	FLTMD	FLTOUT	FLTTRIEN	OCINV	—	DCB	<1:0>	OC32	OCTRIG	TRIGSTAT	OCTRIS		SYI	NCSEL<4:0	>		000C
OC1RS	0904							Out	out Compare	e 1 Seconda	ry Register							XXXX
OC1R	0906								Output Co	mpare 1 Reg	gister							XXXX
OC1TMR	0908								Timer V	alue 1 Regis	ter							xxxx
OC2CON1	090A		-	OCSIDL	C	OCTSEL<2:0	>	_	ENFLTB	ENFLTA	_	OCFLTB	OCFLTA	TRIGMODE		OCM<2:0>		0000
OC2CON2	090C	FLTMD	FLTOUT	FLTTRIEN	OCINV	—	DCB•	<1:0>	OC32	OCTRIG	TRIGSTAT	OCTRIS		SY	NCSEL<4:0	>		000C
OC2RS	090E							Out	out Compare	e 2 Seconda	ry Register							xxxx
OC2R	0910		Output Compare 2 Register															xxxx
OC2TMR	0912		Timer Value 2 Register															xxxx
OC3CON1	0914	_	_	OCSIDL	C	OCTSEL<2:0	>	_	ENFLTB	ENFLTA	_	OCFLTB	OCFLTA	TRIGMODE		OCM<2:0>		0000
OC3CON2	0916	FLTMD	FLTOUT	FLTTRIEN	OCINV	—	DCB•	<1:0>	OC32	OCTRIG	TRIGSTAT	OCTRIS		SY	NCSEL<4:0	>		000C
OC3RS	0918							Out	out Compare	e 3 Seconda	ry Register							xxxx
OC3R	091A								Output Co	mpare 3 Re	gister							xxxx
OC3TMR	091C								Timer V	alue 3 Regis	ter							xxxx
OC4CON1	091E	_	_	OCSIDL	C	OCTSEL<2:0	>	ENFLTC	ENFLTB	ENFLTA	OCFLTC	OCFLTB	OCFLTA	TRIGMODE		OCM<2:0>		0000
OC4CON2	0920	FLTMD	FLTOUT	FLTTRIEN	OCINV	—	DCB	<1:0>	OC32	OCTRIG	TRIGSTAT	OCTRIS		SYI	NCSEL<4:0	>		000C
OC4RS	0922		•					Out	out Compare	e 4 Seconda	ry Register							xxxx
OC4R	0924								Output Co	mpare 4 Reg	gister							xxxx
OC4TMR	0926								Timer V	alue 4 Regis	ter							xxxx

TABLE 4-11: PTG REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PTGCST	0AC0	PTGEN	_	PTGSIDL	PTGTOGL	_	PTGSWT	—	PTGIVIS	PTGSTRT	PTGWTO		—	_	_	PTGIT	N<1:0>	0000
PTGCON	0AC2	P	TGCLK<2	:0>		P.	TGDIV<4:0>				PTGPW)<3:0>		_	PT	GWDT<2:	0>	0000
PTGBTE	0AC4								PTGBTE<	:15:0>								0000
PTGHOLD	0AC6								PTGHOLD	<15:0>								0000
PTGT0LIM	0AC8								PTGT0LIM	<15:0>								0000
PTGT1LIM	0ACA								PTGT1LIM	<15:0>								0000
PTGSDLIM	0ACC								PTGSDLIM	<15:0>								0000
PTGC0LIM	0ACE								PTGC0LIM	<15:0>								0000
PTGC1LIM	0AD0								PTGC1LIM	<15:0>								0000
PTGADJ	0AD2								PTGADJ<	:15:0>								0000
PTGL0	0AD4								PTGL0<	15:0>								0000
PTGQPTR	0AD6	_	_	_	_	_	_	_	_	_	_	_		PT	GQPTR<4:	0>		0000
PTGQUE0	0AD8				STEF	P1<7:0>							STEP0<	7:0>				0000
PTGQUE1	0ADA				STEF	P3<7:0>							STEP2<	7:0>				0000
PTGQUE2	0ADC				STEF	P5<7:0>							STEP4<	7:0>				0000
PTGQUE3	0ADE				STEF	P7<7:0>							STEP6<	7:0>				0000
PTGQUE4	0AE0				STER	9<7:0>							STEP8<	7:0>				0000
PTGQUE5	0AE2				STEP	11<7:0>							STEP10<	:7:0>				0000
PTGQUE6	0AE4				STEP	13<7:0>							STEP12<	:7:0>				0000
PTGQUE7	0AE6				STEP	15<7:0>							STEP14<	:7:0>				0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-12: PWM REGISTER MAP FOR dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PTCON	0C00	PTEN	_	PTSIDL	SESTAT	SEIEN	EIPU	SYNCPOL	SYNCOEN	SYNCEN	SYI	NCSRC<2	2:0>		SEV	TPS<3:0>		0000
PTCON2	0C02															0>	0000	
PTPER	0C04		PTPER<15:0>															00F8
SEVTCMP	0C06								SEVTCMP<1	5:0>								0000
MDC	0C0A								MDC<15:0)>								0000
CHOP	0C1A	CHPCLKEN	_	—	—	_	_					CHOPCI	_K<9:0>					0000
PWMKEY	0C1E								PWMKEY<1	5:0>								0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-13: PWM GENERATOR 1 REGISTER MAP FOR dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON1	0C20	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC<	:1:0>	DTCP	—	MTBS	CAM	XPRES	IUE	0000
IOCON1	0C22	PENH	PENL	POLH	POLL	PMOD	<1:0>	OVRENH	OVRENL	OVRDA	T<1:0>	FLTDA	T<1:0>	CLDA	T<1:0>	SWAP	OSYNC	0000
FCLCON1	0C24	IFLTMOD		(CLSRC<4:	0>		CLPOL	CLMOD		FL	TSRC<4:()>		FLTPOL	FLTMO	D<1:0>	0000
PDC1	0C26																	FFF8
PHASE1	0C28																	0000
DTR1	0C2A	—	—							DTR1<13:	0>							0000
ALTDTR1	0C2C	—	—						A	LTDTR1<1	3:0>							0000
LEBCON1	0C3A	PHR	PHF	PLR	PLF	FLTLEBEN CLLEBEN — — — — BCH BCL BPHH BPHL BPLH BPLL 0000										0000		
LEBDLY1	0C3C	—	—	—	—	LEB<11:0> 0000											0000	
AUXCON1	0C3E		_	—	_	- BLANKSEL<3:0> CHOPCLK<3:0> CHOPHEN CHOPLEN 0										0000		

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4	-14:	PWM G	ENERA	TOR 2 R	EGISTE	ER MAP	FOR ds	PIC33EP	XXXMC2	0X/50X	and Pl	C24EI	PXXX№	IC20X	DEVIC	ES ONL	Y	
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 7 Bit 6		Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON2	0C40	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC<1:0>		DTCP	P — MTE		CAM	XPRES	IUE	0000
IOCON2	0C42	PENH	PENL	POLH	POLH POLL PMOD<1:0>		OVRENH	OVRENL	OVRDAT<1:0>		FLTD/	AT<1:0> CLD/		AT<1:0>	SWAP	OSYNC	0000	
FCLCON2	0C44	IFLTMOD		C	LSRC<4:0	>		CLPOL	CLMOD		FLT	SRC<4:0	>	FLTPOL	FLTMC	00F8		
PDC2	0C46		PDC2<15:0>														0000	
PHASE2	0C48							Р	HASE2<15:0	>								0000
DTR2	0C4A		—						[DTR2<13:0>	>							0000
ALTDTR2	0C4C		—						AL	TDTR2<13:	0>							0000

_

BPHH

CHOPSEL<3:0>

BCH

_

LEB<11:0>

_

_

_

BCL

BPHL

BPLH

CHOPHEN CHOPLEN

BPLL

0000

0000

0000

 AUXCON2
 0C5E
 —
 —
 —
 BLANKSEL<3:0>

 Legend:
 x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.
 Image: State of the state

PLF

_

FLTLEBEN CLLEBEN

PLR

_

PHF

_

TABLE 4-15: PWM GENERATOR 3 REGISTER MAP FOR dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON3	0C60	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC<	:1:0>	DTCP	—	MTBS	CAM	XPRES	IUE	0000
IOCON3	0C62	PENH	PENL	POLH	POLL	PMOD	<1:0>	OVRENH	OVRENL	OVRDAT<1:0> FLTDAT<1:0> CLDAT			AT<1:0>	SWAP	OSYNC	0000		
FCLCON3	0C64	IFLTMOD		CLSRC<4:0> CLPOL CLMOD FLTSRC<4:0> FLTPOL FLTMOI								D<1:0>	00F8					
PDC3	0C66		PDC3<15:0>														0000	
PHASE3	0C68		PHASE3<15:0>														0000	
DTR3	0C6A	—	—	DTR3<13:0>													0000	
ALTDTR3	0C6C	_	—		ALTDTR3<13:0>											0000		
LEBCON3	0C7A	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	—	—	—	_	BCH	BCL	BPHH	BPHL	BPLH	BPLL	0000
LEBDLY3	0C7C	—	—	_	— — LEB<11:0>													0000
AUXCON3	0C7E		—	—	_		BLANK	SEL<3:0>		—	—	CHOPSEL<3:0>			<3:0> CHOPHE		CHOPLEN	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

LEBCON2

EBDLY2

0C5A

0C5C

PHR

_

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
QEI1CON	01C0	QEIEN	—	QEISIDL PIMOD<2:0>			> IMV<1:0>			_		INTDIV<2:0	>	CNTPOL	GATEN	CCM<1:0>		0000
QEI1IOC	01C2	QCAPEN	FLTREN		QFDIV<2:0>		OUTFN	IC<1:0>	SWPAB	HOMPOL	IDXPOL	QEBPOL	QEAPOL	HOME	INDEX	QEB	QEA	000x
QEI1STAT	01C4	_	PCHEQIRQ PCHEQIEN PCLEQIRQ PCLEQIEN POSOVIRQ POSOVIEN PCIIRQ PCIIEN VELOVIRQ VELOVIEN HOMIRQ HOMIEN IDXIRQ IDX										IDXIEN	0000				
POS1CNTL	01C6							I	POSCNT<15	:0>								0000
POS1CNTH	01C8		POSCNT<31:16>															0000
POS1HLD	01CA		POSHLD<15:0>															0000
VEL1CNT	01CC		VELCNT<15:0>															0000
INT1TMRL	01CE		INTTMR<15:0>															0000
INT1TMRH	01D0		INTTMR<31:16>														0000	
INT1HLDL	01D2		INTHLD<15:0>														0000	
INT1HLDH	01D4		INTHLD<31:16>															0000
INDX1CNTL	01D6		INDXCNT<15:0>															0000
INDX1CNTH	01D8		INDXCNT<31:16>															0000
INDX1HLD	01DA		INDXHLD<15:0>															0000
QEI1GECL	01DC								QEIGEC<15:	0>								0000
QEI1ICL	01DC								QEIIC<15:0	>								0000
QEI1GECH	01DE							(QEIGEC<31:	16>								0000
QEI1ICH	01DE								QEIIC<31:10	<u>}></u>								0000
QEI1LECL	01E0								QEILEC<15:	0>								0000
QEI1LECH	01E2							(QEILEC<31:	6>								0000

TABLE 4-16: QEI1 REGISTER MAP FOR dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-17: I2C1 and I2C2 REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets		
I2C1RCV	0200	_	_	_	_	_	_	_	_				Receive	Register				0000		
I2C1TRN	0202	—	—	—	_	—	_	-	_				Transmit	Register				00FF		
I2C1BRG	0204	—	—	—	—	—	—	—				Bau	id Rate Gen	erator				0000		
I2C1CON	0206	I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000		
I2C1STAT	0208	ACKSTAT	TRSTAT	_	_	_	BCL	GCSTAT	ADD10											
I2C1ADD	020A	—	—	_	_	—	_		Address Register											
I2C1MSK	020C	—	—	—	—	—	—					Addre	ess Mask					0000		
I2C2RCV	0210	_	_	_	_	_	_	_	_				Receive	Register				0000		
I2C2TRN	0212	—	—	_	_	—		—					Transmit	Register				00FF		
I2C2BRG	0214	—	—	—	_	—	_	-				Bau	id Rate Gen	erator				0000		
I2C2CON	0216	I2CEN	—	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000		
I2C2STAT	0218	ACKSTAT	TRSTAT	_	_	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000		
I2C2ADD	021A	—	—	—	—	—	—	Address Register												
I2C2MSK	021C	_	_	—	_	—		Address Register												

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-18: UART1 and UART2 REGISTER MAP

		•/																
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1MODE	0220	UARTEN	_	USIDL	IREN	RTSMD	-	UEN<	:1:0>	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSE	L<1:0>	STSEL	0000
U1STA	0222	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXIS	SEL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U1TXREG	0224	_	—	—		—		—				Tra	ansmit Regi	ster				xxxx
U1RXREG	0226	—	—	—		—		- Receive Register 0										
U1BRG	0228							Baud	Rate Gen	erator Pre	scaler							0000
U2MODE	0230	UARTEN	_	USIDL	IREN	RTSMD		UEN<	:1:0>	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSE	L<1:0>	STSEL	0000
U2STA	0232	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXIS	SEL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U2TXREG	0234	_	—	—		—		—				Tra	ansmit Regi	ster				xxxx
U2RXREG	0236	_	_	_	_	—	_	_				Re	ceive Regis	ster				0000
U2BRG	0238							Baud	Rate Gen	erator Pre	scaler							0000
			- ·															

TABLE 4-19: SPI1 and SPI2 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI1STAT	0240	SPIEN	_	SPISIDL	_		ç	SPIBEC<2:0	>	SRMPT	SPIROV	SRXMPT		SISEL<2:0>		SPITBF	SPIRBF	0000
SPI1CON1	0242	_		_	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN		SPRE<2:0>		PPRE	<1:0>	0000
SPI1CON2	0244	FRMEN	SPIFSD	FRMPOL	—								SPIBEN	0000				
SPI1BUF	0248															0000		
SPI2STAT	0260	SPIEN		SPISIDL	_	-	5	SPIBEC<2:0	>	SRMPT	SPIROV	SRXMPT		SISEL<2:0>		SPITBF	SPIRBF	0000
SPI2CON1	0262	_	_	—	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN		SPRE<2:0>		PPRE	<1:0>	0000
SPI2CON2	0264	FRMEN	SPIFSD	FRMPOL	—											0000		
SPI2BUF	0268							SPI2 Tra	nsmit and R	eceive Buf	fer Registe	r						0000

TABLE 4-20: ADC1 REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC1BUF0	0300								ADC1 Data B	uffer 0								xxxx
ADC1BUF1	0302								ADC1 Data B	uffer 1								xxxx
ADC1BUF2	0304								ADC1 Data B	uffer 2								xxxx
ADC1BUF3	0306								ADC1 Data B	uffer 3								xxxx
ADC1BUF4	0308								ADC1 Data B	uffer 4								xxxx
ADC1BUF5	030A								ADC1 Data B	uffer 5								xxxx
ADC1BUF6	030C								ADC1 Data B	uffer 6								xxxx
ADC1BUF7	030E																xxxx	
ADC1BUF8	0310		ADC1 Data Buffer 8														xxxx	
ADC1BUF9	0312		ADC1 Data Buffer 9 2														xxxx	
ADC1BUFA	0314																xxxx	
ADC1BUFB	0316								ADC1 Data B	uffer 11								xxxx
ADC1BUFC	0318								ADC1 Data B	uffer 12								xxxx
ADC1BUFD	031A								ADC1 Data B	uffer 13								xxxx
ADC1BUFE	031C								ADC1 Data B	uffer 14								xxxx
ADC1BUFF	031E								ADC1 Data B	uffer 15								xxxx
AD1CON1	0320	ADON	_	ADSIDL	ADDMABM	_	AD12B	FOR	M<1:0>	5	SSRC<2:0	>	SSRCG	SIMSAM	ASAM	SAMP	DONE	0000
AD1CON2	0322	١	/CFG<2:0>	>	—	_	CSCNA	CHP	S<1:0>	BUFS			SMPI<4:02	>		BUFM	ALTS	0000
AD1CON3	0324	ADRC	_	_			SAMC<4:0	>			1		ADCS	6<7:0>				0000
AD1CHS123	0326	_	_	_	_	_	CH123N	NB<1:0>	CH123SB	_	_			_	CH123N	A<1:0>	CH123SA	0000
AD1CHS0	0328	CH0NB	_	_			CH0SB<4:0	>	•	CH0NA	_	_		C	H0SA<4:0	>		0000
AD1CSSH	032E	CSS31	CSS30	_	_	_	CSS26	CSS25	CSS24	_	_	_	—	—	_	_	_	0000
AD1CSSL	0330	CSS15	CSS14	CSS13	CSS12	CSS11	CSS10	CSS9	CSS8	CSS7	CSS6	CSS5	CSS4	CSS3	CSS2	CSS1	CSS0	0000
AD1CON4	0332	_	_	_	_	_	_	_	ADDMAEN	_	_	_	_	—	D	MABL<2:0)>	0000
									in la sura da sina.									

TABLE 4-21:ECAN1 REGISTER MAP WHEN WIN (C1CTRL<0>) = 0 OR 1 FOR dsPIC33EPXXXMC/GP50X DEVICES ONLY

								-		-								
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C1CTRL1	0400	_	—	CSIDL	ABAT	CANCKS	R	EQOP<2:0	>	OPN	10DE<2:0	>	—	CANCAP	_	_	WIN	0480
C1CTRL2	0402	—	—	—	_	—	—	_	_	—	—	—		D	NCNT<4:0	>		0000
C1VEC	0404	_	_	—		F	ILHIT<4:0>			—				ICODE<6:0	>			0040
C1FCTRL	0406	C	MABS<2:0	>	FSA<4:0>										0000			
C1FIFO	0408	_	—		FBP<5:0> — — FNRB<5:0>										0000			
C1INTF	040A	_	_	TXBO	TXBP								_	FIFOIF	RBOVIF	RBIF	TBIF	0000
C1INTE	040C	_	_	_		_	_	_	_	IVRIE	WAKIE	ERRIE	_	FIFOIE	RBOVIE	RBIE	TBIE	0000
C1EC	040E				TERRCN	T<7:0>							RERRCN	T<7:0>				0000
C1CFG1	0410	_	—	—	_	_	_	_	_	SJW<1	:0>			BRP	<5:0>			0000
C1CFG2	0412	_	WAKFIL	_		_	SE	G2PH<2:0)>	SEG2PHTS	SAM	SI	EG1PH<2	:0>	P	RSEG<2:0)>	0000
C1FEN1	0414	FLTEN15	FLTEN14	FLTEN13	FLTEN12	FLTEN11	FLTEN10	FLTEN9	FLTEN8	FLTEN7	FLTEN6	FLTEN5	FLTEN4	FLTEN3	FLTEN2	FLTEN1	FLTEN0	FFFF
C1FMSKSEL1	0418	F7MSI	<<1:0>	F6MSł	< <1:0>	F5MS	K<1:0>	F4MS	K<1:0>	F3MSK<	<1:0>	F2MSK	<<1:0>	F1MS	<<1:0>	F0MS	K<1:0>	0000
C1FMSKSEL2	041A	F15MS	K<1:0>	F14MS	F14MSK<1:0> F12MSK<1:0> F11MSK<1:0> F10MSK<1:0> F9MSK<1:0> F8MSK<1:0>										K<1:0>	0000		
1			1 (-1	Direct of								•						

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-22: ECAN1 REGISTER MAP WHEN WIN (C1CTRL<0>) = 0 FOR dsPIC33EPXXXMC/GP50X DEVICES ONLY

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0400- 041E							See	e definition v	when WIN =	x							
C1RXFUL1	0420	RXFUL15	RXFUL14	RXFUL13	RXFUL12	RXFUL11	RXFUL10	RXFUL9	RXFUL8	RXFUL7	RXFUL6	RXFUL5	RXFUL4	RXFUL3	RXFUL2	RXFUL1	RXFUL0	0000
C1RXFUL2	0422	RXFUL31	RXFUL30	RXFUL29	RXFUL28	RXFUL27	RXFUL26	RXFUL25	RXFUL24	RXFUL23	RXFUL22	RXFUL21	RXFUL20	RXFUL19	RXFUL18	RXFUL17	RXFUL16	0000
C1RXOVF1	0428	RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF9	RXOVF8	RXOVF7	RXOVF6	RXOVF5	RXOVF4	RXOVF3	RXOVF2	RXOVF1	RXOVF0	0000
C1RXOVF2	042A	RXOVF31	RXOVF30	RXOVF29	RXOVF28	RXOVF27	RXOVF26	RXOVF25	RXOVF24	RXOVF23	RXOVF22	RXOVF21	RXOVF20	RXOVF19	RXOVF18	RXOVF17	RXOVF16	0000
C1TR01CON	0430	TXEN1	TXABT1	TXLARB1	TXERR1	TXREQ1	RTREN1	TX1PR	l<1:0>	TXEN0	TXABAT0	TXLARB0	TXERR0	TXREQ0	RTREN0	TX0PF	RI<1:0>	0000
C1TR23CON	0432	TXEN3	TXABT3	TXLARB3	TXERR3	TXREQ3	RTREN3	TX3PR	l<1:0>	TXEN2	TXABAT2	TXLARB2	TXERR2	TXREQ2	RTREN2	TX2PF	RI<1:0>	0000
C1TR45CON	0434	TXEN5	TXABT5	TXLARB5	TXERR5	TXREQ5	RTREN5	TX5PR	l<1:0>	TXEN4	TXABAT4	TXLARB4	TXERR4	TXREQ4	RTREN4	TX4PF	RI<1:0>	0000
C1TR67CON	0436	TXEN7	TXABT7	TXLARB7	TXERR7	TXREQ7					TXABAT6	TXLARB6	TXERR6	TXREQ6	RTREN6	TX6PF	RI<1:0>	xxxx
C1RXD	0440								Received D	Data Word								xxxx
C1TXD	0442								Transmit D	ata Word								xxxx

TABLE 4-23:	ECAN1 REGISTER MAP WHEN WIN	I (C1CTRL<0>) = 1	FOR dsPIC33EPXXXMC/GP50X DEVICES ONLY

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0400- 041E			·	•	•			See definit	ion when W	IN = x				•	·	•	
C1BUFPNT1	0420		F3BF	P<3:0>			F2BF	><3:0>			F1BP	<3:0>			F0BP	<3:0>		0000
C1BUFPNT2	0422		F7BF	P<3:0>			F6BF	P<3:0>			F5BP	<3:0>			F4BP	<3:0>		0000
C1BUFPNT3	0424		F11B	P<3:0>			F10B	P<3:0>			F9BP	<3:0>			F8BP	<3:0>		0000
C1BUFPNT4	0426		F15B	P<3:0>			F14B	P<3:0>			F13BF	~ 3:0>			F12BF	?<3:0>		0000
C1RXM0SID	0430				SID<	:10:3>					SID<2:0>		_	MIDE	_	EID<1	7:16>	xxxx
C1RXM0EID	0432				EID<	:15:8>							EID<	7:0>	1			xxxx
C1RXM1SID	0434				SID<	:10:3>					SID<2:0>		_	MIDE	_	EID<1	7:16>	xxxx
C1RXM1EID	0436				EID<	:15:8>							EID<	7:0>				xxxx
C1RXM2SID	0438				SID<	:10:3>					SID<2:0>		—	MIDE	_	EID<1	7:16>	xxxx
C1RXM2EID	043A				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF0SID	0440				SID<	:10:3>					SID<2:0>		—	EXIDE	_	EID<1	7:16>	xxxx
C1RXF0EID	0442				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF1SID	0444				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<1	7:16>	xxxx
C1RXF1EID	0446				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF2SID	0448				SID<	:10:3>					SID<2:0>		—	EXIDE	_	EID<1	7:16>	xxxx
C1RXF2EID	044A				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF3SID	044C				SID<	:10:3>					SID<2:0>			EXIDE		EID<1	7:16>	xxxx
C1RXF3EID	044E				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF4SID	0450				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<1	7:16>	xxxx
C1RXF4EID	0452				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF5SID	0454				SID<	:10:3>					SID<2:0>		_	EXIDE	—	EID<1	7:16>	xxxx
C1RXF5EID	0456				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF6SID	0458				SID<	:10:3>					SID<2:0>		_	EXIDE	—	EID<1	7:16>	xxxx
C1RXF6EID	045A				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF7SID	045C				SID<	:10:3>					SID<2:0>		_	EXIDE	—	EID<1	7:16>	xxxx
C1RXF7EID	045E				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF8SID	0460				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<1	7:16>	xxxx
C1RXF8EID	0462				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF9SID	0464				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<1	7:16>	xxxx
C1RXF9EID	0466				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF10SID	0468					:10:3>					SID<2:0>		—	EXIDE	—	EID<1	7:16>	xxxx
C1RXF10EID	046A					:15:8>							EID<	-				xxxx
C1RXF11SID	046C				SID<	:10:3>					SID<2:0>		_	EXIDE	—	EID<1	7:16>	xxxx
C1RXF11EID	046E				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF12SID	0470				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<1	7:16>	xxxx
C1RXF12EID	0472				EID<	:15:8>							EID<	7:0>				xxxx

TABLE 4-23: ECAN1 REGISTER MAP WHEN WIN (C1CTRL<0>) = 1 FOR dsPIC33EPXXXMC/GP50X DEVICES ONLY (CONTINUED)

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C1RXF13SID	0474				SID<	10:3>					SID<2:0>		—	EXIDE	—	EID<1	7:16>	xxxx
C1RXF13EID	0476		EID<15:8> EID<7:0>															xxxx
C1RXF14SID	0478	SID<10:3> SID<2:0> — EXIDE — EID<17:16>														xxxx		
C1RXF14EID	047A				EID<	15:8>							EID<	7:0>				xxxx
C1RXF15SID	047C				SID<	10:3>					SID<2:0>			EXIDE	—	EID<1	7:16>	xxxx
C1RXF15EID	047E				EID<	15:8>							EID<	7:0>				xxxx

TABLE 4-24: CRC REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets	
CRCCON1	0640	CRCEN	_	CSIDL		V	WORD<4:0)>		CRCFUL	CRCMPT	CRCISEL	CRCGO	LENDIAN	_	—	—	0000	
CRCCON2	0642	-	_	_		DWIDTH<4:0> — — — PLEN<4:0>													
CRCXORL	0644		X<15:1>															0000	
CRCXORH	0646		X<15:1> — X<23:16>															0000	
CRCDATL	0648								CRC Data	Input Low V	Vord							0000	
CRCDATH	064A								CRC Data	Input High \	Nord							0000	
CRCWDATL	064C								CRC Re	sult Low Wo	ord							0000	
CRCWDATH	064E								CRC Re	sult High Wo	ord							0000	

Legend: — = unimplemented, read as '0'. Shaded bits are not used in the operation of the programmable CRC module.

TABLE 4-25: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33EPXXXGP/MC202/502 AND PIC24EPXXXGP/MC202 DEVICES ONLY DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	0680	—	—			RP35F	R<5:0>			—	_			RP20F	<5:0>			0000
RPOR1	0682	_	_			RP37F	₹<5:0>			_	_			RP36F	<5:0>			0000
RPOR2	0684	—	-			RP39F	۲<5:0>			_	—			RP38F	<5:0>			0000
RPOR3	0686	_	-			RP41F	२<5:0>				_			RP40F	<5:0>			0000
RPOR4	0688	_	_			RP43F	R<5:0>			_	—			RP42F	<5:0>			0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-26: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33EPXXXGP/MC203/503 AND PIC24EPXXXGP/MC203 DEVICES ONLY DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets	
RPOR0	0680	_	—	RP35R<5:0> — — RP20R<5:0>											0000				
RPOR1	0682	—	—	RP37R<5:0> — — RP36R<5:0>											0000				
RPOR2	0684	—	—	RP39R<5:0> — — RP38R<5:0>											0000				
RPOR3	0686	—	—			RP41F	۲<5:0>				—			RP40F	R<5:0>			0000	
RPOR4	0688	_	_			RP43F	₹<5:0>			_	_			RP42F	R<5:0>			0000	
RPOR5	068A	_	—												0000				
RPOR6	068C	_	—	_	_	—	—	—											

TABLE 4-27: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33EPXXXGP/MC204/504 AND PIC24EPXXXGP/MC204 DEVICES ONLY DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	0680	_	—			RP35F	<5:0>			—	—			RP20F	۲<5:0>			0000
RPOR1	0682		—			RP37F	?<5:0>			—	—			RP36F	۲<5:0>			0000
RPOR2	0684		—			RP39F	?<5:0>			—	—			RP38F	۲<5:0>			0000
RPOR3	0686		—			RP41F	<5:0>			—	—			RP40F	R<5:0>			0000
RPOR4	0688		—			RP43F	?<5:0>			—	—			RP42F	۲<5:0>			0000
RPOR5	068A		—			RP55F	?<5:0>			—	—			RP54F	۲<5:0>			0000
RPOR6	068C		_			RP57F	<5:0>				—			RP56F	۲<5:0>			0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-28: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33EPXXXGP/MC206/506 AND PIC24EPXXXGP/MC206 DEVICES ONLY DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	0680	_	—			RP35F	۲<5:0>			—	_			RP20	R<5:0>			0000
RPOR1	0682	-	-			RP37F	۲<5:0>			—	-			RP36	R<5:0>			0000
RPOR2	0684		-			RP39F	۲<5:0>			—				RP38	R<5:0>			0000
RPOR3	0686		-			RP41F	۲<5:0>			—				RP40	R<5:0>			0000
RPOR4	0688	—	—			RP43F	२<5:0>			—	—			RP42	R<5:0>			0000
RPOR5	068A		-			RP55F	۲<5:0>			—				RP54	R<5:0>			0000
RPOR6	068C		-			RP57F	२<5:0>			—				RP56	R<5:0>			0000
RPOR7	068E	-	-			RP97F	۲<5:0>			—	-	—	—	—	-	—	—	0000
RPOR8	0690		-			RP118	R<5:0>			—		_	-	—	-	_	_	0000
RPOR9	0692		_	_	_	_	_	_	_	_				RP120	R<5:0>			0000

TABLE	E 4-29	: PEF	RIPHER	AL PIN S	SELECT	INPUT	REGIST	ER MAP	FOR PI	C24EPX	(XXMC2	0X DEV	ICES OI	NLY			
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
RPINR0	06A0					INT1R<6:0>	>			_	—		_		—	_	—
RPINR1	06A2	_	—		_	_	—	—	_	_				INT2R<6:0>			
RPINR3	06A6	_	_	_	_	_	—	—	_	_				T2CKR<6:0>	>		
RPINR7	06AE	_		•	•	IC2R<6:0>	•	•	•	_				IC1R<6:0>			
RPINR8	06B0	—		IC4R<6:0> — IC3R<6:0>													
RPINR11	06B6	_	—	IC4R<6:0> IC3R<6:0> - - - OCFAR<6:0>													
RPINR12	06B8	_		•		FLT2R<6:0>	>	•	•	_				FLT1R<6:0>			
RPINR14	06BC	—			(QEB1R<6:0	>			_			(QEA1R<6:0	>		
RPINR15	06BE	_			H	OME1R<6:()>			_				NDX1R<6:0	>		
RPINR18	06C4	_	—	_	_	_	_	_	—	_			l	U1RXR<6:0	>		
RPINR19	06C6	_	_	_	_	_	—	—	_	_			l	U2RXR<6:0	>		
RPINR22	06CC	_			S	CK2INR<6:	0>			—				SDI2R<6:0>			
RPINR23	06CE	_	_		_	_	—	—	_	_				SS2R<6:0>			
RPINR26	06D4	_	_	_	_	_	—	—	_	_	—	_	_	_	_	_	—
RPINR37	06EA		- - - - - - State - - - - - - State - - - - - - - SYNCI1R<6:0> - - - - -												_	—	
RPINR38	06EC		- - - - - - - - - U2RXR<6 - - - - - - - - SD12R<6														—
RPINR39	06EE				DT	CMP3R<6:	0>			_		•	D	TCMP2R<6:	0>		

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

PERIPHERAL PIN SELECT INPUT REGISTER MAP FOR PIC24EPXXXGP20X DEVICES ONLY **TABLE 4-30**:

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	06A0	_				INT1R<6:0>				_	-	_	_	—	_	-	_	0000
RPINR1	06A2	_	_	—	_	_	—	—	_	_				INT2R<6:0>	•			0000
RPINR3	06A6	—		—	_	_				_				T2CKR<6:0	>			0000
RPINR7	06AE	—			•	IC2R<6:0>				_				IC1R<6:0>				0000
RPINR8	06B0	—				IC4R<6:0>				—				IC3R<6:0>				0000
RPINR11	06B6	—	_	_	_	_	—	—	—	_			(OCFAR<6:0	>			0000
RPINR18	06C4	—	_	—	_	—	—	_	_	—				U1RXR<6:0	>			0000
RPINR19	06C6	—	_	—	_	—	—	_	_	—				U2RXR<6:0	>			0000
RPINR22	06CC	—			S	CK2INR<6:0)>			_				SDI2R<6:0>	•			0000
RPINR23	06CE	_	-	_	—	—	_	_	_	—				SS2R<6:0>				0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal. All

Resets

0000 0000

0000

0000

TABLE 4-31: PERIPHERAL PIN SELECT INPUT REGISTER MAP FOR dsPIC33EPXXXGP50X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	06A0	—				INT1R<6:0>				—	—	—	—	—	_	—	—	0000
RPINR1	06A2	—	—	—	_	_	—	_	—	—				INT2R<6:0>				0000
RPINR3	06A6	—	—	—	—	—	—	—	—	—			-	[2CKR<6:0>	•			0000
RPINR7	06AE	—				IC2R<6:0>				—				IC1R<6:0>				0000
RPINR8	06B0	—				IC4R<6:0>				—				IC3R<6:0>				0000
RPINR11	06B6	—	—	—	—	—	—	—	—	—			(OCFAR<6:0	>			0000
RPINR18	06C4	_	_	_	_	_	_	_	_	_			ι	J1RXR<6:0>	>			0000
RPINR19	06C6	—	—	—	—	—	—	_	—	—			ι	J2RXR<6:0>	>			0000
RPINR22	06CC	—			S	CK2INR<6:0)>			—				SDI2R<6:0>				0000
RPINR23	06CE	—	—	—	—	—	—	—	—	—				SS2R<6:0>				0000
RPINR26	06D4	—	—	—	_	_	—	_	_	—			(C1RXR<6:0	>			0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-32: PERIPHERAL PIN SELECT INPUT REGISTER MAP FOR dsPIC33EPXXXMC50X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	06A0	—				INT1R<6:0>	•			—	—	_	_	—	_	—	—	0000
RPINR1	06A2	—	—	—	—	—	—	—	—	—				INT2R<6:0>				0000
RPINR3	06A6	—	_	_	_	_	_	_	_	_			-	F2CKR<6:0>	•			0000
RPINR7	06AE	—				IC2R<6:0>				—				IC1R<6:0>				0000
RPINR8	06B0	—				IC4R<6:0>				—				IC3R<6:0>				0000
RPINR11	06B6	—	—	—	—	—	—	—	_	_			(DCFAR<6:0	>			0000
RPINR12	06B8	—				FLT2R<6:0>	•		•	_				FLT1R<6:0>				0000
RPINR14	06BC	—			(QEB1R<6:0	>			_			(QEA1R<6:0	>			0000
RPINR15	06BE	_			Н	OME1R<6:0)>			_			I	NDX1R<6:0	>			0000
RPINR18	06C4	_	_	_	_	_	_	—	_	_			ι	J1RXR<6:0>	>			0000
RPINR19	06C6	—	_		—		—		_	_			ι	J2RXR<6:0>	>			0000
RPINR22	06CC	_			S	CK2INR<6:0)>			_				SDI2R<6:0>				0000
RPINR23	06CE	_	_	_	_	_	_	_	_	_				SS2R<6:0>				0000
RPINR26	06D4	_	_	-	_		_		_	_			(C1RXR<6:0>	>			0000
RPINR37	06EA	_			S	YNCI1R<6:0)>			_		_	_	_		—	—	0000
RPINR38	06EC	_			DI	CMP1R<6:	0>			—		—	—	—	_	—	—	0000
RPINR39	06EE	_			DI	CMP3R<6:	0>			—		•	D	CMP2R<6:	0>	•		0000

TABLE 4-33 :	PERIPHERAL PIN SELECT INPUT REGISTER MAP FOR dsPIC33EPXXXMC20X DEVICES ONLY
---------------------	---

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	06A0	—				INT1R<6:0>				_	_	—	—	—	—	—	—	0000
RPINR1	06A2	—	_	—		—	—		_					INT2R<6:0>				0000
RPINR3	06A6	—		—		—	_		_					T2CKR<6:0>	>			0000
RPINR7	06AE	—				IC2R<6:0>				_				IC1R<6:0>				0000
RPINR8	06B0	—				IC4R<6:0>				_				IC3R<6:0>				0000
RPINR11	06B6	—	—	—	_	_	—	_	_	_			(DCFAR<6:0	>			0000
RPINR12	06B8	_				FLT2R<6:0>				_				FLT1R<6:0>				0000
RPINR14	06BC	—			(QEB1R<6:0>	>			_			(QEA1R<6:0	>			0000
RPINR15	06BE	—			Н	OME1R<6:0)>							NDX1R<6:0	>			0000
RPINR18	06C4	—	—	_	_	_	_	_	_	_			l	J1RXR<6:0	>			0000
RPINR19	06C6	—	_	_	_	—	_	_	_	_			I	J2RXR<6:0	>			0000
RPINR22	06CC	—			S	CK2INR<6:0)>							SDI2R<6:0>				0000
RPINR23	06CE	—	—	_	_	_	_	_	_	_				SS2R<6:0>				0000
RPINR37	06EA	—			S	YNCI1R<6:0)>			_	-	_	_	_	—	_	—	0000
RPINR38	06EC	—			DT	CMP1R<6:	0>			_		_	_	_		_	—	0000
RPINR39	06EE	—			DI	CMP3R<6:	0>						D	CMP2R<6:	0>			0000

TABLE 4-34: NVM REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
NVMCON	0728	WR	WREN	WRERR	NVMSIDL	_	—	—	—	—	—	—	—		NVMC	P<3:0>		0000
NVMADR	072A								NVMA	DR<15:0>								0000
NVMADRU	072C	—	—	—	—	—	—	—	—				NVMAD	R<23:16>				0000
NVMKEY	072E	_	_	—	—	_	—	_	_				NVMK	EY<7:0>				0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-35: SYSTEM CONTROL REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RCON	0740	TRAPR	IOPUWR		—	VREGSF	—	СМ	VREGS	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	Note 1
OSCCON	0742	-	(COSC<2:0>				NOSC<2:0>		CLKLOCK	IOLOCK	LOCK	—	CF	Ι	—	OSWEN	Note 2
CLKDIV	0744	ROI	[DOZE<2:0>		DOZEN	F	RCDIV<2:0	>	PLLPOS	T<1:0>	_		F	PLLPRE	<4:0>		0030
PLLFBD	0746	_	_	—	—	—	_	-				PLLDI	V<8:0>					0030
OSCTUN	0748	—	_	_	—	—	_	—		—				TUN	<5:0>			0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: RCON register reset values dependent on type of reset.

2: OSCCON register reset values dependent on configuration fuses, and by type of reset.

TABLE 4-36: REFERENCE CLOCK REGISTER MAP

File Na	me Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
REFOCO	ON 074E	ROON	—	ROSSLP	ROSEL		RODI	V<3:0>		_		_			_			0000

TABLE 4-37: PMD REGISTER MAP FOR PIC24EPXXXGP20X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0760	T5MD	T4MD	T3MD	T2MD	T1MD	_	—	—	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	_	—	AD1MD	0000
PMD2	0762	_	—		—	IC4MD	IC3MD	IC2MD	IC1MD	_	_	—	—	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0764	-	—	_	—	—	CMPMD	—	—	CRCMD	—	—	—	—	—	I2C2MD	_	0000
PMD4	0766	_	—	_	—	—	_	—	_	—	_	—	—	REFOMD	CTMUMD	—	_	0000
PMD6	076A	-	—	_	—	—	_	—	—	—	—	—	—	—	—	—	_	0000
PMD7	076C	_	_	_	_	_	_	_	_	_	_	_	DMA0MD DMA1MD DMA2MD DMA3MD	PTGMD	_	_	_	0000

Legend:

x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-38: PMD REGISTER MAP FOR PIC24EPXXXMC20X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0760	T5MD	T4MD	T3MD	T2MD	T1MD	QEI1MD	PWMMD		I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	-		AD1MD	0000
PMD2	0762	_	—	_	_	IC4MD	IC3MD	IC2MD	IC1MD	—	—	_	_	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0764	_	_	-	—	—	CMPMD	—	_	CRCMD	-	_	_	—	_	I2C2MD	—	0000
PMD4	0766	_	—	_	_	_	—	—	—	—	—	_	_	REFOMD	CTMUMD	—	_	0000
PMD6	076A	_	_		_	_	PWM3MD	PWM2MD	PWM1MD			_	_	_	_		_	0000
													DMA0MD					
PMD7	076C	_	_	_	_	_	_		_	_	_	_	DMA1MD	PTGMD	_	_	_	0000
													DMA2MD					0000
													DMA3MD					

TABLE 4-39: PMD REGISTER MAP FOR dsPIC33EPXXXGP50X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0760	T5MD	T4MD	T3MD	T2MD	T1MD	_	—	—	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	-	C1MD	AD1MD	0000
PMD2	0762		—	_		IC4MD	IC3MD	IC2MD	IC1MD	_	_	_	_	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0764		—	_		-	CMPMD	_	_	CRCMD	_	_	_	_	_	I2C2MD	_	0000
PMD4	0766		—	_		-	_	_	_	_	_	_	_	REFOMD	CTMUMD	_	_	0000
PMD6	076A		—	_		-	_	_	_	_	_	_	_	_	_	_	_	0000
PMD7	076C	_	_	_	_	_	_		_	_	_		DMA0MD DMA1MD DMA2MD DMA3MD	PTGMD		_	_	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-40: PMD REGISTER MAP FOR dsPIC33EPXXXMC50X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0760	T5MD	T4MD	T3MD	T2MD	T1MD	QEI1MD	PWMMD	_	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	—	C1MD	AD1MD	0000
PMD2	0762	—	—	—	—	IC4MD	IC3MD	IC2MD	IC1MD	_	—	-	—	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0764		_	_	_	_	CMPMD	_		CRCMD	_	—	_	—	_	I2C2MD	—	0000
PMD4	0766	—	—	—	—	—	_	—	—	_	—	-	—	REFOMD	CTMUMD	—	_	0000
PMD6	076A		_	_	_	_	PWM3MD	PWM2MD	PWM1MD	_	_	—	_	—	_	_	—	0000
PMD7	076C	_	_	_	_	_	_	_	_	_	_	_	DMA0MD DMA1MD DMA2MD DMA3MD	PTGMD	_	_	_	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-41: PMD REGISTER MAP FOR dsPIC33EPXXXMC20X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0760	T5MD	T4MD	T3MD	T2MD	T1MD	QEI1MD	PWMMD	_	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	—	_	AD1MD	0000
PMD2	0762	_	—	—	—	IC4MD	IC3MD	IC2MD	IC1MD	_	—	_	—	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0764		_	_	_	_	CMPMD	_	—	CRCMD	—	_	—	-	—	I2C2MD	—	0000
PMD4	0766		_	—	—	_	_	_	—	_	_	_	—	REFOMD	CTMUMD	-	—	0000
PMD6	076A		_	_	_	_	PWM3MD	PWM2MD	PWM1MD	_	—	_	—	-	—	-	—	0000
PMD7	076C	_	_	_	_	_	-	_	_	_	_	-	DMA0MD DMA1MD DMA2MD DMA3MD	PTGMD	_		_	0000

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CMSTAT	0A80	PSIDL	_	_		C4EVT	C3EVT	C2EVT	C1EVT	_	-	_	_	C4OUT	C3OUT	C2OUT	C10UT	0000
CVRCON	0A82	_	CVR2OE	_	_	_	VREFSEL	_	_	CVREN	CVR10E	CVRR	CVRSS		CVR<	:3:0>		0000
CM1CON	0A84	CON	COE	CPOL	_	OAO	OPMODE	CEVT	COUT	EVPOL	.<1:0>	_	CREF	_	_	CCH	<1:0>	0000
CM1MSKSRC	0A86	_	_	_	_		SELSR	CC<3:0>			SELSRO	CB<3:0>			SELSRC	A<3:0>		0000
CM1MSKCON	0A88	HLMS	_	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM1FLTR	0A8A	_	_	_		_	_	_	_	_	(CFSEL<2:0)>	CFLTREN	(CFDIV<2:0	>	0000
CM2CON	0A8C	CON	COE	CPOL		OAO	OPMODE	CEVT	COUT	EVPOL	<1:0>	_	CREF	_	_	CCH	<1:0>	0000
CM2MSKSRC	0A8E	_	_	_			SELSR	CC<3:0>			SELSRO	CB<3:0>			SELSRC	A<3:0>		0000
CM2MSKCON	0A90	HLMS	_	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM2FLTR	0A92	_	_	_		_	_	_	_	_	(CFSEL<2:0)>	CFLTREN	(CFDIV<2:0	>	0000
CM3CON	0A94	CON	COE	CPOL	_	OAO	OPMODE	CEVT	COUT	EVPOL	.<1:0>	_	CREF	_	_	CCH	<1:0>	0000
CM3MSKSRC	0A96	_	_	_	_		SELSR	CC<3:0>			SELSRO	CB<3:0>			SELSRC	A<3:0>		0000
CM3MSKCON	0A98	HLMS	_	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM3FLTR	0A9A	_	_	_		_	_	_	_	_	(CFSEL<2:0)>	CFLTREN	(CFDIV<2:0	>	0000
CM4CON	0A9C	CON	COE	CPOL		_	_	CEVT	COUT	EVPOL	<1:0>	_	CREF	_	_	CCH	<1:0>	0000
CM4MSKSRC	0A9E	_	_	_			SELSR	CC<3:0>			SELSRO	CB<3:0>			SELSRC	A<3:0>		0000
CM4MSKCON	0AA0	HLMS	_	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM4FLTR	0AA2	_		_	_	_	—	_	—	—	0	CFSEL<2:0)>	CFLTREN	(CFDIV<2:0	>	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-43: CTMU REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CTMUCON1	033A	CTMUEN	—	CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG	_	—	—	—	—	-	_		0000
CTMUCON2	033C	EDG1MOD	EDG1POL	—	—	EDG1	SEL<1:0>	EDG2STAT	EDG1STAT	EDG2MOD	EDG2POL	_		EDG2S	EL<1:0>	—	—	0000
CTMUICON	033E			ITRIM<	5:0>			IRNG	<1:0>	_	_		_	_	_	-	_	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-44: JTAG INTERFACE REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
JDATAH	0FF0	_	—	_	—	JDATAH<27:16> xxx												
JDATAL	0FF2					JDATAL<15:0>												

TABLE 4-45: DMAC REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Rese
MA0CON	0B00	CHEN	SIZE	DIR	HALF	NULLW	—	—	—	-	—	AMOD	E<1:0>	—	—	MODE	=<1:0>	000
MA0REQ	0B02	FORCE	_			_	_	_	—				IRQSE	L<7:0>				001
MA0STAL	0B04								STA<1	5:0>								00
MA0STAH	0B06	—	—	_	_	—	_	_	_				STA<2	3:16>				00
MA0STBL	0B08								STB<1	5:0>								00
MA0STBH	0B0A	_	_	_	_	—	—	_	_				STB<2	23:16>				00
MA0PAD	0B0C								PAD<1	5:0>								00
MA0CNT	0B0E	_	—							CNT<1	3:0>							00
MA1CON	0B10	CHEN	SIZE	DIR	HALF	NULLW	_	_		—		AMOD	E<1:0>	_	_	MODE	=<1:0>	00
MA1REQ	0B12	FORCE	-	_		_	_	_	_				IRQSE	L<7:0>				00
MA1STAL	0B14								STA<1	5:0>								00
MA1STAH	0B16	_	_			_	—	_					STA<2	3:16>				00
MA1STBL	0B18								STB<1	5:0>								00
MA1STBH	0B1A	_	_		_	_	_						STB<2	3:16>				00
MA1PAD	0B1C								PAD<1	5:0>								00
MA1CNT	0B1E	_	_							CNT<1	3.0>							00
MA2CON	0B20	CHEN	SIZE	DIR	HALF	NULLW	_	_		_	_	AMOD	E<1:0>		_	MODE	E<1:0>	00
MA2REQ	0B22	FORCE	_				_	_	_				IRQSE	L<7:0>		-	-	00
MA2STAL	0B24								STA<1	5:0>				-				00
MA2STAH	0B26	_	_	_		_	_	_	_				STA<2	3:16>				00
MA2STBL	0B28								STB<1	5:0>								00
MA2STBH	0B2A		_	_		_	_	_					STB<2	23:16>				00
MA2PAD	0B2C								PAD<1	5:0>			-					00
MA2CNT	0B2E	_	_							CNT<1	3.0>							00
MA3CON	0B30	CHEN	SIZE	DIR	HALF	NULLW	_			_	<u> </u>	AMOD	E<1:0>		_	MODE	=<1.0>	00
MA3REQ	0B32	FORCE	_	_	_	_	_	_	_				IRQSE	<7:0>				00
MA3STAL	0B34								STA<1	5:0>								00
MA3STAH	0B36	_	_	_	_	_	_		_				STA<2	3.16>				00
MA3STBL	0B38								STB<1	1 5:0>			0.7.1					00
MA3STBH	0B3A	-	_	_	_	_	_	_	_				STB<2	2.16>				00
DMA3PAD	0B3C								PAD<1	5·0>			0.5					00
MA3CNT	0B3E	_	_						17.0	CNT<1	2.0>							00
MAPWC	0BF0					_	_				3.0>	_	_	PWCOL3	PWCOL2	PWCOL1	PWCOL0	
MARQC	0BF0					_		_						RQCOL3		RQCOL1	RQCOLO	
MAPPS	0BF2													PPST3	PPST2	PPST1	PPST0	00
MAPPS MALCA	0BF4 0BF6			_	_									FF313	LSTCH		FF310	00
SADRL	0BF6		_			_	_	_	DSADR<			_			LOIUF	1-0.0/		00
	0BF0								DOADRS	10.0/			DSADR	-00.165				-
DSADRH Legend:	-					 d as '0'. Res				L			DOADK	~23.10>				0 (

TABLE 4-46: PORTA REGISTER MAP FOR PIC24EPXXXGP/MC206 AND dsPIC33EPXXXGP/MC206/506 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	0E00	_	_	—	TRISA12	TRISA11	TRISA10	TRISA9	TRISA8	TRISA7	_	—	TRISA4	—	—	TRISA1	TRISA0	1F93
PORTA	0E02	-	-	_	RA12	RA11	RA10	RA9	RA8	RA7	—	-	RA4	_	_	RA1	RA0	0000
LATA	0E04	-	-	—	LATA12	LATA11	LATA10	LATA9	LATA8	LATA7	—	-	LATA4	_	-	LA1TA1	LA0TA0	0000
ODCA	0E06	-	-	_	ODCA12	ODCA11	ODCA10	ODCA9	ODCA8	ODCA7	—	-	ODCA4	_	_	ODCA1	ODCA0	0000
CNENA	0E08	-	-	_	CNIEA12	CNIEA11	CNIEA10	CNIEA9	CNIEA8	CNIEA7	—	-	CNIEA4	_	_	CNIEA1	CNIEA0	0000
CNPUA	0E0A	_	—	—	CNPUA12	CNPUA11	CNPUA10	CNPUA9	CNPUA8	CNPUA7		_	CNPUA4	—	_	CNPUA1	CNPUA0	0000
CNPDA	0E0C	_	—	—	CNPDA12	CNPDA11	CNPDA10	CNPDA9	CNPDA8	CNPDA7		_	CNPDA4	—	_	CNPDA1	CNPDA0	0000
ANSELA	0E0E	—	_		ANSA12	ANSA11		—	—	_	_		ANSA4	_		ANSA1	ANSA0	1813

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-47: PORTB REGISTER MAP FOR PIC24EPXXXGP/MC206 AND dsPIC33EPXXXGP/MC206/506 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	0E10	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	FFFF
PORTB	0E12	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx
LATB	0E14	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	xxxx
ODCB	0E16	ODCB15	ODCB14	ODCB13	ODCB12	ODCB11	ODCB10	ODCB9	ODCB8	ODCB7	ODCB6	ODCB5	ODCB4	ODCB3	ODCB2	ODCB1	ODCB0	0000
CNENB	0E18	CNIEB15	CNIEB14	CNIEB13	CNIEB12	CNIEB11	CNIEB10	CNIEB9	CNIEB8	CNIEB7	CNIEB6	CNIEB5	CNIEB4	CNIEB3	CNIEB2	CNIEB1	CNIEB0	0000
CNPUB	0E1A	CNPUB15	CNPUB14	CNPUB13	CNPUB12	CNPUB11	CNPUB10	CNPUB9	CNPUB8	CNPUB7	CNPUB6	CNPUB5	CNPUB4	CNPUB3	CNPUB2	CNPUB1	CNPUB0	0000
CNPDB	0E1C	CNPDB15	CNPDB14	CNPDB13	CNPDB12	CNPDB11	CNPDB10	CNPDB9	CNPDB8	CNPDB7	CNPDB6	CNPDB5	CNPDB4	CNPDB3	CNPDB2	CNPDB1	CNPDB0	0000
ANSELB	0E1E	_	_	_	_	_	_		ANSB8	_	_	_	_	ANSB3	ANSB2	ANSB1	ANSB0	010F

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-48: PORTC REGISTER MAP FOR PIC24EPXXXGP/MC206 AND dsPIC33EPXXXGP/MC206/506 DEVICES ONLY

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISC	0E20	TRISC15	—	TRISC13	TRISC12	TRISC11	TRISC10	TRISC9	TRISC8	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	BFFF
PORT	0E22	RC15	—	RC13	RC12	RC11	RC10	RC9	RC8	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx
LATC	0E24	LATC15		LATC13	LATC12	LATC11	LATC10	LATC9	LATC8	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	xxxx
ODCC	0E26	ODCC15		ODCC13	ODCC12	ODCC11	ODCC10	ODCC9	ODCC8	ODCC7	ODCC6	ODCC5	ODCC4	ODCC3	ODCC2	ODCC1	ODCC0	0000
CNEN	0E28	CNIEC15		CNIEC13	CNIEC12	CNIEC11	CNIEC10	CNIEC9	CNIEC8	CNIEC7	CNIEC6	CNIEC5	CNIEC4	CNIEC3	CNIEC2	CNIEC1	CNIEC0	0000
CNPU	0E2A	CNPUC15	—	CNPUC13	CNPUC12	CNPUC11	CNPUC10	CNPUC9	CNPUC8	CNPUC7	CNPUC6	CNPUC5	CNPUC4	CNPUC3	CNPUC2	CNPUC1	CNPUC0	0000
CNPD	0E2C	CNPDC15	—	CNPDC13	CNPDC12	CNPDC11	CNPDC10	CNPDC9	CNPDC8	CNPDC7	CNPDC6	CNPDC5	CNPDC4	CNPDC3	CNPDC2	CNPDC1	CNPDC0	0000
ANSEL	C 0E2E	—	_	_	_	ANSC11	—	-	_	_	—	_	_	—	ANSC2	ANSC1	ANSC0	0807

TABLE 4-49: PORTD REGISTER MAP FOR PIC24EPXXXGP/MC206 AND dsPIC33EPXXXGP/MC206/506 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISD	0E30	—	—	_	_	—	—	—	TRISD8	—	TRISD6	TRISD5	—	—	—	—	—	0160
PORTD	0E32	—	—	—	—	—	_	_	RD8	_	RD6	RD5	—	—	—	—	—	xxxx
LATD	0E34			-	-	_	_	—	LATD8	—	LATD6	LATD5	_	—	_	_	_	xxxx
ODCD	0E36	—	—	—	—	—	—	_	ODCD8	_	ODCD6	ODCD5	—	—	—	—	—	0000
CNEND	0E38		-	_	_	—	—	—	CNIED8	—	CNIED6	CNIED5	_	—	—	_	_	0000
CNPUD	0E3A		-	-	_	—	_	_	CNPUD8	—	CNPUD6	CNPUD5	_	—	—	_	_	0000
CNPDD	0E3C	_	_	—	_	_	_	-	CNPDD8	-	CNPDD6	CNPDD5		_	_	_		0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-50: PORTE REGISTER MAP FOR PIC24EPXXXGP/MC206 AND dsPIC33EPXXXGP/MC206/506 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISE	0E40	TRISE15	TRISE14	TRISE13	TRISE12	_	-	-	-	-	-	-	-	-	-	—	-	F000
PORTE	0E42	RE15	RE14	RE13	RE12	_	_	—	_	_	_	—	—	_	_	_	_	xxxx
LATE	0E44	LATE15	LATE14	LATE13	LATE12	_		—					—					xxxx
ODCE	0E46	ODCE15	ODCE14	ODCE13	ODCE12	_		—		_			_	_				0000
CNENE	0E48	CNIEE15	CNIEE14	CNIEE13	CNIEE12	—	-	—	-	-	-	-	—		-	-		0000
CNPUE	0E4A	CNPUE15	CNPUE14	CNPUE13	CNPUE12	_	—	—	_	_	_	—	—	_	—	—	_	0000
CNPDE	0E4C	CNPDE15	CNPDE14	CNPDE13	CNPDE12	_	—	—	_	_	_	—	—	_	—	—	_	0000
ANSELE	0E4E	ANSE15	ANSE14	ANSE13	ANSE12	_	_	_	_		_	_	—	_	_	—	_	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-51: PORTF REGISTER MAP FOR PIC24EPXXXGP/MC206 AND dsPIC33EPXXXGP/MC206/506 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISF	0E50	—	—	—	—	—	—	—	—	—	—	—	—	—	—	TRISF1	TRISF0	0173
PORTF	0E52	—	—	—	—	—	—	—	—	—	—	—	—	—	_	RF1	RF0	xxxx
LATF	0E54	—	—	—	—	—	—	—	—	—	—	—	—	—	_	LATF1	LATF0	xxxx
ODCF	0E56	_	_	—	_	_	_	_	_	_	—	_	_	_	_	ODCF1	ODCF0	0000
CNENF	0E58	—	—	—	_	_	—	_	_	_	—	—	—	—	_	CNIEF1	CNIEF0	0000
CNPUF	0E5A	—	—	—	_	_	—	_	_	_	—	—	—	—	_	CNPUF1	CNPUF0	0000
CNPDF	0E5C		_	—	_	—	_	—	—	_	_		—	_	_	CNPDF1	CNPDF0	0000

TABLE 4-52: PORTG REGISTER MAP FOR PIC24EPXXXGP/MC206 AND dsPIC33EPXXXGP/MC206/506 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISG	0E60	_	-		_			TRISG9	TRISG8	TRISG7	TRISG6	_	_		—	_		03C0
PORTG	0E62	—	—	_	—	—	—	RG9	RG8	RG7	RG6	—	—	—	—	—	_	xxxx
LATG	0E64	-	-	—	—	—	—	LATG9	LATG8	LATG7	LATG6	-	—	—	—	_	—	xxxx
ODCG	0E66	—	—	_	—	—	—	ODCG9	ODCG8	ODCG7	ODCG6	—	—	—	—	—	_	0000
CNENG	0E68	_	-	—	—	—	—	CNIEG9	CNIEG8	CNIEG7	CNIEG6	-	—	—	—	_	—	0000
CNPUG	0E6A	-	-	—	_	—	—	CNPUG9	CNPUG8	CNPUG7	CNPUG6	-	—	_	_	_	—	0000
CNPDG	0E6C	_	-		—			CNPDG9	CNPDG8	CNPDG7	CNPDG6	_	_		—	_	-	0000

TABLE 4-53: PORTA REGISTER MAP FOR PIC24EPXXXGP/MC204 AND dsPIC33EPXXXGP/MC204/504 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	0E00	-	—	—	—	_	TRISA10	TRISA9	TRISA8	TRISA7	-		TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	079F
PORTA	0E02	—	_	—	—	_	RA10	RA9	RA8	RA7	—		RA4	RA3	RA2	RA1	RA0	0000
LATA	0E04	-	_	_	_	—	LATA10	LATA9	LATA8	LATA7	-	_	LATA4	LATA3	LATA2	LA1TA1	LA0TA0	0000
ODCA	0E06		_	_	_	—	ODCA10	ODCA9	ODCA8	ODCA7	-	_	ODCA4	ODCA3	ODCA2	ODCA1	ODCA0	0000
CNENA	0E08	-	_	_	_	—	CNIEA10	CNIEA9	CNIEA8	CNIEA7	-	_	CNIEA4	CNIEA3	CNIEA2	CNIEA1	CNIEA0	0000
CNPUA	0E0A		_	_	_	—	CNPUA10	CNPUA9	CNPUA8	CNPUA7	-	_	CNPUA4	CNPUA3	CNPUA2	CNPUA1	CNPUA0	0000
CNPDA	0E0C	_	—	_	_		CNPDA10	CNPDA9	CNPDA8	CNPDA7	_	_	CNPDA4	CNPDA3	CNPDA2	CNPDA1	CNPDA0	0000
ANSELA	0E0E	_	_	_	_	_	_	_	_	_	_	_	ANSA4	_	_	ANSA1	ANSA0	0013

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-54: PORTB REGISTER MAP FOR PIC24EPXXXGP/MC204 AND dsPIC33EPXXXGP/MC204/504 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	0E10	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	FFFF
PORTB	0E12	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx
LATB	0E14	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	xxxx
ODCB	0E16	ODCB15	ODCB14	ODCB13	ODCB12	ODCB11	ODCB10	ODCB9	ODCB8	ODCB7	ODCB6	ODCB5	ODCB4	ODCB3	ODCB2	ODCB1	ODCB0	0000
CNENB	0E18	CNIEB15	CNIEB14	CNIEB13	CNIEB12	CNIEB11	CNIEB10	CNIEB9	CNIEB8	CNIEB7	CNIEB6	CNIEB5	CNIEB4	CNIEB3	CNIEB2	CNIEB1	CNIEB0	0000
CNPUB	0E1A	CNPUB15	CNPUB14	CNPUB13	CNPUB12	CNPUB11	CNPUB10	CNPUB9	CNPUB8	CNPUB7	CNPUB6	CNPUB5	CNPUB4	CNPUB3	CNPUB2	CNPUB1	CNPUB0	0000
CNPDB	0E1C	CNPDB15	CNPDB14	CNPDB13	CNPDB12	CNPDB11	CNPDB10	CNPDB9	CNPDB8	CNPDB7	CNPDB6	CNPDB5	CNPDB4	CNPDB3	CNPDB2	CNPDB1	CNPDB0	0000
ANSELB	0E1E	_	_	_	_	_	_		ANSB8	—	—	_	_	ANSB3	ANSB2	ANSB1	ANSB0	010F

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-55: PORTC REGISTER MAP FOR PIC24EPXXXGP/MC204 AND dsPIC33EPXXXGP/MC204/504 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISC	0E20	_	_	_	_	—	_	TRISC9	TRISC8	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	03FF
PORTC	0E22		_	_	_	_	_	RC9	RC8	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx
LATC	0E24		_	_	_	_	_	LATC9	LATC8	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	xxxx
ODCC	0E26		_	_	_	_	_	ODCC9	ODCC8	ODCC7	ODCC6	ODCC5	ODCC4	ODCC3	ODCC2	ODCC1	ODCC0	0000
CNENC	0E28		_	_	_	_	_	CNIEC9	CNIEC8	CNIEC7	CNIEC6	CNIEC5	CNIEC4	CNIEC3	CNIEC2	CNIEC1	CNIEC0	0000
CNPUC	0E2A		_	_	_	_	_	CNPUC9	CNPUC8	CNPUC7	CNPUC6	CNPUC5	CNPUC4	CNPUC3	CNPUC2	CNPUC1	CNPUC0	0000
CNPDC	0E2C		_	_	_	_	_	CNPDC9	CNPDC8	CNPDC7	CNPDC6	CNPDC5	CNPDC4	CNPDC3	CNPDC2	CNPDC1	CNPDC0	0000
ANSELC	0E2E	_	_	_	_	_	_	_	_	_	_	_	_	-	ANSC2	ANSC1	ANSC0	0007

TABLE 4-56: PORTA REGISTER MAP FOR PIC24EPXXXGP/MC203 AND dsPIC33EPXXXGP/MC203/503 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	0E00	—	—	—	—	_	—	—	TRISA8	—	—	-	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	011F
PORTA	0E02	_	—	_	_	_	—	—	RA8	_	_	—	RA4	RA3	RA2	RA1	RA0	0000
LATA	0E04	_	—	_	_	_	—	—	LATA8	_	_	—	LATA4	LATA3	LATA2	LA1TA1	LA0TA0	0000
ODCA	0E06	—	—	_	—	—	—	—	ODCA8	—	_	_	ODCA4	ODCA3	ODCA2	ODCA1	ODCA0	0000
CNENA	0E08	_	—	_	_	_	—	-	CNIEA8	_	_	—	CNIEA4	CNIEA3	CNIEA2	CNIEA1	CNIEA0	0000
CNPUA	0E0A	_	—	_	_	_	_	_	CNPUA8		_	_	CNPUA4	CNPUA3	CNPUA2	CNPUA1	CNPUA0	0000
CNPDA	0E0C	—	—	—	—	—	—	—	CNPDA8	—	_	_	CNPDA4	CNPDA3	CNPDA2	CNPDA1	CNPDA0	0000
ANSELA	0E0E	_	—	—	_	_	—	—	—		_		ANSA4	_	_	ANSA1	ANSA0	0013

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-57: PORTB REGISTER MAP FOR PIC24EPXXXGP/MC203 AND dsPIC33EPXXXGP/MC203/503 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	0E10	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	FFFF
PORTB	0E12	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx
LATB	0E14	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	xxxx
ODCB	0E16	ODCB15	ODCB14	ODCB13	ODCB12	ODCB11	ODCB10	ODCB9	ODCB8	ODCB7	ODCB6	ODCB5	ODCB4	ODCB3	ODCB2	ODCB1	ODCB0	0000
CNENB	0E18	CNIEB15	CNIEB14	CNIEB13	CNIEB12	CNIEB11	CNIEB10	CNIEB9	CNIEB8	CNIEB7	CNIEB6	CNIEB5	CNIEB4	CNIEB3	CNIEB2	CNIEB1	CNIEB0	0000
CNPUB	0E1A	CNPUB15	CNPUB14	CNPUB13	CNPUB12	CNPUB11	CNPUB10	CNPUB9	CNPUB8	CNPUB7	CNPUB6	CNPUB5	CNPUB4	CNPUB3	CNPUB2	CNPUB1	CNPUB0	0000
CNPDB	0E1C	CNPDB15	CNPDB14	CNPDB13	CNPDB12	CNPDB11	CNPDB10	CNPDB9	CNPDB8	CNPDB7	CNPDB6	CNPDB5	CNPDB4	CNPDB3	CNPDB2	CNPDB1	CNPDB0	0000
ANSELB	0E1E	_	_	_	_	_	_	_	ANSB8	_	_	_	_	ANSB3	ANSB2	ANSB1	ANSB0	010F

Legend: x = unknown value on Reset, -- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

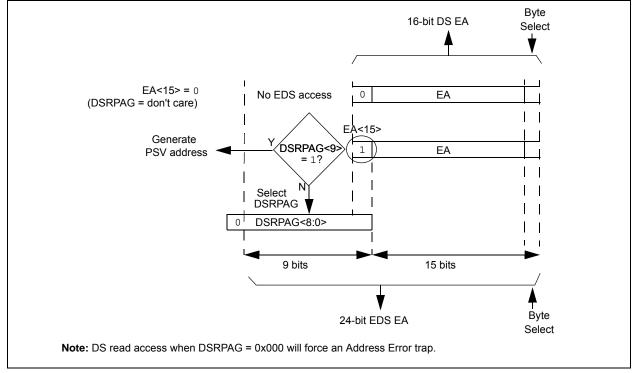
TABLE 4-58: PORTC REGISTER MAP FOR PIC24EPXXXGP/MC203 AND dsPIC33EPXXXGP/MC203/503 DEVICES ONLY

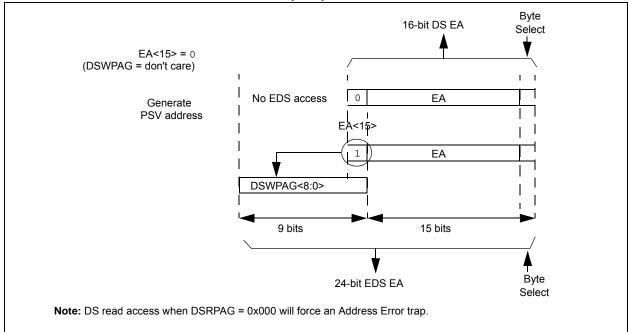
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISC	0E20	_	—	—	—	—	_	—	TRISC8	_	-	—	—	_	_	TRISC1	TRISC0	0107
PORTC	0E22		_	_	_	_	_	_	RC8		_	_	_	_	_	RC1	RC0	xxxx
LATC	0E24		_	_	_	_	_	_	LATC8		_	_	_	_	_	LATC1	LATC0	xxxx
ODCC	0E26		_	_	_	_	_	_	ODCC8		_	_	_	_	_	ODCC1	ODCC0	0000
CNENC	0E28		_	_	_	_	_	_	CNIEC8		_	_	_	_	_	CNIEC1	CNIEC0	0000
CNPUC	0E2A	_	_	_	_	_	_	_	CNPUC8	_	_	_	_	—	_	CNPUC1	CNPUC0	0000
CNPDC	0E2C	_	_	_	_	_	_	_	CNPDC8	_	_	_	_	—	_	CNPDC1	CNPDC0	0000
ANSELC	0E2E	_	—	_	_	_	_	_		_	_	—	—	_		ANSC1	ANSC0	0007

TABLE 4-59:PORTA REGISTER MAP FOR PIC24EPXXXGP/MC202 AND dsPIC33EPXXXGP/MC202/502 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	0E00	_	-	_	_	—	—	—	—	_	—	—	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	001C
PORTA	0E02	-	—	_	_	_	-	_	_	—	—	-	RA4	RA3	RA2	RA1	RA0	0000
LATA	0E04	-	—	_	_	_	-	-	-	_	—	-	LATA4	LATA3	LATA2	LA1TA1	LA0TA0	0000
ODCA	0E06	-	—	_	_	_	-	_	_	—	—	-	ODCA4	ODCA3	ODCA2	ODCA1	ODCA0	0000
CNENA	0E08	-	—	_	_	_	-	-	-	—	—	-	CNIEA4	CNIEA3	CNIEA2	CNIEA1	CNIEA0	0000
CNPUA	0E0A	—	_	—	—	—	_	—	_	_	—	_	CNPUA4	CNPUA3	CNPUA2	CNPUA1	CNPUA0	0000
CNPDA	0E0C	-	—	_	_	_	-	_	_	—	—	-	CNPDA4	CNPDA3	CNPDA2	CNPDA1	CNPDA0	0000
ANSELA	0E0E	_		_		_	_	_	_	_	_		ANSA4	—	_	ANSA1	ANSA0	0013

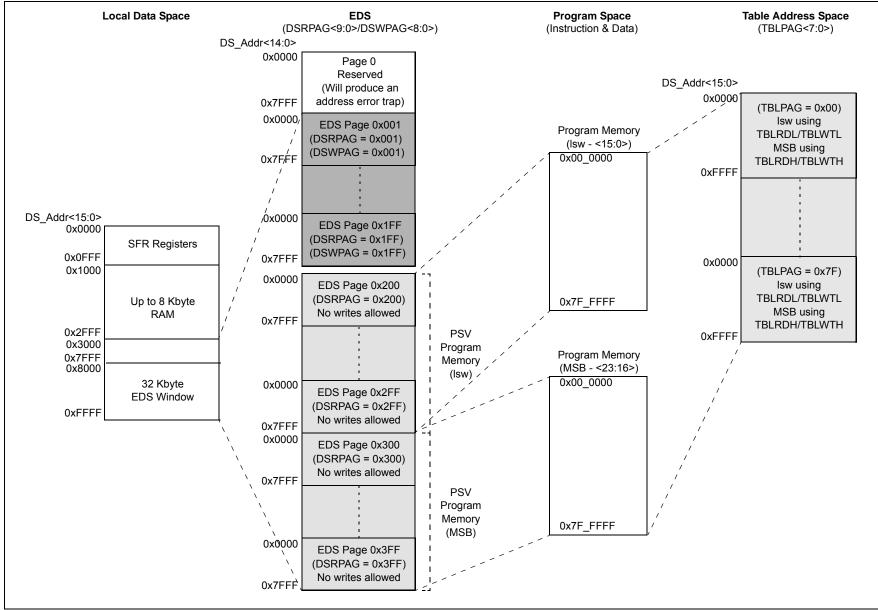
Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.


TABLE 4-60: PORTB REGISTER MAP FOR PIC24EPXXXGP/MC202 AND dsPIC33EPXXXGP/MC202/502 DEVICES ONLY


File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	0E10	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	FFFF
PORTB	0E12	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx
LATB	0E14	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	xxxx
ODCB	0E16	ODCB15	ODCB14	ODCB13	ODCB12	ODCB11	ODCB10	ODCB9	ODCB8	ODCB7	ODCB6	ODCB5	ODCB4	ODCB3	ODCB2	ODCB1	ODCB0	0000
CNENB	0E18	CNIEB15	CNIEB14	CNIEB13	CNIEB12	CNIEB11	CNIEB10	CNIEB9	CNIEB8	CNIEB7	CNIEB6	CNIEB5	CNIEB4	CNIEB3	CNIEB2	CNIEB1	CNIEB0	0000
CNPUB	0E1A	CNPUB15	CNPUB14	CNPUB13	CNPUB12	CNPUB11	CNPUB10	CNPUB9	CNPUB8	CNPUB7	CNPUB6	CNPUB5	CNPUB4	CNPUB3	CNPUB2	CNPUB1	CNPUB0	0000
CNPDB	0E1C	CNPDB15	CNPDB14	CNPDB13	CNPDB12	CNPDB11	CNPDB10	CNPDB9	CNPDB8	CNPDB7	CNPDB6	CNPDB5	CNPDB4	CNPDB3	CNPDB2	CNPDB1	CNPDB0	0000
ANSELB	0E1E	—	—	_	_	_	_	_	ANSB8	_	_	_	_	ANSB3	ANSB2	ANSB1	ANSB0	010F

4.2.6 PAGED MEMORY SCHEME

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X, and PIC24EPXXXGP/MC20X architecture extends the available data space through a paging scheme, which allows the available data space to be accessed using MOV instructions in a linear fashion for pre- and post-modified effective addresses (EA). The upper half of base data space address is used in conjunction with the data space page registers, the 10-bit read page register (DSRPAG) or the 9-bit write page register (DSWPAG), to form an extended data space (EDS) address or Program Space Visibility (PSV) address. The data space page registers are located in the SFR space. Construction of the EDS address is shown in Figure 4-1. When DSRPAG<9> = 0 and base address bit EA<15> = 1, DSRPAG<8:0> is concatenated onto EA<14:0> to form the 24-bit EDS read address. Similarly when base address bit EA<15> =1, DSWPAG<8:0> is concatenated onto EA<14:0> to form the 24-bit EDS write address.



EXAMPLE 4-2: EXTENDED DATA SPACE (EDS) WRITE ADDRESS GENERATION

The paged memory scheme provides access to multiple 32-Kbyte windows in the EDS and PSV memory. The data space page registers DSxPAG, in combination with the upper half of data space address can provide up to 16 Mbytes of additional address space in the EDS and 8 Mbytes (DSRPAG only) of PSV address space. The paged data memory space is shown in Example 4-3.

The program space (PS) can be accessed with DSRPAG of 0x200 or greater. Only reads from PS are supported using the DSRPAG. Writes to PS are not supported, so DSWPAG is dedicated to DS, including EDS, only. The data space and EDS can be read from and written to using DSRPAG and DSWPAG, respectively.

EXAMPLE 4-3: PAGED DATA MEMORY SPACE

Allocating different page registers for read and write access allows the architecture to support data movement between different pages in data memory. This is accomplished by setting the DSRPAG register value to the page from which you want to read, and configuring the DSWPAG register to the page to which it needs to be written. Data can also be moved from different PSV to EDS pages, by configuring the DSRPAG and DSWPAG registers to address PSV and EDS space, respectively. The data can be moved between pages by a single instruction.

When an EDS or PSV page overflow or underflow occurs, EA<15> is cleared as a result of the register indirect EA calculation. An overflow or underflow of the EA in the EDS or PSV pages can occur at the page boundaries when:

- The initial address prior to modification addresses an EDS or PSV page
- The EA calculation uses pre- or post-modified register indirect addressing. However, this does not include register offset addressing

In general, when an overflow is detected, the DSxPAG register is incremented, and the EA<15> bit is set to keep the base address within the EDS or PSV window. When an underflow is detected, the DSxPAG register is decremented, and the EA<15> bit is set to keep the base address within the EDS or PSV window. This creates a linear EDS and PSV address space, but only when using Register Indirect Addressing modes.

Exceptions to the operation described above arise when entering and exiting the boundaries of page 0, EDS, and PSV spaces. Table 4-61 lists the effects of overflow and underflow scenarios at different boundaries.

In the following cases, when overflow or underflow occurs, the EA<15> bit is set and the DSxPAG is not modified; therefore, the EA will wrap to the beginning of the current page:

- Register indirect with register offset addressing
- Modulo Addressing
- · Bit-reversed addressing

TABLE 4-61:OVERFLOW AND UNDERFLOW SCENARIOS AT PAGE 0, EDS, and PSV SPACE
BOUNDARIES

O/U, R/W			Before		After			
	Operation	DSxPAG	DS EA<15>	Page Description	DSxPAG	DS EA<15>	Page Description	
O, Read		DSRPAG = 0x1FF	1	EDS: Last page	DSRPAG = 0x1FF	0	See Note 1	
O, Read	[++Wn]	DSRPAG = 0x2FF	1	PSV: Last lsw page	DSRPAG = 0x300	1	PSV: First MSB page	
O, Read	or [Wn++]	DSRPAG = 0x3FF	1	PSV: Last MSB page	DSRPAG = 0x3FF	0	See Note 1	
O, Write		DSWPAG = 0x1FF	1	EDS: Last page	DSWPAG = 0x1FF	0	See Note 1	
U, Read	[Wn] or [Wn]	DSRPAG = 0x001	1	PSV page	DSRPAG = 0x001	0	See Note 1	
U, Read		DSRPAG = 0x200	1	PSV: First lsw page	DSRPAG = 0x200	0	See Note 1	
U, Read		DSRPAG = 0x300	1	PSV: First MSB page	DSRPAG = 0x2FF	1	PSV: Last Isw page	

Legend: O = Overflow, U = Underflow, R = Read, W = Write

Note 1: The register indirect address now addresses a location in the base data space (0x0000-0x8000).

2: An EDS access with DSxPAG = 0x000 will generate an address error trap.

3: Only reads from PS are supported using DSRPAG. An attempt to write to PS using DSWPAG will generate an address error trap.

4: Pseudo-linear addressing is not supported for large offsets.

4.2.7 EXTENDED X DATA SPACE

The lower portion of the base address space range between 0x0000 and 0x2FFF is always accessible regardless of the contents of the data space page registers. It is indirectly addressable through the register indirect instructions. It can be regarded as being located in the default EDS page 0 (i.e., EDS address range of 0x000000 to 0x002FFF with the base address bit EA<15> = 0 for this address range). However, page 0 cannot be accessed through upper 32 Kbytes, 0x8000 to 0xFFFF, of base data space in combination with DSRPAG = 0x00 or DSWPAG = 0x00. Consequently, DSRPAG and DSWPAG are initialized to 0x001 at Reset.

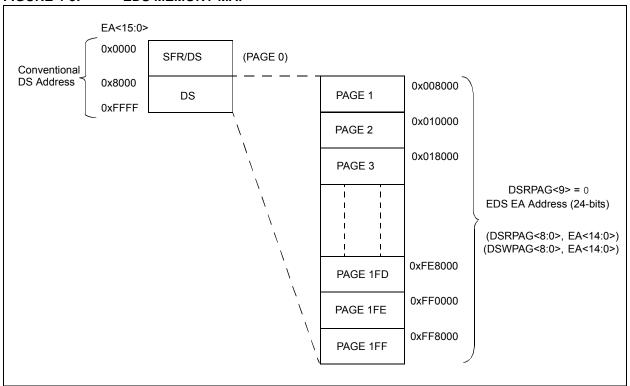

- Note 1: DSxPAG should not be used to access page 0. An EDS access with DSxPAG set to 0x000 will generate an Address Error trap.
 - 2: Clearing the DSxPAG in software has no effect.

FIGURE 4-5: EDS MEMORY MAP

The remaining pages including both EDS and PSV pages are only accessible using the DSRPAG or DSWPAG registers in combination with the upper 32 Kbytes, 0x8000 to 0xFFFF, of the base address, where base address bit EA<15> = 1.

For example, when DSRPAG = 0x01 or DSWPAG = 0x01, accesses to the upper 32 Kbytes, 0x8000 to 0xFFFF, of the data space will map to the EDS address range of 0x008000 to 0x00FFFF. When DSRPAG = 0x02 or DSWPAG = 0x02, accesses to the upper 32 Kbytes of the data space will map to the EDS address range of 0x010000 to 0x017FFF and so on, as shown in the EDS memory map in Figure 4-5.

For more information of the PSV page access using data space page registers refer to **4.5** "**Program Space Visibility from Data Space**" in **Section 4.** "**Program Memory**" (DS70613) of the "*dsPlC33E/ PlC24E Family Reference Manual*".

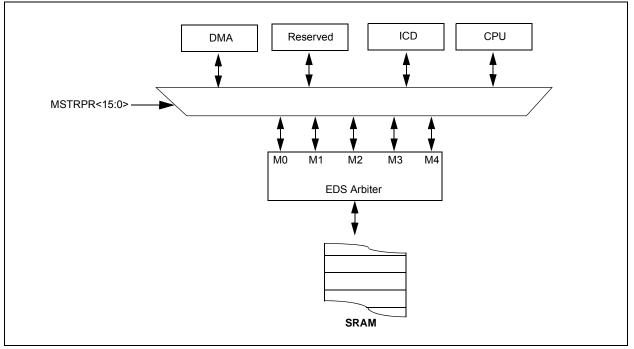
4.2.8 EDS ARBITRATION AND BUS MASTER PRIORITY

EDS accesses from bus masters in the system are arbitrated.

The arbiter for data memory (including EDS) arbitrates between the CPU, the DMA, and the ICD module. In the event of coincidental access to a bus by the bus masters, the arbiter determines which bus master access has the highest priority. The other bus masters are suspended and processed after the access of the bus by the bus master with the highest priority.

By default, the CPU is bus master 0 (M0) with the highest priority, and the ICD is bus master 4 (M4) with the lowest priority. The remaining bus masters (DMA Controllers) are allocated to M2 and M3, respectively

(M1 is reserved and cannot be used). The user application may raise or lower the priority of the masters to be above that of the CPU by setting the appropriate bits in the EDS Bus Master Priority Control (MSTRPR) register. All bus masters with raised priorities will maintain the same priority relationship relative to each other (i.e., M1 being highest and M3 being lowest with M2 in between). Also, all the bus masters with priorities below that of the CPU maintain the same priority relationship relative to each other. The priority schemes for bus masters with different MSTRPR values are tabulated in Table 4-62.


This bus master priority control allows the user application to manipulate the real-time response of the system, either statically during initialization, or dynamically in response to real-time events.

Priority	MSTRPR<15:0> Bit Setting ⁽¹⁾						
Phoney	0x0000	0x0008	0x0020	0x0028			
M0 (highest)	CPU	Reserved	DMA	Reserved			
M1	Reserved	CPU	CPU	DMA			
M2	Reserved	Reserved	Reserved	CPU			
M3	DMA	DMA	Reserved	Reserved			
M4 (lowest)	ICD	ICD	ICD	ICD			

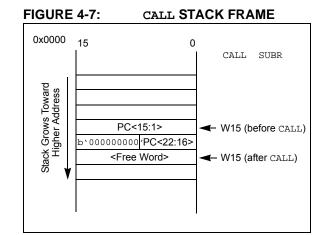
TABLE 4-62: EDS BUS ARBITER PRIORITY

Note 1: All other values of MSTRPR<15:0> are Reserved.

FIGURE 4-6: ARBITER ARCHITECTURE

4.2.9 SOFTWARE STACK

The W15 register serves as a dedicated software Stack Pointer (SP) and is automatically modified by exception processing, subroutine calls and returns; however, W15 can be referenced by any instruction in the same manner as all other W registers. This simplifies reading, writing and manipulating of the Stack Pointer (for example, creating stack frames).


Note:	To protect against misaligned stack
	accesses, W15<0> is fixed to '0' by the
	hardware.

W15 is initialized to 0x1000 during all Resets. This address ensures that the SP points to valid RAM in all dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X devices and permits stack availability for non-maskable trap exceptions. These can occur before the SP is initialized by the user software. You can reprogram the SP during initialization to any location within data space.

The Stack Pointer always points to the first available free word and fills the software stack working from lower toward higher addresses. Figure 4-7 illustrates how it pre-decrements for a stack pop (read) and post-increments for a stack push (writes).

When the PC is pushed onto the stack, PC<15:0> is pushed onto the first available stack word, then PC<22:16> is pushed into the second available stack location. For a PC push during any CALL instruction, the MSB of the PC is zero-extended before the push, as shown in Figure 4-7. During exception processing, the MSB of the PC is concatenated with the lower 8 bits of the CPU STATUS register, SR. This allows the contents of SRL to be preserved automatically during interrupt processing.

- **Note 1:** To maintain system stack pointer (W15) coherency, W15 is never subject to (EDS) paging, and is therefore restricted to an address range of 0x0000 to 0xFFFF. The same applies to the W14 when used as a Stack Frame Pointer (SFA = 1).
 - 2: As the stack can be placed in, and can access, X and Y spaces, care must be taken regarding its use, particularly with regard to local automatic variables in a C development environment

4.3 Instruction Addressing Modes

The addressing modes shown in Table 4-63 form the basis of the addressing modes optimized to support the specific features of individual instructions. The addressing modes provided in the MAC class of instructions differ from those in the other instruction types.

4.3.1 FILE REGISTER INSTRUCTIONS

Most file register instructions use a 13-bit address field (f) to directly address data present in the first 8192 bytes of data memory (near data space). Most file register instructions employ a working register, W0, which is denoted as WREG in these instructions. The destination is typically either the same file register or WREG (with the exception of the MUL instruction), which writes the result to a register or register pair. The MOV instruction allows additional flexibility and can access the entire data space.

4.3.2 MCU INSTRUCTIONS

The three-operand MCU instructions are of the form:

Operand 3 = Operand 1 < function> Operand 2

where Operand 1 is always a working register (that is, the addressing mode can only be Register Direct), which is referred to as Wb. Operand 2 can be a W register, fetched from data memory, or a 5-bit literal. The result location can be either a W register or a data memory location. The following addressing modes are supported by MCU instructions:

- Register Direct
- Register Indirect
- Register Indirect Post-Modified
- Register Indirect Pre-Modified
- 5-bit or 10-bit Literal

Note: Not all instructions support all the addressing modes given above. Individual instructions can support different subsets of these addressing modes.

Addressing Mode	Description					
File Register Direct	The address of the file register is specified explicitly.					
Register Direct	The contents of a register are accessed directly.					
Register Indirect	The contents of Wn forms the Effective Address (EA).					
Register Indirect Post-Modified	The contents of Wn forms the EA. Wn is post-modified (incremented or decremented) by a constant value.					
Register Indirect Pre-Modified	Wn is pre-modified (incremented or decremented) by a signed constant value to form the EA.					
Register Indirect with Register Offset (Register Indexed)	The sum of Wn and Wb forms the EA.					
Register Indirect with Literal Offset	The sum of Wn and a literal forms the EA.					

4.3.3 MOVE AND ACCUMULATOR INSTRUCTIONS

Move instructions. which apply to dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X devices, and the DSP accumulator class of instructions, which apply to the dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices, provide a greater degree of addressing flexibility than other instructions. In addition to the addressing modes supported by most MCU instructions, move and accumulator instructions also support Register Indirect with Register Offset Addressing mode, also referred to as Register Indexed mode.

Note: For the MOV instructions, the addressing mode specified in the instruction can differ for the source and destination EA. However, the 4-bit Wb (Register Offset) field is shared by both source and destination (but typically only used by one).

In summary, the following addressing modes are supported by move and accumulator instructions:

- Register Direct
- Register Indirect
- Register Indirect Post-modified
- Register Indirect Pre-modified
- Register Indirect with Register Offset (Indexed)
- Register Indirect with Literal Offset
- 8-bit Literal
- 16-bit Literal

Note: Not all instructions support all the addressing modes given above. Individual instructions may support different subsets of these addressing modes.

4.3.4 MAC INSTRUCTIONS (dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X DEVICES ONLY)

The dual source operand DSP instructions (CLR, ED, EDAC, MAC, MPY, MPY.N, MOVSAC and MSC), also referred to as MAC instructions, use a simplified set of addressing modes to allow the user application to effectively manipulate the data pointers through register indirect tables.

The two-source operand prefetch registers must be members of the set {W8, W9, W10, W11}. For data reads, W8 and W9 are always directed to the X RAGU, and W10 and W11 are always directed to the Y AGU. The effective addresses generated (before and after modification) must, therefore, be valid addresses within X data space for W8 and W9 and Y data space for W10 and W11.

Note: Register Indirect with Register Offset Addressing mode is available only for W9 (in X space) and W11 (in Y space).

In summary, the following addressing modes are supported by the ${\tt MAC}$ class of instructions:

- Register Indirect
- Register Indirect Post-Modified by 2
- Register Indirect Post-Modified by 4
- · Register Indirect Post-Modified by 6
- Register Indirect with Register Offset (Indexed)

4.3.5 OTHER INSTRUCTIONS

Besides the addressing modes outlined previously, some instructions use literal constants of various sizes. For example, BRA (branch) instructions use 16-bit signed literals to specify the branch destination directly, whereas the DISI instruction uses a 14-bit unsigned literal field. In some instructions, such as ULNK, the source of an operand or result is implied by the opcode itself. Certain operations, such as NOP, do not have any operands.

4.4 Modulo Addressing (dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X Devices Only)

Modulo Addressing mode is a method of providing an automated means to support circular data buffers using hardware. The objective is to remove the need for software to perform data address boundary checks when executing tightly looped code, as is typical in many DSP algorithms.

Modulo Addressing can operate in either data or program space (since the data pointer mechanism is essentially the same for both). One circular buffer can be supported in each of the X (which also provides the pointers into program space) and Y data spaces. Modulo Addressing can operate on any W register pointer. However, it is not advisable to use W14 or W15 for Modulo Addressing since these two registers are used as the Stack Frame Pointer and Stack Pointer, respectively.

In general, any particular circular buffer can be configured to operate in only one direction as there are certain restrictions on the buffer start address (for incrementing buffers), or end address (for decrementing buffers), based upon the direction of the buffer.

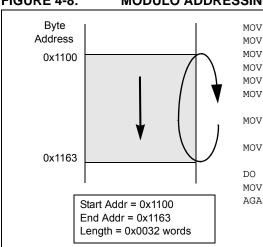
The only exception to the usage restrictions is for buffers that have a power-of-two length. As these buffers satisfy the start and end address criteria, they can operate in a bidirectional mode (that is, address boundary checks are performed on both the lower and upper address boundaries).

4.4.1 START AND END ADDRESS

The Modulo Addressing scheme requires that a starting and ending address be specified and loaded into the 16-bit Modulo Buffer Address registers: XMODSRT, XMODEND, YMODSRT and YMODEND (see Table 4-1).

Note: Y space Modulo Addressing EA calculations assume word-sized data (LSb of every EA is always clear).

The length of a circular buffer is not directly specified. It is determined by the difference between the corresponding start and end addresses. The maximum possible length of the circular buffer is 32K words (64 Kbytes).


4.4.2 W ADDRESS REGISTER SELECTION

The Modulo and Bit-Reversed Addressing Control register, MODCON<15:0>, contains enable flags as well as a W register field to specify the W Address registers. The XWM and YWM fields select the registers that operate with Modulo Addressing:

- If XWM = 15, X RAGU and X WAGU Modulo Addressing is disabled
- If YWM = 15, Y AGU Modulo Addressing is disabled

The X Address Space Pointer W register (XWM), to which Modulo Addressing is to be applied, is stored in MODCON<3:0> (see Table 4-1). Modulo Addressing is enabled for X data space when XWM is set to any value other than '15' and the XMODEN bit is set at MODCON<15>.

The Y Address Space Pointer W register (YWM) to which Modulo Addressing is to be applied is stored in MODCON<7:4>. Modulo Addressing is enabled for Y data space when YWM is set to any value other than '15' and the YMODEN bit is set at MODCON<14>.

FIGURE 4-8: MODULO ADDRESSING OPERATION EXAMPLE

MOV	#0X1100, W0	
MOV	W0, XMODSRT	;set modulo start address
MOV	#0x1163, W0	
MOV	W0, MODEND	;set modulo end address
MOV	#0x8001, W0	
MOV	W0, MODCON	;enable W1, X AGU for modulo
MOV	#0x0000, W0	;W0 holds buffer fill value
MOV	#0x1110, W1	;point W1 to buffer
DO	AGAIN, #0x31	;fill the 50 buffer locations
MOV	WO, [W1++]	;fill the next location
AGAIN:	INC W0, W0	;increment the fill value

#0x1100 W0

4.4.3 MODULO ADDRESSING APPLICABILITY

Modulo Addressing can be applied to the Effective Address (EA) calculation associated with any W register. Address boundaries check for addresses equal to:

- The upper boundary addresses for incrementing buffers
- The lower boundary addresses for decrementing buffers

It is important to realize that the address boundaries check for addresses less than or greater than the upper (for incrementing buffers) and lower (for decrementing buffers) boundary addresses (not just equal to). Address changes can, therefore, jump beyond boundaries and still be adjusted correctly.

Note: The modulo corrected effective address is written back to the register only when Pre-Modify or Post-Modify Addressing mode is used to compute the effective address. When an address offset (such as [W7 + W2]) is used, Modulo Address correction is performed but the contents of the register remain unchanged.

4.5 Bit-Reversed Addressing (dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X Devices Only)

Bit-Reversed Addressing mode is intended to simplify data reordering for radix-2 FFT algorithms. It is supported by the X AGU for data writes only.

The modifier, which can be a constant value or register contents, is regarded as having its bit order reversed. The address source and destination are kept in normal order. Thus, the only operand requiring reversal is the modifier.

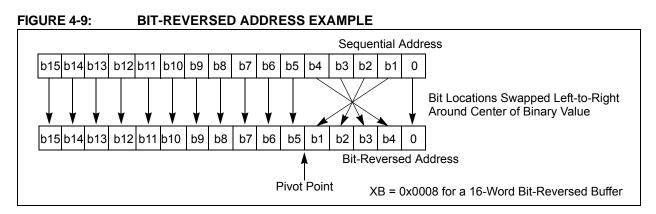
4.5.1 BIT-REVERSED ADDRESSING IMPLEMENTATION

Bit-Reversed Addressing mode is enabled in any of these situations:

- BWM bits (W register selection) in the MODCON register are any value other than '15' (the stack cannot be accessed using Bit-Reversed Addressing)
- The BREN bit is set in the XBREV register
- The addressing mode used is Register Indirect with Pre-Increment or Post-Increment

If the length of a bit-reversed buffer is $M = 2^N$ bytes, the last 'N' bits of the data buffer start address must be zeros.

XB<14:0> is the Bit-Reversed Address modifier, or 'pivot point,' which is typically a constant. In the case of an FFT computation, its value is equal to half of the FFT data buffer size.


Note:	All bit-reversed EA calculations assume							
	word-sized data (LSb of every EA is							
	always clear). The XB value is scaled							
	accordingly to generate compatible (byte)							
	addresses.							

When enabled, Bit-Reversed Addressing is executed only for Register Indirect with Pre-Increment or Post-Increment Addressing and word-sized data writes. It does not function for any other addressing mode or for byte-sized data, and normal addresses are generated instead. When Bit-Reversed Addressing is active, the W Address Pointer is always added to the address modifier (XB), and the offset associated with the Register Indirect Addressing mode is ignored. In addition, as word-sized data is a requirement, the LSb of the EA is ignored (and always clear).

Note: Modulo Addressing and Bit-Reversed Addressing should not be enabled together. If an application attempts to do so, Bit-Reversed Addressing assumes priority when active for the X WAGU and X WAGU, Modulo Addressing is disabled. However, Modulo Addressing continues to function in the X RAGU.

If Bit-Reversed Addressing has already been enabled by setting the BREN (XBREV<15>) bit, a write to the XBREV register should not be immediately followed by an indirect read operation using the W register that has been designated as the bit-reversed pointer.

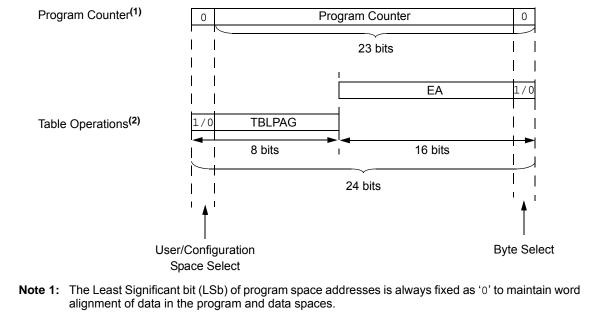
dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, AND PIC24EPXXXGP/MC20X

TABLE 4-64: BIT-REVERSED ADDRESS SEQUENCE (16-ENTRY)

Normal Address					Bit-Reversed Address				
A3	A2	A1	A0	Decimal	A3	A2	A1	A0	Decimal
0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	1	0	0	0	8
0	0	1	0	2	0	1	0	0	4
0	0	1	1	3	1	1	0	0	12
0	1	0	0	4	0	0	1	0	2
0	1	0	1	5	1	0	1	0	10
0	1	1	0	6	0	1	1	0	6
0	1	1	1	7	1	1	1	0	14
1	0	0	0	8	0	0	0	1	1
1	0	0	1	9	1	0	0	1	9
1	0	1	0	10	0	1	0	1	5
1	0	1	1	11	1	1	0	1	13
1	1	0	0	12	0	0	1	1	3
1	1	0	1	13	1	0	1	1	11
1	1	1	0	14	0	1	1	1	7
1	1	1	1	15	1	1	1	1	15

4.6 Interfacing Program and Data Memory Spaces

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X, and PIC24EPXXXGP/MC20X architecture uses a 24-bit-wide program space and a 16-bit-wide data space. The architecture is also a modified Harvard scheme, meaning that data can also be present in the program space. To use this data successfully, it must be accessed in a way that preserves the alignment of information in both spaces.


Aside from normal execution, the architecture of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X devices provides two methods by which program space can be accessed during operation:

- Using table instructions to access individual bytes or words anywhere in the program space
- Remapping a portion of the program space into the data space (Program Space Visibility)

Table instructions allow an application to read or write to small areas of the program memory. This capability makes the method ideal for accessing data tables that need to be updated periodically. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis, which is ideal for look-ups from a large table of static data. The application can only access the least significant word of the program word.

Access Type	Access	Program Space Address						
Access Type	Space	<23>	<22:16>	<15>	<14:1>	<0>		
Instruction Access	User	0 PC<22:1>				0		
(Code Execution)			0xx xxxx x	x xxxx xxx0				
TBLRD/TBLWT	User	TBLPAG<7:0> Data EA<15:0>						
(Byte/Word Read/Write)		0	xxx xxxx	xxxx xxx				
	Configuration	TB	LPAG<7:0>					
		1xxx xxxx		xxxx xx				

FIGURE 4-10: DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION

2: Table operations are not required to be word aligned. Table read operations are permitted in the configuration memory space.

4.6.1 DATA ACCESS FROM PROGRAM MEMORY USING TABLE INSTRUCTIONS

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the program space without going through data space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a program space word as data.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to data space addresses. Program memory can thus be regarded as two 16-bit-wide word address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space that contains the least significant data word. TBLRDH and TBLWTH access the space that contains the upper data byte.

Two table instructions are provided to move byte or word-sized (16-bit) data to and from program space. Both function as either byte or word operations.

- TBLRDL (Table Read Low):
 - In Word mode, this instruction maps the lower word of the program space location (P<15:0>) to a data address (D<15:0>)

- In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when Byte Select is '1'; the lower byte is selected when it is '0'.
- TBLRDH (Table Read High):
 - In Word mode, this instruction maps the entire upper word of a program address (P<23:16>) to a data address. The 'phantom' byte (D<15:8>), is always '0'.
 - In Byte mode, this instruction maps the upper or lower byte of the program word to D<7:0> of the data address, in the TBLRDL instruction. The data is always '0' when the upper 'phantom' byte is selected (Byte Select = 1).

In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a program space address. The details of their operation are explained in Section 5.0 "Flash Program Memory".

For all table operations, the area of program memory space to be accessed is determined by the Table Page register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user application and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

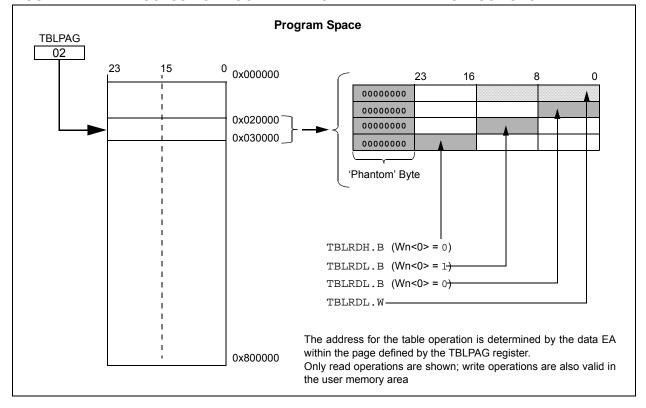


FIGURE 4-11: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS

NOTES:

5.0 FLASH PROGRAM MEMORY

- **Note 1:** This data sheet summarizes the features of the dsPIC33EPXXXGP50X. dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 5. "Flash Programming" (DS70609) of the "dsPIC33E/ PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

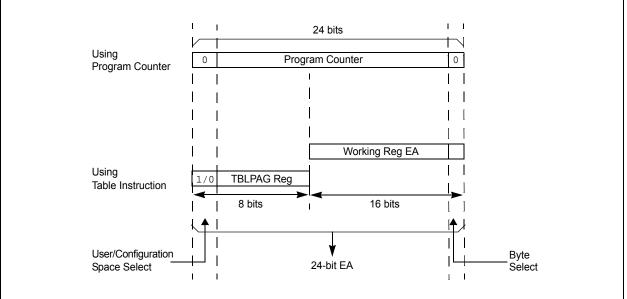
The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X, and PIC24EPXXXGP/MC20X devices contain internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable during normal operation over the entire VDD range.

Flash memory can be programmed in two ways:

- In-Circuit Serial Programming[™] (ICSP[™]) programming capability
- Run-Time Self-Programming (RTSP)

ICSP allows for a dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/ MC20X device to be serially programmed while in the end application circuit. This is done with two lines for programming clock and programming data (one of the alternate programming pin pairs: PGECx/PGEDx), and three other lines for power (VDD), ground (VSS) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the digital signal controller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

RTSP is accomplished using TBLRD (table read) and TBLWT (table write) instructions. With RTSP, the user application can write program memory data a single program memory word, and erase program memory in blocks or 'pages' of 1024 instructions (3072 bytes) at a time.


5.1 Table Instructions and Flash Programming

Regardless of the method used, all programming of Flash memory is done with the table read and table write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using bits <7:0> of the TBLPAG register and the Effective Address (EA) from a W register specified in the table instruction, as shown in Figure 5-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits <15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits <23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

5.2 RTSP Operation

RTSP allows the user application to erase a page of memory, which consists of eight rows (1024 instructions) at a time, and to program two words at a time. Table 30-13 lists typical erase and programming times. The 8-row erase pages are edge-aligned from the beginning of program memory, on boundaries of 3072 bytes.

For more information on erasing and programming Flash memory, refer to **Section 5.** "Flash Programming" (DS70609) in the "dsPIC33E/PIC24E Family Reference Manual".

5.3 **Programming Operations**

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. The processor stalls (waits) until the programming operation is finished.

For erase and program times, refer to parameters DI37a and DI37b (Page Erase Time), and DI38a and DI38b (Word Write Cycle Time), in Table 30-13: "DC Characteristics: Program Memory".

Setting the WR bit (NVMCON<15>) starts the operation, and the WR bit is automatically cleared when the operation is finished.

5.3.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

Programmers can program two adjacent words (24 bits x 2) of program Flash memory at a time on every other word address boundary (0x000002, 0x000006, 0x00000A, etc.). To do this, it is necessary to erase the 8-row erase page that contains the desired address of the location the user wants to change.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user application must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS.

Refer to **Section 5. "Flash Programming**" (DS70609) in the "*dsPIC33E/PIC24E Family Reference Manual*" for details and codes examples on programming using RTSP.

5.4 Control Registers

Four SFRs are used to read and write the program Flash memory: NVMCON, NVMKEY, NVMADRU, and NVMADR.

The NVMCON register (Register 5-1) controls which blocks are to be erased, which memory type is to be programmed and the start of the programming cycle.

NVMKEY (Register 5-4) is a write-only register that is used for write protection. To start a programming or erase sequence, the user application must consecutively write 0x55 and 0xAA to the NVMKEY register.

There are two NVM address registers: NVMADRU and NVMADR. These two registers, when concatenated, form the 24-bit effective address (EA) of the selected row or word for programming operations, or the selected page for erase operations.

The NVMADRU register is used to hold the upper 8 bits of the EA, while the NVMADR register is used to hold the lower 16 bits of the EA.

R/SO-0 ⁽	1) R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0	U-0	U-0	U-0	U-0		
WR	WREN	WRERR	NVMSIDL ⁽²⁾	_			_		
bit 15	, , , , , , , , , , , , , , , , , , ,	WILLING	TTTMOIDE				l bit 8		
							Dire		
U-0	U-0	U-0	U-0	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾		
_	_	_	—		NVMOP	<3:0> ^(3,4)			
bit 7			•				bit C		
Legend:		SO = Setta	ble only bit						
R = Reada	ble bit	W = Writab	-	U = Unimplei	mented bit, read	d as '0'			
-n = Value		'1' = Bit is s		'0' = Bit is cle		x = Bit is unkr	iown		
							-		
bit 15	WR: Write Con	trol bit							
	cleared by	hardware on	ce operation is	s complete	-	on is self-timed	and the bit is		
bit 14	0 = Program o	-	ation is comple	te and inactive	е				
DIL 14		WREN: Write Enable bit							
		 Enable Flash program/erase operations Inhibit Flash program/erase operations 							
bit 13	WRERR: Write	Sequence E	rror Flag bit						
	automatica	ally on any se	t attempt of the	e WR bit)		s occurred (bit i	s set		
	0 = The progra			leted normally	ý				
bit 12	NVMSIDL: NV								
	1 = Discontinu 0 = Continue F								
bit 11-4	Unimplemente			(a))					
bit 3-0	NVMOP<3:0>:	•	ion Select bits	(3,4)					
	1111 = Reserv 1110 = Reserv								
	1110 = Reserv								
	1100 = Reserv								
	1011 = Reserv								
	1010 = Reserv 0011 = Memor		operation						
	0011 = Memor 0010 = Reserv		operation						
	0001 = Memor 0000 = Reserv	y double-wor	d program ope	eration ⁽⁵⁾					
Note 1:	These bits can only	be reset on F	POR.						
	If this bit is set, upor operational.	n exiting Idle	mode there is a	a delay (Tvre	G) before Flash	memory becon	nes		
	All other combinatio	ns of NVMOF	><3:0> are uni	mplemented.					
4:	Execution of the PWI	RSAV instruct	ion is ignored	while any of th	ne NVM operatio	ons are in progr	ess.		
5.	wo adjacent words on a 4-word boundary are programmed during execution of this operation								

5: Two adjacent words on a 4-word boundary are programmed during execution of this operation.

REGISTER 5-2:	NVMADRU: NONVOLATILE MEMORY UPPER ADDRESS REGISTER
---------------	--

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			NVMAE)RU<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	oit	U = Unimple	mented bit, read	d as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **NVMADRU<7:0>:** Non-volatile Memory Upper Write Address bits Selects the upper 8 bits of the location to program or erase in program Flash memory. This register may be read or written by the user application.

REGISTER 5-3: NVMADR: NONVOLATILE MEMORY LOWER ADDRESS REGISTER

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			NVMA	DR<15:8>			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			NVMA	DR<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	it	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-0 **NVMADR<15:0>:** Non-volatile Memory Lower Write Address bits Selects the lower 16 bits of the location to program or erase in program Flash memory. This register may be read or written by the user application.

REGISTER 5-4: NVMKEY: NONVOLATILE MEMORY KEY REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	_
bit 15							bit 8
W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0
			NVMKE	EY<7:0>			
bit 7							bit 0
Legend:							

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 NVMKEY<7:0>: Key Register (write-only) bits

6.0 RESETS

- **Note 1:** This data sheet summarizes the features the dsPIC33EPXXXGP50X, of dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 8. "Reset" (DS70602) of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

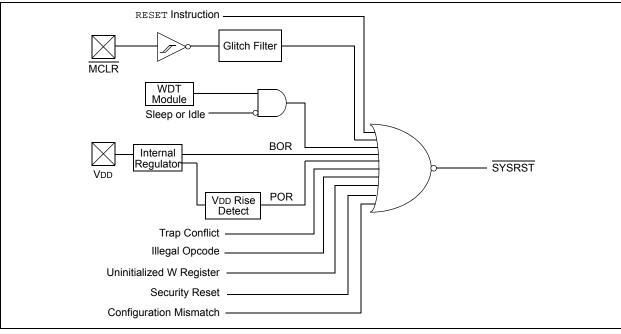
The Reset module combines all reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

- · POR: Power-on Reset
- BOR: Brown-out Reset
- MCLR: Master Clear Pin Reset
- SWR: RESET Instruction
- WDTO: Watchdog Timer Reset
- CM: Configuration Mismatch Reset
- TRAPR: Trap Conflict Reset
- IOPUWR: Illegal Condition Device Reset
 - Illegal Opcode Reset
 - Uninitialized W Register Reset
 - Security Reset

-1: RESET SYSTEM BLOCK DIAGRAM

A simplified block diagram of the Reset module is shown in Figure 6-1.

Any active source of Reset will make the SYSRST signal active. On system Reset, some of the registers associated with the CPU and peripherals are forced to a known Reset state and some are unaffected.


Note: Refer to the specific peripheral section or Section 4.0 "Memory Organization" of this manual for register Reset states.

All types of device Reset sets a corresponding status bit in the RCON register to indicate the type of Reset (see Register 6-1).

A POR clears all the bits, except for the POR and BOR bits (RCON<1:0>), that are set. The user application can set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software does not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this manual.

There are two types of Reset, a cold Reset and a warm Reset. A cold Reset is the result of a POR or BOR and the FNOSC Configuration bits in the FOSC device Configuration register select the device clock source. A warm Reset is the result of all other Resets including the RESET instruction and the Current Oscillator Selection bits (COSC<2:0>) in the Oscillator Control register (OSCCON<14:12>) select the clock source.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset is meaningful.

R/W-0	R/W-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0
TRAPR	IOPUWR		_	VREGSF		СМ	VREGS
bit 15							bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1
EXTR	SWR	SWDTEN ⁽²⁾	WDTO	SLEEP	IDLE	BOR	POR
bit 7							bit
Legend:							
R = Readable	e bit	W = Writable I	bit	U = Unimplem	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unk	nown
bit 15	1 = A Trap Co	Reset Flag bit onflict Reset ha		d			
bit 14	1 = An illega Address	I opcode detec Pointer caused	ction, an ille a Reset	W Access Rese gal address mo Reset has not oc	de or uninitia	lized W registe	er used as a
bit 13-12	Unimplemen	ted: Read as 'o)'				
bit 11				by During Sleep	bit		
		Itage regulator i Itage regulator		ng Sleep Indby mode duri	ng Sleep		
bit 10	Unimplemen	ted: Read as 'o)'				
bit 9	1 = A configu	ation Mismatch ration mismatch ration mismatch	Reset has o				
bit 8	VREGS: Volta	age Regulator S	standby Durii	ng Sleep bit			
		egulator is active egulator goes in		ep mode during Sle	ер		
bit 7		nal Reset (MCL	,				
		Clear (pin) Res Clear (pin) Res					
bit 6	SWR: Softwa	ire Reset (Instru	iction) Flag b	bit			
		instruction has instruction has					
bit 5	SWDTEN: So	oftware Enable/	Disable of W	DT bit ⁽²⁾			
	1 = WDT is e 0 = WDT is di						
	WDTO: Watc	hdog Timer Tim	e-out Flag b	it			
bit 4							
bit 4	1 = WDT time	e-out has occur e-out has not oc					
bit 4 bit 3	1 = WDT time 0 = WDT time	e-out has occur e-out has not oc e-up from Sleep	curred				

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾

Note 1: All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not cause a device Reset.

2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾ (CONTINUED)

- bit 2 **IDLE:** Wake-up from Idle Flag bit
 - 1 = Device was in Idle mode
 - 0 = Device was not in Idle mode
- bit 1 BOR: Brown-out Reset Flag bit 1 = A Brown-out Reset has occurred
 - 0 = A Brown-out Reset has not occurred
- bit 0 POR: Power-on Reset Flag bit 1 = A Power-on Reset has occurred 0 = A Power-on Reset has not occurred
- **Note 1:** All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
 - 2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

NOTES:

7.0 INTERRUPT CONTROLLER

- **Note 1:** This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 6. "Interrupts" (DS70600) of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

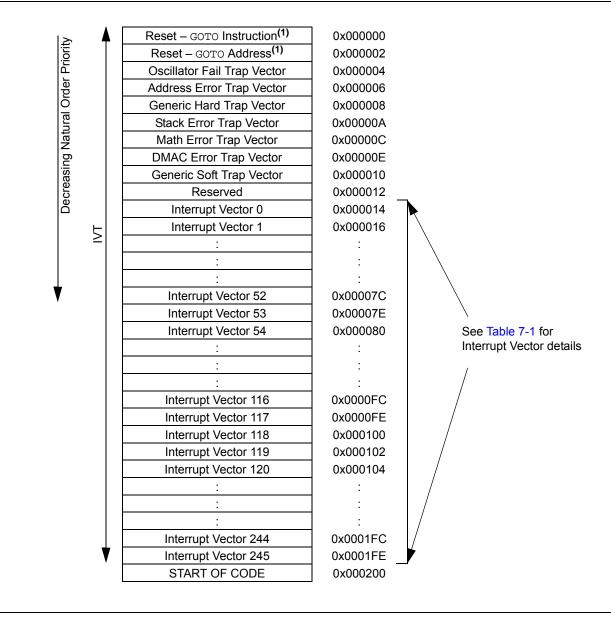
The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X, and PIC24EPXXXGP/MC20X interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X CPU.

The interrupt controller has the following features:

- Up to eight processor exceptions and software traps
- Eight user-selectable priority levels
- Interrupt Vector Table (IVT) with a unique vector for each interrupt or exception source
- Fixed priority within a specified user priority level
- Fixed interrupt entry and return latencies

7.1 Interrupt Vector Table

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X, and PIC24EPXXXGP/MC20X Interrupt Vector Table (IVT), shown in Figure 7-1, resides in program memory, starting at location 000004h. The IVT contains seven non-maskable trap vectors and up to 114 sources of interrupt. In general, each interrupt source has its own vector. Each interrupt vector contains a 24bit-wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR).


Interrupt vectors are prioritized in terms of their natural priority. This priority is linked to their position in the vector table. Lower addresses generally have a higher natural priority. For example, the interrupt associated with vector 0 takes priority over interrupts at any other vector address.

7.2 Reset Sequence

A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X, and PIC24EPXXXGP/MC20X devices clear their registers in response to a Reset, which forces the PC to zero. The device then begins program execution at location 0x000000. A GOTO instruction at the Reset address can redirect program execution to the appropriate start-up routine.

Note: Any unimplemented or unused vector locations in the IVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

FIGURE 7-1: dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, AND PIC24EPXXXGP/MC20X INTERRUPT VECTOR TABLE

Interrupt Source	Vector	IRQ	IVT	Interrupt Bit Location			
interrupt Source	Number		Address	Flag	Enable	Priority	
	Highes	t Natural O	rder Priority		-		
INT0 – External Interrupt 0	8	0	0x000014	IFS0<0>	IEC0<0>	IPC0<2:0>	
IC1 – Input Capture 1	9	1	0x000016	IFS0<1>	IEC0<1>	IPC0<6:4>	
OC1 – Output Compare 1	10	2	0x000018	IFS0<2>	IEC0<2>	IPC0<10:8>	
T1 – Timer1	11	3	0x00001A	IFS0<3>	IEC0<3>	IPC0<14:12>	
DMA0 – DMA Channel 0	12	4	0x00001C	IFS0<4>	IEC0<4>	IPC1<2:0>	
IC2 – Input Capture 2	13	5	0x00001E	IFS0<5>	IEC0<5>	IPC1<6:4>	
OC2 – Output Compare 2	14	6	0x000020	IFS0<6>	IEC0<6>	IPC1<10:8>	
T2 – Timer2	15	7	0x000022	IFS0<7>	IEC0<7>	IPC1<14:12>	
T3 – Timer3	16	8	0x000024	IFS0<8>	IEC0<8>	IPC2<2:0>	
SPI1E – SPI1 Fault	17	9	0x000026	IFS0<9>	IEC0<9>	IPC2<6:4>	
SPI1 – SPI1 Transfer Done	18	10	0x000028	IFS0<10>	IEC0<10>	IPC2<10:8>	
U1RX – UART1 Receiver	19	11	0x00002A	IFS0<11>	IEC0<11>	IPC2<14:12>	
U1TX – UART1 Transmitter	20	12	0x00002C	IFS0<12>	IEC0<12>	IPC3<2:0>	
AD1 – ADC1 Convert Done	21	13	0x00002E	IFS0<13>	IEC0<13>	IPC3<6:4>	
DMA1 – DMA Channel 1	22	14	0x000030	IFS0<14>	IEC0<14>	IPC3<10:8>	
Reserved	23	15	0x000032		—	_	
SI2C1 – I2C1 Slave Event	24	16	0x000034	IFS1<0>	IEC1<0>	IPC4<2:0>	
MI2C1 – I2C1 Master Event	25	17	0x000036	IFS1<1>	IEC1<1>	IPC4<6:4>	
CM – Comparator Combined Event	26	18	0x000038	IFS1<2>	IEC1<2>	IPC4<10:8>	
CN – Input Change Interrupt	27	19	0x00003A	IFS1<3>	IEC1<3>	IPC4<14:12>	
INT1 – External Interrupt 1	28	20	0x00003C	IFS1<4>	IEC1<4>	IPC5<2:0>	
Reserved	29-31	21-23	0x00003E- 0x00042	—	—	_	
DMA2 – DMA Channel 2	32	24	0x000044	IFS1<8>	IEC1<8>	IPC6<2:0>	
OC3 – Output Compare 3	33	25	0x000046	IFS1<9>	IEC1<9>	IPC6<6:4>	
OC4 – Output Compare 4	34	26	0x000048	IFS1<10>	IEC1<10>	IPC6<10:8>	
T4 – Timer4	35	27	0x00004A	IFS1<11>	IEC1<11>	IPC6<14:12>	
T5 – Timer5	36	28	0x00004C	IFS1<12>	IEC1<12>	IPC7<2:0>	
INT2 – External Interrupt 2	37	29	0x00004E	IFS1<13>	IEC1<13>	IPC7<6:4>	
U2RX – UART2 Receiver	38	30	0x000050	IFS1<14>	IEC1<14>	IPC7<10:8>	
U2TX – UART2 Transmitter	39	31	0x000052	IFS1<15>	IEC1<15>	IPC7<14:12>	
SPI2E – SPI2 Fault	40	32	0x000054	IFS2<0>	IEC2<0>	IPC8<2:0>	
SPI2 – SPI2 Transfer Done	41	33	0x000056	IFS2<1>	IEC2<1>	IPC8<6:4>	
C1RX – CAN1 RX Data Ready ⁽¹⁾	42	34	0x000058	IFS2<2>	IEC2<2>	IPC8<10:8>	
C1 – CAN1 Event ⁽¹⁾	43	35	0x00005A	IFS2<3>	IEC2<3>	IPC8<14:12>	
DMA3 – DMA Channel 3	44	36	0x00005C	IFS2<4>	IEC2<4>	IPC9<2:0>	
IC3 – Input Capture 3	45	37	0x00005E	IFS2<5>	IEC2<5>	IPC9<6:4>	
IC4 – Input Capture 4	46	38	0x000060	IFS2<6>	IEC2<6>	IPC9<10:8>	
Reserved	47-56	39-48	0x000062- 0x000074	—	_	—	
SI2C2 – I2C2 Slave Event	57	49	0x000076	IFS3<1>	IEC3<1>	IPC12<6:4>	
MI2C2 – I2C2 Master Event	58	50	0x000078	IFS3<2>	IEC3<2>	IPC12<10:8>	

TABLE 7-1: INTERRUPT VECTOR DETAILS

Note 1: This interrupt source is available on dsPIC33EP64GP50X and dsPIC33EP64MC50X devices only.

2: This interrupt source is available on dsPIC33EP64MC20X/50X and PIC24EP64MC20X devices only.

Interrupt Source	Vector		Interrupt Bit Location			
interrupt Source	Number		Address	Flag	Enable	Priority
Reserved	59-64	51-56	0x00007A- 0x000084	_		—
PSEM – PWM Special Event Match ⁽²⁾	65	57	0x000086	IFS3<9>	IEC3<9>	IPC14<6:4>
QEI1 – QEI1 Position Counter Compare ⁽²⁾	66	58	0x000088	IFS3<10>	IEC3<10>	IPC14<10:8>
Reserved	67-72	59-64	0x00008A- 0x000094	—	_	—
U1E – UART1 Error Interrupt	73	65	0x000096	IFS4<1>	IEC4<1>	IPC16<6:4>
U2E – UART2 Error Interrupt	74	66	0x000098	IFS4<2>	IEC4<2>	IPC16<10:8>
CRC – CRC Generator Interrupt	75	67	0x00009A	IFS4<3>	IEC4<3>	IPC16<14:12>
Reserved	76-77	68-69	0x00009C- 0x00009E	—	_	—
C1TX – CAN1 TX Data Request ⁽¹⁾	78	70	0x000A0	IFS4<6>	IEC4<6>	IPC17<10:8>
Reserved	79-84	71-76	0x0000A2 - 0x0000AC	_	_	—
CTMU – CTMU Interrupt	85	77	0x0000AE	IFS5<13>	IEC4<13>	IPC19<6:4>
Reserved	86-101	78-93	0x0000B0- 0x0000CE	_	_	—
PWM1 – PWM Generator 1 ⁽²⁾	102	94	0x0000D0	IFS5<14>	IEC5<14>	IPC23<10:8>
PWM2 – PWM Generator 2 ⁽²⁾	103	95	0x0000D2	IFS5<15>	IEC5<15>	IPC23<14:12>
PWM3 – PWM Generator 3 ⁽²⁾	104	96	0x0000D4	IFS6<0>	IEC6<0>	IPC24<2:0>
Reserved	105-149	97-141	0x0001D6 - 0x00012E	_		—
ICD – ICD Application	150	142	0x000142	IFS8<14>	IEC8<14>	IPC35<10:8>
JTAG – JTAG Programming	151	143	0x000130	IFS8<15>	IEC8<15>	IPC35<14:12>
Reserved	152	144	0x000134	—	_	—
PTGSTEP – PTG Step	153	145	0x000136	IFS9<1>	IEC9<1>	IPC36<6:4>
PTGWDT – PTG Watchdog Time-out	154	146	0x000138	IFS9<2>	IEC9<2>	IPC36<10:8>
PTG0 – PTG Interrupt 0	155	147	0x00013A	IFS9<3>	IEC9<3>	IPC36<14:12>
PTG1 – PTG Interrupt 1	156	148	0x00013C	IFS9<4>	IEC9<4>	IPC37<2:0>
PTG2 – PTG Interrupt 2	157	149	0x00013E	IFS9<5>	IEC9<5>	IPC37<6:4>
PTG3 – PTG Interrupt 3	158	150	0x000140	IFS9<6>	IEC9<6>	IPC37<10:8>
Reserved	159-245	151-245	0x000142- 0x0001FE	—	—	—

TABLE 7-1: INTERRUPT VECTOR DETAILS (CONTINUED)

Note 1: This interrupt source is available on dsPIC33EP64GP50X and dsPIC33EP64MC50X devices only.

2: This interrupt source is available on dsPIC33EP64MC20X/50X and PIC24EP64MC20X devices only.

7.3 Interrupt Control and Status Registers

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X devices implement the following registers for the interrupt controller:

- INTCON1
- INTCON2
- INTCON3
- INTCON4
- INTTREG

7.3.1 INTCON1 THROUGH INTCON4

Global interrupt control functions are controlled from INTCON1, INTCON2, INTCON3 and INTCON4.

INTCON1 contains the Interrupt Nesting Disable bit (NSTDIS) as well as the control and status flags for the processor trap sources.

The INTCON2 register controls external interrupt request signal behavior and the use of the alternate vector table. This register also contains the General Interrupt Enable bit (GIE).

INTCON3 contains the status flags for the DMA, and DO stack overflow status trap sources.

The INTCON4 register contains the software generated hard trap status bit (SGHT).

7.3.2 IFSx

The IFS registers maintain all of the interrupt request flags. Each source of interrupt has a status bit, which is set by the respective peripherals or external signal and is cleared via software.

7.3.3 IECx

The IEC registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals.

7.3.4 IPCx

The IPC registers are used to set the interrupt priority level for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels.

7.3.5 INTTREG

The INTTREG register contains the associated interrupt vector number and the new CPU interrupt priority level, which are latched into vector number (VECNUM<6:0>) and Interrupt level bit (ILR<3:0>) fields in the INTTREG register. The new interrupt priority level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence as they are listed in Table 7-1. For example, the INT0 (External Interrupt 0) is shown as having vector number 8 and a natural order priority of 0. Thus, the INT0IF bit is found in IFS0<0>, the INT0IE bit in IEC0<0> and the INT0IP bits in the first position of IPC0 (IPC0<2:0>).

7.3.6 STATUS/CONTROL REGISTERS

Although these registers are not specifically part of the interrupt control hardware, two of the CPU Control registers contain bits that control interrupt functionality. For more information on these registers refer to **Section 2.** "CPU" (DS70359) in the "dsPIC33E/ PIC24E Family Reference Manual".

- The CPU STATUS register, SR, contains the IPL<2:0> bits (SR<7:5>). These bits indicate the current CPU interrupt priority level. The user software can change the current CPU priority level by writing to the IPL bits.
- The CORCON register contains the IPL3 bit which, together with IPL<2:0>, also indicates the current CPU priority level. IPL3 is a read-only bit so that trap events cannot be masked by the user software.

All Interrupt registers are described in Register 7-3 through Register 7-7 in the following pages.

R/W-0	R/W-0	R/W-0	R/W-0	R/C-0	R/C-0	R -0	R/W-0
OA	OB	SA	SB	OAB	SAB	DA	DC
bit 15				-			bit 8
R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
	IPL<2:0> ⁽²⁾		RA	N	OV	Z	С
bit 7				-			bit 0
Legend:				U = Unimplemented bit, read as '0'			
R = Readable bit W = Writable		W = Writable I	bit	C = Clearable bit			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

REGISTER 7-1: SR: CPU STATUS REGISTER⁽¹⁾

bit 7-5	IPL<2:0>: CPU Interrupt Priority Level Status bits ^(2,3)
	111 = CPU Interrupt Priority Level is 7 (15). User interrupts disabled
	110 = CPU Interrupt Priority Level is 6 (14)
	101 = CPU Interrupt Priority Level is 5 (13)
	100 = CPU Interrupt Priority Level is 4 (12)
	011 = CPU Interrupt Priority Level is 3 (11)
	010 = CPU Interrupt Priority Level is 2 (10)
	001 = CPU Interrupt Priority Level is 1 (9)
	000 = CPU Interrupt Priority Level is 0 (8)

Note 1: For complete register details, see Register 3-1.

2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL, if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.

3: The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1.

REGISTER 7-2: CORCO	I: CORE CONTROL REGISTER ⁽¹⁾
---------------------	---

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0
VAR	—	US<	:1:0>	EDT		DL<2:0>	
bit 15		·			•		bit 8
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R-0	R/W-0	R/W-0
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	SFA	RND	IF
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			

bit 15	VAR: Variable Exception Processing Latency Control bit 1 = Variable exception processing enabled 0 = Fixed exception processing enabled
bit 3	IPL3: CPU Interrupt Priority Level Status bit 3 ⁽²⁾ 1 = CPU interrupt priority level is greater than 7 0 = CPU interrupt priority level is 7 or less

Note 1: For complete register details, see Register 3-2.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
NSTDIS	OVAERR ⁽¹⁾	OVBERR ⁽¹⁾	COVAERR ⁽¹⁾	COVBERR ⁽¹⁾	OVATE ⁽¹⁾	OVBTE ⁽¹⁾	COVTE ⁽¹⁾
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
SFTACERR ⁽	1) DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	—
bit 7							bit C
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpleme	ented bit, read	as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clear	ed	x = Bit is unk	nown
bit 15	1 = Interrupt 0 = Interrupt	errupt Nesting nesting is disa nesting is ena	bled bled	(4)			
bit 14	1 = Trap was	s caused by ov	Overflow Trap F erflow of Accur y overflow of A	mulator A			
bit 13	1 = Trap was	s caused by ov	Dverflow Trap F erflow of Accur y overflow of A	mulator B			
bit 12	1 = Trap was	s caused by ca	tastrophic over	Overflow Trap Fla flow of Accumula overflow of Accu	ator A		
bit 11	1 = Trap was	s caused by ca	tastrophic over	Overflow Trap Fl flow of Accumula overflow of Accu	ator B		
bit 10		rflow of Accum	erflow Trap En nulator A	able bit ⁽¹⁾			
bit 9		rflow of Accum	verflow Trap En nulator B	able bit ⁽¹⁾			
bit 8		catastrophic ov	flow Trap Enal verflow of Accu	ole bit ⁽¹⁾ mulator A or B e	nabled		
bit 7	1 = Math erro	 SFTACERR: Shift Accumulator Error Status bit⁽¹⁾ 1 = Math error trap was caused by an invalid accumulator shift 0 = Math error trap was not caused by an invalid accumulator shift 					
bit 6	1 = Math erro	DIV0ERR: Divide-by-zero Error Status bit 1 = Math error trap was caused by a divide by zero 0 = Math error trap was not caused by a divide by zero					
bit 5	1 = DMAC tr	DMAC Trap Fl ap has occurre ap has not occ	ed				
bit 4	MATHERR: 1 = Math erro	Math Error Sta or trap has occ or trap has not	tus bit :urred				

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1

Note 1: This bit is available on dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices only.

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1 (CONTINUED)

bit 3	ADDRERR: Address Error Trap Status bit 1 = Address error trap has occurred 0 = Address error trap has not occurred
bit 2	STKERR: Stack Error Trap Status bit 1 = Stack error trap has occurred 0 = Stack error trap has not occurred
bit 1	OSCFAIL: Oscillator Failure Trap Status bit 1 = Oscillator failure trap has occurred 0 = Oscillator failure trap has not occurred
bit 0	Unimplemented: Read as '0'

Note 1: This bit is available on dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices only.

R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
GIE	DISI	SWTRAP			_	_	_
it 15	·						bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	—	—	—	_	INT2EP	INT1EP	INT0EP
bit 7							bit C
Legend: R = Readabl	le hit	W = Writable b	it	II = I Inimplei	mented bit, read	1 as 'N'	
-n = Value at		'1' = Bit is set	11	'0' = Bit is cle		x = Bit is unkr	
	IFUK	I – DILIS SEL			eareu		IOWIT
bit 14 bit 13	<pre>1 = Interrupts and Associated IE bits are enabled 0 = Interrupts are disabled, but traps are still enabled DISI: DISI Instruction Status bit 1 = DISI instruction is active 0 = DISI instruction is not active SWTRAP: Software Trap Status bit 1 = Software trap is enabled 0 = Software trap is disabled</pre>						
bit 12-3	Unimplemer	ted: Read as '0	3				
bit 2	INT2EP: External Interrupt 2 Edge Detect Polarity Select bit 1 = Interrupt on negative edge 0 = Interrupt on positive edge						
bit 1	INT1EP: External Interrupt 1 Edge Detect Polarity Select bit 1 = Interrupt on negative edge 0 = Interrupt on positive edge						
bit 0	 INTOEP: External Interrupt 0 Edge Detect Polarity Select bit 1 = Interrupt on negative edge 0 = Interrupt on positive edge 						

REGISTER 7-4: INTCON2: INTERRUPT CONTROL REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	_	_	_	_	_	_	_
hit 15	_						
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—	_	DAE	DOOVR	—	—	—	—
bit 7							bit 0

INTCON3: INTERRUPT CONTROL REGISTER 3 REGISTER 7-5:

Legend:			
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-6	Unimplemented: Read as '0'
bit 5	DAE: DMA Address Error Soft Trap Status bit 1 = DMA Address error soft trap has occurred 0 = DMA Address error soft trap has not occurred
bit 4	DOOVR: Do Stack Overflow Soft Trap Status bit 1 = Do stack overflow soft trap has occurred 0 = Do stack overflow soft trap has not occurred
bit 3-0	Unimplemented: Read as '0'

REGISTER 7-6: INTCON4: INTERRUPT CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—	—	—	—	SGHT
bit 7							bit 0
Legend:							
D - Doodoblo I	hit	M = M/ritoblo	hit	II – Unimplo	monted bit read	oo 'O'	

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-1 Unimplemented: Read as '0'

SGHT: Software Generated Hard Trap Status bit

1 = Software generated hard trap has occurred

0 = Software generated hard trap has not occurred

bit 0

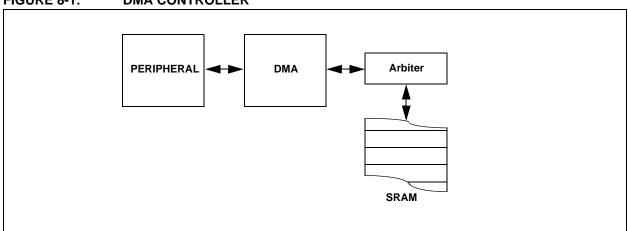
U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0			
—		—	_		ILF	२<3:0>				
bit 15							bit 8			
U-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
—				VECNUM<7:0	>					
bit 7							bit 0			
Legend:										
R = Readab	le bit	W = Writable b	oit	U = Unimpler	nented bit, re	ad as '0'				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unkno			nown			
bit 15-12	Unimpleme	nted: Read as '0	,							
bit 11-8	ILR<3:0>: N	ew CPU Interrup	t Priority Lev	vel bits						
	1111 = CPU	1111 = CPU Interrupt Priority Level is 15								
	•									
	•									
		Interrupt Priority Interrupt Priority								
bit 7	Unimpleme	nted: Read as '0	,							
bit 6-0	VECNUM<6	:0>: Vector Num	ber of Pendi	ng Interrupt bits						
	1111111 = 	nterrupt vector p	ending is nu	mber 127						
	•									
	•									
	• 0000001 = I	nterrupt vector p	endina is nu	mber 9						
		0000001 = Interrupt vector pending is number 9 0000000 = Interrupt vector pending is number 8								
			-							

REGISTER 7-7: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

8.0 DIRECT MEMORY ACCESS (DMA)

- Note 1: This data sheet summarizes the features dsPIC33EPXXXGP50X, of the dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 22. "Direct Memory Access (DMA)" (DS70348) of the "dsPIC33E/PIC24E Family Reference Manual', which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

FIGURE 8-1: DMA CONTROLLER


The DMA controller transfers data between peripheral data registers and data space SRAM

In addition, DMA can access the entire data memory space. The Data Memory Bus Arbiter is utilized when either the CPU or DMA attempt to access SRAM, resulting in potential DMA or CPU stalls.

The DMA controller supports 4 independent channels. Each channel can be configured for transfers to or from selected peripherals. Some of the peripherals supported by the DMA controller include:

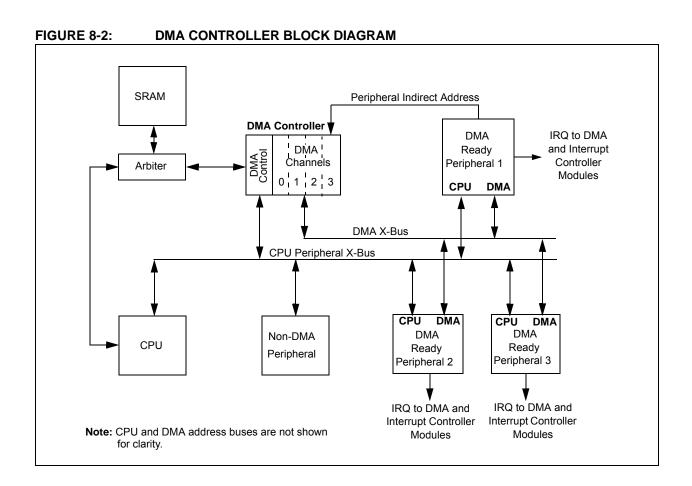
- ECAN[™]
- Analog-to-Digital Converter (ADC)
- Serial Peripheral Interface (SPI)
- UART
- Input Capture
- Output Compare

Refer to Table 8-1 for a complete list of supported peripherals.

In addition, DMA transfers can be triggered by Timers as well as external interrupts. Each DMA channel is unidirectional. Two DMA channels must be allocated to read and write to a peripheral. If more than one channel receive a request to transfer data, a simple fixed priority scheme, based on channel number, dictates which channel completes the transfer and which channel, or channels, are left pending. Each DMA channel moves a block of data, after which it generates an interrupt to the CPU to indicate that the block is available for processing.

The DMA controller provides these functional capabilities:

- Four DMA channels
- Register Indirect With Post-increment Addressing mode
- Register Indirect Without Post-increment Addressing mode


- Peripheral Indirect Addressing mode (peripheral generates destination address)
- CPU interrupt after half or full-block transfer complete
- · Byte or word transfers
- · Fixed priority channel arbitration
- Manual (software) or Automatic (peripheral DMA requests) transfer initiation
- · One-Shot or Auto-Repeat block transfer modes
- Ping-Pong mode (automatic switch between two SRAM start addresses after each block transfer complete)
- DMA request for each channel can be selected from any supported interrupt source

Debug support features

The peripherals that can utilize DMA are listed in Table 8-1.

Peripheral to DMA Association	DMAxREQ Register IRQSEL<7:0> Bits	DMAxPAD Register (Values to Read from Peripheral)	DMAxPAD Register (Values to Write to Peripheral)	
INT0 – External Interrupt 0	00000000	—		
IC1 – Input Capture 1	0000001	0x0144 (IC1BUF)	—	
IC2 – Input Capture 2	00000101	0x014C (IC2BUF)		
IC3 – Input Capture 3	00100101	0x0154 (IC3BUF)		
IC4 – Input Capture 4	00100110	0x015C (IC4BUF)		
OC1 – Output Compare 1	0000010	_	0x0906 (OC1R) 0x0904 (OC1RS)	
OC2 – Output Compare 2	00000110	_	0x0910 (OC2R) 0x090E (OC2RS)	
OC3 – Output Compare 3	00011001	_	0x091A (OC3R) 0x0918 (OC3RS)	
OC4 – Output Compare 4	00011010	—	0x0924 (OC4R) 0x0922 (OC4RS)	
TMR2 – Timer2	00000111	—	_	
TMR3 – Timer3	00001000	—	_	
TMR4 – Timer4	00011011	—	_	
TMR5 – Timer5	00011100	_	_	
SPI1 Transfer Done	00001010	0x0248 (SPI1BUF)	0x0248 (SPI1BUF)	
SPI2 Transfer Done	00100001	0x0268 (SPI2BUF)	0x0268 (SPI2BUF)	
UART1RX – UART1 Receiver	00001011	0x0226 (U1RXREG)	_	
UART1TX – UART1 Transmitter	00001100		0x0224 (U1TXREG)	
UART2RX – UART2 Receiver	00011110	0x0236 (U2RXREG)	_	
UART2TX – UART2 Transmitter	00011111	_	0x0234 (U2TXREG)	
ECAN1 – RX Data Ready	00100010	0x0440 (C1RXD)		
ECAN1 – TX Data Request	01000110		0x0442 (C1TXD)	
ADC1 – ADC1 Convert Done	00001101	0x0300 (ADC1BUF0)	_	

TABLE 8-1: DMA CHANNEL TO PERIPHERAL ASSOCIATIONS

8.1 DMAC Registers

Each DMAC Channel x (where x = 0 through 3) contains the following registers:

- 16-bit DMA Channel Control register (DMAxCON)
- 16-bit DMA Channel IRQ Select register (DMAxREQ)
- 32-bit DMA RAM Primary Start Address register (DMAxSTA)
- 32-bit DMA RAM Secondary Start Address register (DMAxSTB)
- 16-bit DMA Peripheral Address register (DMAxPAD)
- 14-bit DMA Transfer Count register (DMAxCNT)

Additional status registers (DMAPWC, DMARQC, DMAPPS, DMALCA, and DSADR) are common to all DMAC channels. These status registers provide information on write and request collisions, as well as on last address and channel access information.

The interrupt flags (DMAxIF) are located in an IFSx register in the interrupt controller. The corresponding interrupt enable control bits (DMAxIE) are located in an IECx register in the interrupt controller, and the corresponding interrupt priority control bits (DMAxIP) are located in an IPCx register in the interrupt controller.

REGISTER 8-1: DMAXCON: DMA CHANNEL X CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
CHEN	SIZE	DIR	HALF	NULLW	—	—	—
bit 15				•			bit 8

U-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0
—	—	AMODE<1:0>		—	—	MODE	=<1:0>
bit 7							bit 0

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15	CHEN: Channel Enable bit 1 = Channel enabled 0 = Channel disabled
bit 14	SIZE: Data Transfer Size bit 1 = Byte 0 = Word
bit 13	 DIR: Transfer Direction bit (source/destination bus select) 1 = Read from RAM address, write to peripheral address 0 = Read from Peripheral address, write to RAM address
bit 12	 HALF: Block Transfer Interrupt Select bit 1 = Initiate interrupt when half of the data has been moved 0 = Initiate interrupt when all of the data has been moved
bit 11	 NULLW: Null Data Peripheral Write Mode Select bit 1 = Null data write to peripheral in addition to RAM write (DIR bit must also be clear) 0 = Normal operation
bit 10-6	Unimplemented: Read as '0'
bit 5-4	AMODE<1:0>: DMA Channel Addressing Mode Select bits 11 = Reserved 10 = Peripheral Indirect Addressing mode 01 = Register Indirect without Post-Increment mode 00 = Register Indirect with Post-Increment mode
bit 3-2	Unimplemented: Read as '0'
bit 1-0	MODE<1:0>: DMA Channel Operating Mode Select bits 11 = One-Shot, Ping-Pong modes enabled (one block transfer from/to each DMA buffer) 10 = Continuous, Ping-Pong modes enabled 01 = One-Shot, Ping-Pong modes disabled 00 = Continuous, Ping-Pong modes disabled

R/S-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
FORCE ⁽¹⁾	_	_	—	—	_	_	—
bit 15							bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			IRQSE	EL<7:0>			
bit 7							bit
Legend:							
R = Readable		W = Writable b	bit		nented bit, read		
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	lown
bit 15	1 = Force a si	e DMA Transfe ingle DMA tran	sfer (Manual				
		DMA transfer	-	DMA Request			
bit 14-8	Unimplement	ed: Read as '0	,				
	01000110 = E 00100101 = F 00100010 = E 00100001 = S 0001111 = C 0001110 = C 0001100 = T 0001101 = T 0001101 = C 0000100 = C 0000101 = T 0000101 = T 00000101 = T 00000101 = C 00000101 = F 00000101 = C 00000010 = C	: DMA Periphe ECAN1 – TX Da C4 – Input Cap C3 – Input Cap ECAN1 – RX D SPI2 Transfer E JART2TX – UA JART2RX – UA IMR5 – Timer5 IMR4 – Timer4 DC4 – Output C DC3 – Output C ADC1 – ADC1 JART1TX – UA JART1RX – UA SPI1 – Transfer IMR3 – Timer3 IMR2 – Timer2 DC2 – Output C C2 – Input Cap DC1 – Input Cap NT0 – External	ata Request ⁽² oture 4 oture 3 ata Ready ⁽²⁾ Oone RT2 Transm ART2 Receive Compare 4 Compare 3 Convert done RT1 Transm ART1 Receive Done Compare 2 Compare 2 Compare 1 oture 1	2) iitter er e			

REGISTER 8-2: DMAXREQ: DMA CHANNEL x IRQ SELECT REGISTER

- **Note 1:** The FORCE bit cannot be cleared by user software. The FORCE bit is cleared by hardware when the forced DMA transfer is complete or the channel is disabled (CHEN = 0).
 - 2: This selection is available in dsPIC33EPXXXGP/MC50X devices only.

U-0	U-0	U-0	U-0	R/W-0	U-0	U-0	U-0
_	_	—	—	—	—	_	—
bit 15		•					bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STA<	23:16>			
bit 7							bit 0
l egend:							

REGISTER 8-3: DMAXSTAH: DMA CHANNEL X START ADDRESS REGISTER A (HIGH)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 STA<23:16>: Primary Start Address bits (source or destination)

REGISTER 8-4: DMAXSTAL: DMA CHANNEL x START ADDRESS REGISTER A (LOW)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STA	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STA	A<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimplemented bit, read as '0'			
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknowr		nown	

bit 15-0 STA<15:0>: Primary Start Address bits (source or destination)

U-0	U-0	U-0	U-0	R/W-0	U-0	U-0	U-0
—	—	—	_		—	—	—
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
STB<23:16>							

REGISTER 8-5: DMAXSTBH: DMA CHANNEL X START ADDRESS REGISTER B (HIGH)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7

bit 7-0 STB<23:16>: Primary Start Address bits (source or destination)

REGISTER 8-6: DMAXSTBL: DMA CHANNEL x START ADDRESS REGISTER B (LOW)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STB	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STE	3<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'			d as '0'				
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown

bit 15-0 STB<15:0>: Secondary Start Address Offset bits (source or destination)

© 2011 Microchip Technology Inc.

bit 0

bit 7							bit 0
hit 7			PAD)<7:0>			hit 0
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15							bit 8
			PAD	<15:8>			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

REGISTER 8-7: DMAXPAD: DMA CHANNEL x PERIPHERAL ADDRESS REGISTER⁽¹⁾

bit 15-0 PAD<15:0>: Peripheral Address Register bits

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

REGISTER 8-8: DMAXCNT: DMA CHANNEL x TRANSFER COUNT REGISTER⁽¹⁾

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	_		CNT<13:8> ⁽²⁾						
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			CNT<	:7:0> ⁽²⁾					
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'				d as '0'					
-n = Value at F	POR	'1' = Bit is set '0' = Bit is cleared x = Bit is unknow			nown				

bit 15-14 Unimplemented: Read as '0'

bit 13-0 CNT<13:0>: DMA Transfer Count Register bits⁽²⁾

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

2: The number of DMA transfers = CNT<13:0> + 1.

U-0	U-0	U-0	U-0	R/W-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			DSADR	<23:16>			
bit 7							bit 0

REGISTER 8-9: DSADRH: MOST RECENT RAM HIGH ADDRESS REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 DSADR<23:16>: Most Recent DMA Address Accessed by DMA bits

REGISTER 8-10: DSADRL: MOST RECENT RAM LOW ADDRESS REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			DSA	DR<15:8>			
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			DSA	DR<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			oit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set			'0' = Bit is cleare	ed	x = Bit is unkr	nown	

bit 15-0 DSADR<15:0>: Most Recent DMA Address Accessed by DMA bits

	REGIS	TER					
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	_	_	—	—	_
bit 15							bit 8
U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
—	—		—	PWCOL3	PWCOL2	PWCOL1	PWCOL0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is u			nown
bit 15-4	Unimplemen	ted: Read as 'd)'				
bit 3		nannel 3 Periph	eral Write Co	llision Flag bit			
		lision detected					
		collision detect					
bit 2		nannel 2 Periph Ilision detected	eral Write Co	llision Flag bit			
		collision detected	ed				
bit 1		annel 1 Periph		llision Flag bit			
		llision detected					
	0 = No write	collision detect	ed				
bit 0		annel 0 Periph		llision Flag bit			
		llision detected					
	0 = INO Write	collision detect	eu				

REGISTER 8-11: DMAPWC: DMA PERIPHERAL WRITE COLLISION STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
	—	—	—	_	—	—	—	
bit 15							bit 8	
U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0	
			—	RQCOL3	RQCOL2	RQCOL1	RQCOL0	
bit 7							bit 0	
Legend:								
R = Readab	le bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unki		nown		
bit 15-4	Unimplemen	ted: Read as '	0'					
bit 3		annel 3 Transf						
		RCE and Interr		quest collision	detected			
1.1.0	-	st collision det						
bit 2		annel 2 Transfe RCE and Interi						
		st collision det	•		delected			
bit 1	·							
		RCE and Interi						
	0 = No request collision detected							

REGISTER 8-12: DMARQC: DMA REQUEST COLLISION STATUS REGISTER

bit 0	RQCOL0: Channel 0 Transfer Request Collision Flag bit
	1 = User FORCE and Interrupt-based request collision detected
	0 = No request collision detected

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_		—	_		—		—
bit 15							bit 8
U-0	U-0	U-0	U-0	R-1	R-1	R-1	R-1
—		—	—		LSTCH	H<3:0>	
bit 7							bit 0
Legend:							
R = Readat	ole bit	W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15-4	Unimplemen	ted: Read as '	0'				
bit 3-0	3-0 LSTCH<3:0>: Last DMAC Channel Active Status bits 1111 = No DMA transfer has occurred since system Reset 1110 = Reserved						
	•						
	•						
	•						
0100 = Reserved 0011 = Last data transfer was handled by Channel 3 0010 = Last data transfer was handled by Channel 2							

DMALCA: DMA LAST CHANNEL ACTIVE DMA STATUS REGISTER REGISTER 8-13:

0001 = Last data transfer was handled by Channel 1

0000 = Last data transfer was handled by Channel 0

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—		—
bit 15							bit 8
U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
—	—	—	—	PPST3	PPST2	PPST1	PPST0

REGISTER 8-14: DMAPPS: DMA PING-PONG STATUS REGISTER

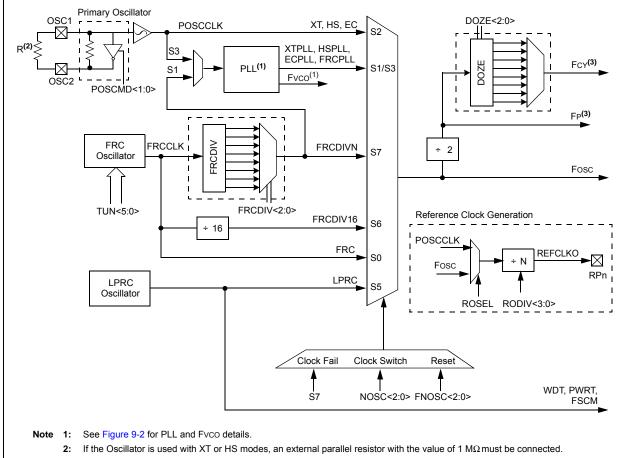
bit :	7

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-4	Unimplemented: Read as '0'
bit 3	 PPST3: Channel 3 Ping-Pong Mode Status Flag bit 1 = DMASTB3 register selected 0 = DMASTA3 register selected
bit 2	 PPST2: Channel 2 Ping-Pong Mode Status Flag bit 1 = DMASTB2 register selected 0 = DMASTA2 register selected
bit 1	 PPST1: Channel 1 Ping-Pong Mode Status Flag bit 1 = DMASTB1 register selected 0 = DMASTA1 register selected
bit 0	 PPST0: Channel 0 Ping-Pong Mode Status Flag bit 1 = DMASTB0 register selected 0 = DMASTA0 register selected

bit 0

NOTES:


9.0 OSCILLATOR CONFIGURATION

- Note 1: This data sheet summarizes the features dsPIC33EPXXXGP50X of the dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, to Section 7. "Oscillator" refer (DS70580) of the "dsPIC33E/PIC24E Family Reference Manual', which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X, and PIC24EPXXXGP/MC20X oscillator system provides:

- On-chip Phase-Locked Loop (PLL) to boost internal operating frequency on select internal and external oscillator sources
- On-the-fly clock switching between various clock sources
- · Doze mode for system power savings
- Fail-Safe Clock Monitor (FSCM) that detects clock failure and permits safe application recovery or shutdown
- Configuration bits for clock source selection

A simplified diagram of the oscillator system is shown in Figure 9-1.

3: The term FP refers to the clock source for all peripherals, while FCY refers to the clock source for the CPU. Throughout this document, FCY and FP are used interchangeably, except in the case of DOZE mode. FP and FCY will be different when DOZE mode is used with a doze ratio of 1:2 or lower.

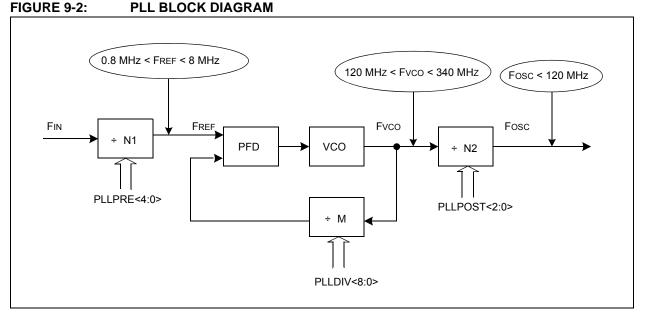
FIGURE 9-1: OSCILLATOR SYSTEM DIAGRAM

9.1 CPU Clocking System

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X, and PIC24EPXXXGP/MC20X family of devices provide seven system clock options:

- Fast RC (FRC) Oscillator
- FRC Oscillator with Phase-Locked Loop (PLL)
- FRC Oscillator with postscaler
- Primary (XT, HS or EC) Oscillator
- · Primary Oscillator with PLL
- · Low-Power RC (LPRC) Oscillator

Instruction execution speed or device operating frequency, FCY, is given by Equation 9-1.


EQUATION 9-1: DEVICE OPERATING FREQUENCY

FCY = Fosc/2

Figure 9-2 is a block diagram of the PLL module.

Equation 9-2 provides the relation between input frequency (FIN) and output frequency (FOSC).

Equation 9-3 provides the relation between input frequency (FIN) and VCO frequency (FVCO).

EQUATION 9-2: Fosc CALCULATION

$$Fosc = FIN \times \left(\frac{M}{N1 \times N2}\right) = FIN \times \left(\frac{(PLLDIV + 2)}{(PLLPRE + 2) \times 2(PLLPOST + 1)}\right)$$

Where,

N1 = PLLPRE + 2 $N2 = 2 \times (PLLPOST + 1)$ M = PLLDIV + 2

EQUATION 9-3: Fvco CALCULATION

$$FVCO = FIN \times \left(\frac{M}{N1}\right) = FIN \times \left(\frac{(PLLDIV + 2)}{(PLLPRE + 2)}\right)$$

Oscillator Mode	Oscillator Source	POSCMD<1:0>	FNOSC<2:0>	See Note				
Fast RC Oscillator with Divide-by-N (FRCDIVN)	Internal	xx	111	1, 2				
Low-Power RC Oscillator (LPRC)	Internal	xx	101	1				
Primary Oscillator (HS) with PLL (HSPLL)	Primary	10	011	_				
Primary Oscillator (XT) with PLL (XTPLL)	Primary	01	011	_				
Primary Oscillator (EC) with PLL (ECPLL)	Primary	00	011	1				
Primary Oscillator (HS)	Primary	10	010	_				
Primary Oscillator (XT)	Primary	01	010	_				
Primary Oscillator (EC)	Primary	00	010	1				
Fast RC Oscillator (FRC) with divide-by-N and PLL (FRCPLL)	Internal	xx	001	1				
Fast RC Oscillator (FRC)	Internal	xx	000	1				

TABLE 9-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION

Note 1: OSC2 pin function is determined by the OSCIOFNC Configuration bit.

2: This is the default oscillator mode for an unprogrammed (erased) device.

U-0	R-0	R-0	R-0	U-0	R/W-y	R/W-y	R/W-y		
_		COSC<2:0>				NOSC<2:0>(2)			
bit 15					•		bit		
R/W-0	R/W-0	R-0	U-0	R/C-0	U-0	U-0	R/W-0		
CLKLOC	K IOLOCK	LOCK	—	CF		_	OSWEN		
bit 7							bit		
Legend:		y = Value set	from Configu	ration bits on P	OR				
R = Reada	ble bit	W = Writable	bit	U = Unimplei	mented bit, read	d as '0'			
-n = Value	at POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 15	Unimplement	nted: Read as	ʻ∩'						
bit 14-12	-			bits (read-only	<i>d</i>)				
	111 = Fast R 110 = Fast R 101 = Low-P 100 = Reser 011 = Primar 010 = Primar 001 = Fast R	C Oscillator (F C Oscillator (F Power RC Oscil ved ry Oscillator (X ry Oscillator (X	RC) with Divie RC) with Divie lator (LPRC) T, HS, EC) wit T, HS, EC) RC) with divic	de-by-n de-by-16					
bit 11	Unimplemer	nted: Read as	'0'						
bit 10-8	NOSC<2:0>:	NOSC<2:0>: New Oscillator Selection bits ⁽²⁾							
	110 = Fast R 101 = Low-P 100 = Reser 011 = Primar 010 = Primar 001 = Fast R	ry Oscillator (X ry Oscillator (X	RC) with Divid lator (LPRC) T, HS, EC) wit T, HS, EC) RC) with divid	de-by-16	L (FRCPLL)				
bit 7	CLKLOCK: (Clock Lock Ena	able bit						
	If (FCKS	SM0 = 0), then	clock and PLL		are locked may be modifie ions may be mo				
bit 6	IOLOCK: I/O	Lock Enable	oit						
	1 = I/O Lock 0 = I/O Lock								
bit 5		Lock Status bit	(read-only)						
	1 = Indicates	s that PLL is in	lock, or PLL s	start-up timer is t-up timer is in	satisfied progress or PLL	is disabled			
bit 4	Unimplemer	nted: Read as	'0'						
	Writes to this regis "dsPIC33E/PIC24								
	Direct clock switch This applies to clo mode as a transiti	ock switches in	either directio	n. In these inst	ances, the appl				
-									

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER^(1,3)

3: This register resets only on a Power-on Reset (POR).

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER^(1,3) (CONTINUED)

bit 3	CF: Clock Fail Detect bit (read/clear by application)
	1 = FSCM has detected clock failure

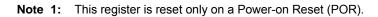
- 0 = FSCM has not detected clock failure
- bit 2-1 Unimplemented: Read as '0'
- bit 0 OSWEN: Oscillator Switch Enable bit
 - 1 = Request oscillator switch to selection specified by NOSC<2:0> bits
 - 0 = Oscillator switch is complete
- Note 1: Writes to this register require an unlock sequence. Refer to **Section 7. "Oscillator"** (DS70580) in the *"dsPIC33E/PIC24E Family Reference Manual"* (available from the Microchip web site) for details.
 - 2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.
 - 3: This register resets only on a Power-on Reset (POR).

R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
ROI		DOZE<2:0> ⁽³⁾		DOZEN ^(1,4)		FRCDIV<2:0>	
bit 15							bit 8
R/W-0	R/W-1	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PLLP	OST<1:0>	—			PLLPRE<4:	0>	
bit 7							bit
Legend:		y = Value set fi	rom Configu	uration bits on PC	R		
R = Readab	le bit	W = Writable b	oit	U = Unimplem	ented bit, re	ad as '0'	
-n = Value a	t POR	'1' = Bit is set		ʻ0' = Bit is clea	red	x = Bit is unkr	nown
bit 15	ROI: Recov	er on Interrupt bit					
		ts will clear the Do ts have no effect o			clock and pe	eripheral clock rat	io is set to 1:
	110 = Fcy o 101 = Fcy o 100 = Fcy o	divided by 2	ult)				
bit 11	DOZEN: Do 1 = DOZE<	bze Mode Enable 2:0> field specifie for clock and perig	s the ratio b			and the processo	or clocks
bit 10-8	111 = FRC 110 = FRC 101 = FRC 100 = FRC 011 = FRC 010 = FRC 001 = FRC	0>: Internal Fast divided by 256 divided by 64 divided by 32 divided by 16 divided by 8 divided by 4 divided by 2 divided by 1 (defa		or Postscaler bits			
bit 7-6	PLLPOST< 11 = Output 10 = Reserv 01 = Output	1:0>: PLL VCO C t divided by 8	Output Divid	er Select bits (als	o denoted a	s 'N2', PLL posts	caler)
bit 5	Unimpleme	ented: Read as '0	3				
Note 1: ⊺	his bit is cleared	d when the ROI bi	it is set and	an interrupt occu	Irs.		
		ets only on a Pow		-			

REGISTER 9-2: CLKDIV: CLOCK DIVISOR REGISTER⁽²⁾

- 3: DOZE<2:0> bits can only be written to when the DOZEN bit is clear. If DOZEN = 1, any writes to DOZE<2:0> are ignored.
 - 4: The DOZEN bit cannot be set if DOZE<2:0> = 000. If DOZE<2:0> = 000, any attempt by user software to set the DOZEN bit is ignored.

REGISTER 9-2: CLKDIV: CLOCK DIVISOR REGISTER⁽²⁾ (CONTINUED)


bit 4-0 PLLPRE<4:0>: PLL Phase Detector Input Divider Select bits (also denoted as 'N1', PLL prescaler) 11111 = Input divided by 33

> : 00001 = Input divided by 3 00000 = Input divided by 2 (default)

- Note 1: This bit is cleared when the ROI bit is set and an interrupt occurs.
 - 2: This register resets only on a Power-on Reset (POR).
 - **3:** DOZE<2:0> bits can only be written to when the DOZEN bit is clear. If DOZEN = 1, any writes to DOZE<2:0> are ignored.
 - 4: The DOZEN bit cannot be set if DOZE<2:0> = 000. If DOZE<2:0> = 000, any attempt by user software to set the DOZEN bit is ignored.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0			
—	—	—	—	—	—	—	PLLDIV<8>			
bit 15							bit 8			
R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0			
			PLLD	IV<7:0>						
bit 7							bit 0			
Legend:										
R = Readabl	R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown				
bit 15-9	Unimplemen	ted: Read as '	0'							
bit 8-0	PLLDIV<8:0>	-: PLL Feedba	ck Divisor bits	(also denoted	as 'M', PLL mul	tiplier)				
	111111111	= 513								
	•									
	•									
	•									
	000110000:	= 50 (default)								
	•									
	•									
	000000010 =	= 1								
	000000001:									
	000000000									

REGISTER 9-3: PLLFBD: PLL FEEDBACK DIVISOR REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_			_				—
it 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			10110	-	<5:0>	10000	1010 0
it 7							bit (
_egend:							
R = Readable b	oit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at P0	OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 5-0	Unimplemented: Read as '0' TUN<5:0>: FRC Oscillator Tuning bits 111111 = Center frequency -0.375% (7.345 MHz) 100001 = Center frequency -11.625% (6.52 MHz) 100000 = Center frequency -12% (6.49 MHz) 011111 = Center frequency + 11.625% (8.23 MHz) 011110 = Center frequency + 11.25% (8.20 MHz) 000001 = Center frequency + 0.375% (7.40 MHz)						

REGISTER 9-4: OSCTUN: FRC OSCILLATOR TUNING REGISTER⁽¹⁾

Note 1: This register resets only on a Power-on Reset (POR).

REGISTER 9	9-5: REFO	CON: REFER	LENCE OSC	ILLATOR CC	NIROL REG	SISTER	
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ROON		ROSSLP	ROSEL		RODIV	/<3:0>(1)	
bit 15				I			bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_		—	—			—	_
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
bit 15		rence Oscillato	-				
		e oscillator out ce oscillator out		n REFCLK ⁽²⁾ pi	in		
bit 14	Unimplemented: Read as '0'						
bit 13	ROSSLP: Reference Oscillator Run in Sleep bit						
		e oscillator outp					
		e oscillator out		-			
bit 12		erence Oscillato					
		r crystal used as th clock used as th					
bit 11-8	-	Reference Os		(4)			
		rence clock divi					
		rence clock divi	•				
		rence clock divi	•				
		rence clock divi rence clock divi	•				
		rence clock divi					
		rence clock divi	, ,				
		rence clock divi	•				
		rence clock divi	•				
		rence clock divi rence clock divi					
		rence clock divi	-				
		rence clock divi	,				
	0010 = Refe	rence clock divi	ded by 4				
		rence clock divi	ded by 2				
	0000 = Refe	rence clock					
	Unimplemer						

REGISTER 9-5: REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER

- **Note 1:** The reference oscillator output must be disabled (ROON = 0) before writing to these bits.
 - 2: This pin is remappable. See Section 11.4 "Peripheral Pin Select" for more information.

10.0 POWER-SAVING FEATURES

- Note 1: This data sheet summarizes the features dsPIC33EPXXXGP50X, of the dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 9. "Watchdog Timer and Power-Saving Modes" (DS70615) of the "dsPIC33E/PIC24E Family Reference Manual', which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X, and PIC24EPXXXGP/MC20X devices provide the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of peripherals being clocked constitutes lower consumed power.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X devices can manage power consumption in four ways:

- Clock frequency
- Instruction-based Sleep and Idle modes
- · Software-controlled Doze mode
- · Selective peripheral control in software

Combinations of these methods can be used to selectively tailor an application's power consumption while still maintaining critical application features, such as timing-sensitive communications.

EXAMPLE 10-1: PWRSAV INSTRUCTION SYNTAX

PWRSAV#SLEEP_MODE; Put the device into Sleep modePWRSAV#IDLE_MODE; Put the device into Idle mode

10.1 Clock Frequency and Clock Switching

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X, and PIC24EPXXXGP/MC20X devices allow a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or highprecision oscillators by simply changing the NOSC bits (OSCCON<10:8>). The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in Section 9.0 "Oscillator Configuration".

10.2 Instruction-Based Power-Saving Modes

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X, and PIC24EPXXXGP/MC20X devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution. Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. The assembler syntax of the PWRSAV instruction is shown in Example 10-1.

Note: SLEEP_MODE and IDLE_MODE are constants defined in the assembler include file for the selected device.

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to "wake up".

10.2.1 SLEEP MODE

The following occur in Sleep mode:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption is reduced to a minimum, provided that no I/O pin is sourcing current
- The Fail-Safe Clock Monitor does not operate, since the system clock source is disabled
- The LPRC clock continues to run in Sleep mode if the WDT is enabled
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode
- Some device features or peripherals can continue to operate. This includes items such as the input change notification on the I/O ports, or peripherals that use an external clock input.
- Any peripheral that requires the system clock source for its operation is disabled

The device wakes up from Sleep mode on any of the these events:

- Any interrupt source that is individually enabled
- Any form of device Reset
- A WDT time-out

On wake-up from Sleep mode, the processor restarts with the same clock source that was active when Sleep mode was entered.

For optimal power savings, the internal regulator and the Flash regulator can be configured to go into Standby when Sleep mode is entered by clearing the VREGS (RCON<8>) and VREGSF (RCON<11>) bits (default configuration).

If the application requires a faster wake-up time, and can accept higher current requirements, the VREGS (RCON<8>) and VREGSF (RCON<11>) bits can be set to keep the internal regulator and the Flash regulator active during Sleep mode.

10.2.2 IDLE MODE

The following occur in Idle mode:

- · The CPU stops executing instructions
- · The WDT is automatically cleared
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 10.4 "Peripheral Module Disable").
- If the WDT or FSCM is enabled, the LPRC also remains active.

The device wakes from Idle mode on any of these events:

- · Any interrupt that is individually enabled
- Any device Reset
- A WDT time-out

On wake-up from Idle mode, the clock is reapplied to the CPU and instruction execution will begin (2-4 clock cycles later), starting with the instruction following the PWRSAV instruction, or the first instruction in the ISR.

All peripherals also have the option to discontinue operation when Idle mode is entered to allow for increased power savings. This option is selectable in the control register of each peripheral. For example, the TSIDL bit in the Timer1 Control register (T1CON<13>).

10.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction is held off until entry into Sleep or Idle mode has completed. The device then wakes up from Sleep or Idle mode.

10.3 Doze Mode

The preferred strategies for reducing power consumption are changing clock speed and invoking one of the power-saving modes. In some circumstances, this cannot be practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed can introduce communication errors, while using a power-saving mode can stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed, while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate.

Doze mode is enabled by setting the DOZEN bit (CLKDIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLKDIV<14:12>). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default setting.

Programs can use Doze mode to selectively reduce power consumption in event-driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU idles, waiting for something to invoke an interrupt routine. An automatic return to full-speed CPU operation on interrupts can be enabled by setting the ROI bit (CLKDIV<15>). By default, interrupt events have no effect on Doze mode operation.

For example, suppose the device is operating at 20 MIPS and the ECAN module has been configured for 500 kbps based on this device operating speed. If the device is placed in Doze mode with a clock frequency ratio of 1:4, the ECAN module continues to communicate at the required bit rate of 500 kbps, but the CPU now starts executing instructions at a frequency of 5 MIPS.

10.4 Peripheral Module Disable

The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled using the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers do not have effect and read values are invalid.

A peripheral module is enabled only if both the associated bit in the PMD register is cleared and the peripheral is supported by the specific dsPIC[®] DSC variant. If the peripheral is present in the device, it is enabled in the PMD register by default.

Note: If a PMD bit is set, the corresponding module is disabled after a delay of one instruction cycle. Similarly, if a PMD bit is cleared, the corresponding module is enabled after a delay of one instruction cycle (assuming the module control registers are already configured to enable module operation).

REGISTER	10-1: PMD1	: PERIPHER		E DISABLE C	ONTROL RE	GISTER 1	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
T5MD	T4MD	T3MD	T2MD	T1MD	QEI1MD ⁽¹⁾	PWMMD ⁽¹⁾	_
bit 15	•						bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	—	C1MD ⁽²⁾	AD1MD
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkn	own
bit 15	1 = Timer5 m	5 Module Disat odule is disable odule is enable	ed				
bit 14	1 = Timer4 m	4 Module Disat odule is disable odule is enable	ed				
bit 13	1 = Timer3 m	3 Module Disat odule is disable odule is enable	ed				
bit 12	1 = Timer2 m	2 Module Disat odule is disable odule is enable	ed				
bit 11	1 = Timer1 m	1 Module Disat odule is disable odule is enable	ed				
bit 10	1 = QEI1 mod	I1 Module Disa Jule is disabled Jule is enabled					
bit 9	1 = PWM mod	/M Module Disa dule is disablec dule is enabled	1				
bit 8	Unimplemen	ted: Read as '	י'				
bit 7	1 = I2C1 mod	1 Module Disat ule is disabled ule is enabled	ble bit				
bit 6	1 = UART2 m	2 Module Disa odule is disabl	ed				
bit 5	1 = UART1 m	1 Module Disa odule is disabl	ed				
bit 4	1 = SPI2 mod	2 Module Disal lule is disabled lule is enabled	ble bit				

Note 1: This bit is available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

2: This bit is available on dsPIC33EPXXXGP50X and dsPIC33EPXXXMC50X devices only.

REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1 (CONTINUED)

- bit 3 SPI1MD: SPI1 Module Disable bit 1 = SPI1 module is disabled 0 = SPI1 module is enabled
- bit 2 Unimplemented: Read as '0'
- bit 1 C1MD: ECAN1 Module Disable bit⁽²⁾
 - 1 = ECAN1 module is disabled
 - 0 = ECAN1 module is enabled
- bit 0 AD1MD: ADC1 Module Disable bit 1 = ADC1 module is disabled 0 = ADC1 module is enabled
- Note 1: This bit is available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.
 - 2: This bit is available on dsPIC33EPXXXGP50X and dsPIC33EPXXXMC50X devices only.

REGISTER	10-2: PMD2	2: PERIPHER	AL MODULE	E DISABLE C	ONTROL RE	GISTER 2			
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0		
_	_	<u> </u>	—	IC4MD	IC3MD	IC2MD	IC1MD		
bit 15							bit 8		
				DAALO	DAALO	DAALO			
U-0	U-0	U-0	U-0	R/W-0 OC4MD	R/W-0 OC3MD	R/W-0 OC2MD	R/W-0 OC1MD		
 bit 7	—			UC4IVID	OCSIVID	OCZIVID	bit (
Legend:									
R = Readab	ole bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'			
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown		
bit 15-12	-	ted: Read as '							
bit 11		Capture 4 Mod		t					
		ture 4 module i							
bit 10		0 = Input Capture 4 module is enabledIC3MD: Input Capture 3 Module Disable bit							
		ture 3 module i		L					
		ture 3 module i							
bit 9		Capture 2 Mod		t					
		ture 2 module i							
	0 = Input Cap	ture 2 module i	s enabled						
bit 8	IC1MD: Input	Capture 1 Mod	lule Disable bit	t					
		ture 1 module i ture 1 module i							
bit 7-4	Unimplemen	ted: Read as 'd)'						
bit 3	OC4MD: Outp	out Compare 4	Module Disabl	e bit					
		ompare 4 modu ompare 4 modu							
bit 2	-	out Compare 3		e hit					
		ompare 3 modu							
		ompare 3 modu							
bit 1	OC2MD: Outp	out Compare 2	Module Disabl	e bit					
	1 = Output Co	ompare 2 modu	le is disabled						
	0 = Output Co	ompare 2 modu	le is enabled						
bit 0	-	out Compare 1		e bit					
		ompare 1 modu							
	0 = Output Co	ompare 1 modu	le is enabled						

~

REGISTER	10-3: PMD3	: PERIPHER		E DISABLE C	ONTROL RE	GISTER 3	
U-0	U-0	U-0	U-0	U-0	R/W-0	U-0	U-0
	—	—		—	CMPMD	—	—
bit 15	·	•	÷		•		bit 8
R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0
CRCMD						I2C2MD	
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is clea	ared	x = Bit is unkn	iown	
bit 15-11	Unimplement	ted: Read as '	כ'				
bit 10		nparator Modu					
		or module is d					
		or module is e					
bit 9-8	-	ted: Read as '					
bit 7		C Module Disal	ole bit				
		1 = CRC module is disabled 0 = CRC module is enabled					
bit 6-2		ted: Read as '	`				
bit 0-2	-	2 Module Disat					
		ule is disabled					
	0 = 12C2 mod						

REGISTER 10-4: PMD4: PERIPHERAL MODULE DISABLE CONTROL REGISTER 4

REGIOTER							
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	R/W-0	R/W-0	U-0	U-0
	_	_	_	REFOMD	CTMUMD	_	_

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-4	Unimplemented: Read as '0'
bit 3	REFOMD: Reference Clock Module Disable bit
	1 = Reference Clock module is disabled
	0 = Reference Clock module is enabled
bit 2	CTMUMD: CTMU Module Disable bit
	1 = CTMU module is disabled
	0 = CTMU module is enabled
bit 1-0	Unimplemented: Read as '0'

Unimplemented: Read as '0'

bit 0

bit 7

bit 0

LOIDIEN								
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	
—	—	—	_	—	PWM3MD ⁽¹⁾	PWM2MD ⁽¹⁾	PWM1MD ⁽¹⁾	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
bit 7							bit 0	
Logondi								
Legend:	1- 1-14		L 11					
R = Readab		W = Writable		U = Unimplemented bit, read as '0'				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	'0' = Bit is cleared x = Bit is unknown			
bit 15-11	Unimplemer	nted: Read as '	0'					
bit 10	PWM3MD: P	WM3 Module E	Disable bit ⁽¹⁾					
	-	odule is disable						
	0 = PWM3 m	odule is enable	ed					
bit 9	PWM2MD: P	WM2 Module E	Disable bit ⁽¹⁾					
	1 = PWM2 m	odule is disable	ed					
	0 = PWM2 m	odule is enable	ed					
bit 8	PWM1MD: P	WM1 Module E	Disable bit ⁽¹⁾					
	1 = PWM1 m	odule is disable	ed					
	0 = PWM1 m	odule is enable	ed					
bit 7-0	Unimplemer	nted: Read as '	0'					

REGISTER 10-5: PMD6: PERIPHERAL MODULE DISABLE CONTROL REGISTER 6

Note 1: This bit is available in dsPIC33EP64MC50X/20X and PIC24EP64MC20X devices only.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit
U-0	U-0	U-0	R/W-0	R/W-0	U-0	U-0	U-0
			DMA0MD ⁽¹⁾				
_	_	_		DMA1MD ⁽¹⁾ PTGMD — — —	_		
			DMA3MD ⁽¹⁾				
bit 7							bit (
<u> </u>							
Legend:	L. L. L.		L :4				
R = Reada		W = Writable		-	Jnimplemented bit, read as '0'		
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	IOWN
bit 15-5	Unimplemen	ted: Read as '	ר י				
bit 4	•	MA0 Module Di					
DIC 4		dule is disable					
		dule is enable					
	DMA1MD: DM	MA1 Module Di	sable bit ⁽¹⁾				
		dule is disable					
	0 = DMA1 mo	dule is enable	d				
	DMA2MD: DM	MA2 Module Di	sable bit ⁽¹⁾				
	1 = DMA2 mo	dule is disable	d				
	0 = DMA2 mc	dule is enable	b				
		MA3 Module Di	sable bit ⁽¹⁾				
	DMA3MD: DM 1 = DMA3 mo	MA3 Module Di odule is disable	d				
	DMA3MD: DM 1 = DMA3 mo 0 = DMA3 mo	MA3 Module Di odule is disable odule is enable	b t				
bit 3	DMA3MD: DM 1 = DMA3 mo 0 = DMA3 mo PTGMD: PTG	MA3 Module Di odule is disable odule is enable 6 Module Disab	b t				
bit 3	DMA3MD: DM 1 = DMA3 mo 0 = DMA3 mo PTGMD: PTG 1 = PTG mod	MA3 Module Di odule is disable odule is enable Module Disab ule is disabled	b t				
bit 3 bit 2-0	DMA3MD: DM 1 = DMA3 mo 0 = DMA3 mo PTGMD: PTG 1 = PTG mod 0 = PTG mod	MA3 Module Di odule is disable odule is enable 6 Module Disab	d d Ie bit				

REGISTER 10-6: PMD7: PERIPHERAL MODULE DISABLE CONTROL REGISTER 7

Note 1: This single bit enables and disables all four DMA channels.

© 2011 Microchip Technology Inc.

NOTES:

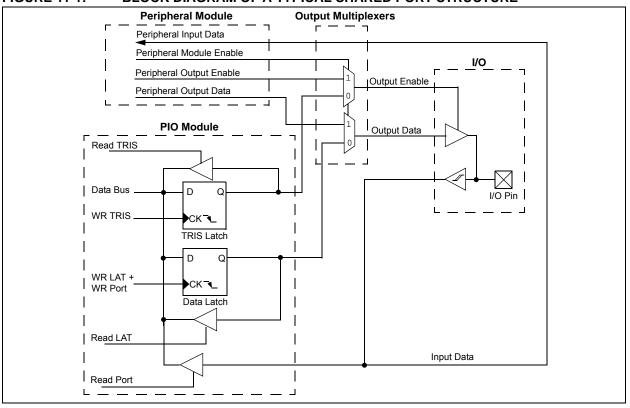
11.0 I/O PORTS

- Note 1: This data sheet summarizes the features dsPIC33EPXXXGP50X, of the dsPIC33EPXXXMC20X/50X. and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 10. "I/O Ports" (DS70598) of the "dsPIC33E/PIC24E Family Reference Manual', which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

Many of the device pins are shared among the peripherals and the parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.

11.1 Parallel I/O (PIO) Ports

Generally, a parallel I/O port that shares a pin with a peripheral is subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents "loop through," in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 11-1 illustrates how ports are shared with other peripherals and the associated I/O pin to which they are connected.


When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin can be read, but the output driver for the parallel port bit is disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin can be driven by a port.

All port pins have eight registers directly associated with their operation as digital I/O. The data direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the latch (LATx) read the latch. Writes to the latch write the latch. Reads from the port (PORTx) read the port pins, while writes to the port pins write the latch.

Any bit and its associated data and control registers that are not valid for a particular device is disabled. This means the corresponding LATx and TRISx registers and the port pin are read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs.

11.1.1 OPEN-DRAIN CONFIGURATION

In addition to the PORT, LAT and TRIS registers for data control, port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs other than VDD by using external pull-up resistors. The maximum open-drain voltage allowed on any pin is the same as the maximum VIH specification for that particular pin.

See the **"Pin Diagrams"** section for the available 5V-tolerant pins and Table 30-10 for the maximum VIH specification for each pin.

11.2 Configuring Analog and Digital Port Pins

The ANSELx register controls the operation of the analog port pins. The port pins that are to function as analog inputs must have their corresponding ANSEL and TRIS bits set. In order to use port pins for I/O functionality with digital modules, such as Timers, UARTs, etc., the corresponding ANSELx bit must be cleared.

The ANSELx register has a default value of 0xFFFF; therefore, all pins that share analog functions are analog (not digital) by default.

If the TRIS bit is cleared (output) while the ANSELx bit is set, the digital output level (VOH or VOL) is converted by an analog peripheral, such as the ADC module or Comparator module.

When the PORT register is read, all pins configured as analog input channels are read as cleared (a low level).

Pins configured as digital inputs do not convert an analog input. Analog levels on any pin defined as a digital input (including the ANx pins) can cause the input buffer to consume current that exceeds the device specifications.

11.2.1 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically this instruction would be an NOP, as shown in Example 11-1.

11.3 Input Change Notification

The input change notification function of the I/O ports allows the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/ MC20X devices to generate interrupt requests to the processor in response to a change-of-state on selected input pins. This feature can detect input change-ofstates even in Sleep mode, when the clocks are disabled. Every I/O port pin can be selected (enabled) for generating an interrupt request on a change-ofstate.

Three control registers are associated with the CN functionality of each I/O port. The CNENx registers contain the CN interrupt enable control bits for each of the input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.

Each I/O pin also has a weak pull-up and a weak pull-down connected to it. The pull-ups and pulldowns act as a current source or sink source connected to the pin, and eliminate the need for external resistors when push-button or keypad devices are connected. The pull-ups and pull-downs are enabled separately using the CNPUx and the CNPDx registers, which contain the control bits for each of the pins. Setting any of the control bits enables the weak pull-ups and/or pull-downs for the corresponding pins.

Note: Pull-ups and pull-downs on change notification pins should always be disabled when the port pin is configured as a digital output.

EXAMPLE 11-1: PORT WRITE/READ EXAMPLE

MOV	0xFF00, WO	; Configure PORTB<15:8>
		; as inputs
MOV	W0, TRISB	; and PORTB<7:0>
		; as outputs
NOP		; Delay 1 cycle
BTSS	PORTB, #13	; Next Instruction

11.4 Peripheral Pin Select

A major challenge in general purpose devices is providing the largest possible set of peripheral features while minimizing the conflict of features on I/O pins. The challenge is even greater on low pin-count devices. In an application where more than one peripheral needs to be assigned to a single pin, inconvenient workarounds in application code or a complete redesign may be the only option.

Peripheral pin select configuration provides an alternative to these choices by enabling peripheral set selection and their placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, users can better tailor the device to their entire application, rather than trimming the application to fit the device.

The peripheral pin select configuration feature operates over a fixed subset of digital I/O pins. Users may independently map the input and/or output of most digital peripherals to any one of these I/O pins. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping once it has been established.

11.4.1 AVAILABLE PINS

The number of available pins is dependent on the particular device and its pin count. Pins that support the Peripheral Pin Select feature include the designation, "RPn" or "RPIn", in their full pin designation, where "n" is the remappable pin number. "RP" is used to designate pins that support both remappable input and output functions, while "RPI" indicates pins that support remappable input functions only.

11.4.2 AVAILABLE PERIPHERALS

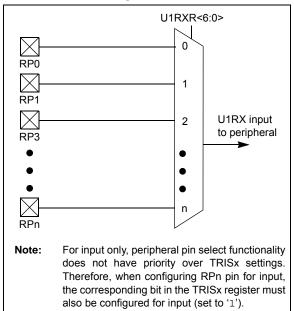
The peripherals managed by the peripheral pin select are all digital-only peripherals. These include general serial communications (UART and SPI), general purpose timer clock inputs, timer-related peripherals (input capture and output compare) and interrupt-on-change inputs.

In comparison, some digital-only peripheral modules are never included in the peripheral pin select feature. This is because the peripheral's function requires special I/O circuitry on a specific port and cannot be easily connected to multiple pins. These modules include I²C and the PWM. A similar requirement excludes all modules with analog inputs, such as the A/D converter.

A key difference between remappable and non-remappable peripherals is that remappable peripherals are not associated with a default I/O pin. The peripheral must always be assigned to a specific I/O pin before it can be used. In contrast, non-remappable peripherals are always available on a default pin, assuming that the peripheral is active and not conflicting with another peripheral. When a remappable peripheral is active on a given I/O pin, it takes priority over all other digital I/O and digital communication peripherals associated with the pin. Priority is given regardless of the type of peripheral that is mapped. Remappable peripherals never take priority over any analog functions associated with the pin.

11.4.3 CONTROLLING PERIPHERAL PIN SELECT

Peripheral pin select features are controlled through two sets of SFRs: one to map peripheral inputs, and one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.


The association of a peripheral to a peripheral-selectable pin is handled in two different ways, depending on whether an input or output is being mapped.

11.4.3.1 INPUT MAPPING

The inputs of the peripheral pin select options are mapped on the basis of the peripheral. That is, a control register associated with a peripheral dictates the pin it will be mapped to. The RPINRx registers are used to configure peripheral input mapping (see Register 11-1 through Register 11-17). Each register contains sets of 7-bit fields, with each set associated with one of the remappable peripherals. Programming a given peripheral's bit field with an appropriate 7-bit value maps the RPn pin with the corresponding value to that peripheral. For any given device, the valid range of values for any bit field corresponds to the maximum number of peripheral pin selections supported by the device.

For example, Figure 11-2 illustrates remappable pin selection for the U1RX input.

FIGURE 11-2: REMAPPABLE INPUT FOR U1RX

11.4.3.2 Virtual Connections

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X devices support virtual (internal) connections to the output of the Op amp/ Comparator module (see Figure 25-1 in Section 25.0 "Op amp/Comparator Module") and the PTG module (see Section 24.0 "Peripheral Trigger Generator (PTG) Module").

In addition, dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices support virtual connections to the filtered QEI module inputs FINDX1, FHOME1, FINDX2 and FHOME2 (see Figure 17-1 in Section 17.0 "Quadrature Encoder Interface (QEI) Module (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X Devices Only)". Virtual connections provide a simple way of interperipheral connection without utilizing a physical pin. For example, by setting the FLT1R<6:0> bits of the RPINR12 register to the value of `b0000001, the output of the Analog Comparator C1OUT will be connected to the PWM Fault 1 input, which allows the Analog Comparator to trigger PWM faults without the use of an actual physical pin on the device.

Virtual connection to the QEI module allows peripherals to be connected to the QEI digital filter input. To utilize this filter, the QEI module must be enabled, and its inputs must be connected to a physical RPn pin. Example 11-1 illustrates how the input capture module can be connected to the QEI digital filter.

EXAMPLE 11-1: CONNECTING IC1 TO THE HOME1 QEI1 DIGITAL FILTER INPUT ON PIN 43 OF THE dsPIC33EPXXXMC206 DEVICE

RPINR15 = 0x2500;	/* Connect the QEI1 HOME1 input to RP37 (pin 43) */
RPINR7 = 0x009;	/* Connect the IC1 input to the digital filter on the FHOME1 input */
QEILIOC = 0x4000;	/* Enable the QEI digital filter */
QEILCON = 0x8000;	/* Enable the QEI module */

Input Name ⁽¹⁾	Function Name	Register	Configuration Bits
External Interrupt 1	INT1	RPINR0	INT1R<6:0>
External Interrupt 2	INT2	RPINR1	INT2R<6:0>
Timer2 External Clock	T2CK	RPINR3	T2CKR<6:0>
Input Capture 1	IC1	RPINR7	IC1R<6:0>
Input Capture 2	IC2	RPINR7	IC2R<6:0>
Input Capture 3	IC3	RPINR8	IC3R<6:0>
Input Capture 4	IC4	RPINR8	IC4R<6:0>
Output Compare Fault A	OCFA	RPINR11	OCFAR<6:0>
PWM Fault 1 ⁽³⁾	FLT1	RPINR12	FLT1R<6:0>
PWM Fault 2 ⁽³⁾	FLT2	RPINR12	FLT2R<6:0>
QEI1 Phase A ⁽³⁾	QEA1	RPINR14	QEA1R<6:0>
QEI1 Phase B ⁽³⁾	QEB1	RPINR14	QEB1R<6:0>
QEI1 Index ⁽³⁾	INDX1	RPINR15	INDX1R<6:0>
QEI1 Home ⁽³⁾	HOME1	RPINR15	HOM1R<6:0>
UART1 Receive	U1RX	RPINR18	U1RXR<6:0>
UART2 Receive	U2RX	RPINR19	U2RXR<6:0>
SPI2 Data Input	SDI2	RPINR22	SDI2R<6:0>
SPI2 Clock Input	SCK2	RPINR22	SCK2R<6:0>
SPI2 Slave Select	SS2	RPINR23	SS2R<6:0>
CAN1 Receive ⁽²⁾	C1RX	RPINR26	C1RXR<6:0>
PWM Synch Input 1 ⁽³⁾	SYNCI1	RPINR37	SYNCI1R<6:0>
PWM Dead Time Compensation 1 ⁽³⁾	DTCMP1	RPINR38	DTCMP1R<6:0>
PWM Dead Time Compensation 2 ⁽³⁾	DTCMP2	RPINR39	DTCMP2R<6:0>
PWM Dead Time Compensation 3 ⁽³⁾	DTCMP3	RPINR39	DTCMP3R<6:0>

TABLE 11-1: SELECTABLE INPUT SOURCES (MAPS INPUT TO FUNCTION)

Note 1: Unless otherwise noted, all inputs use the Schmitt input buffers.

2: This input source is available on dsPIC33EPXXXGP/MC50X devices only.

3: This input source is available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

Peripheral Pin Select Input Register Value	Input/ Output	Pin Assignment	Peripheral Pin Select Input Register Value	Input/ Output	Pin Assignment
000 0000		Vss	010 1101		RPI45
000 0001	1	C1OUT ⁽¹⁾	010 1110	I	RPI46
000 0010	I	C2OUT ⁽¹⁾	010 1111	I	RPI47
000 0011	I	C3OUT ⁽¹⁾	011 0000	_	
000 0100	I	C4OUT ⁽¹⁾	011 0001		
000 0101	_	_	011 0010	_	
000 0110		PTGO30 ⁽¹⁾	011 0011	1	RPI51
000 0111		PTGO31 ⁽¹⁾	011 0100	I	RPI52
000 1000	1	FINDX1 ^(1,2)	011 0101		RPI53
000 1001	1	FHOME1 ^(1,2)	011 0110	I/O	RP54
000 1010		_	011 0111	I/O	RP55
000 1011		_	011 1000	I/O	RP56
000 1100	_	_	011 1001	I/O	RP57
000 1101	_	_	011 1010	I	RPI58
000 1110	_	_	011 1011		—
000 1111	_		011 1100		
001 0000	_		011 1101		
001 0001		_	011 1110		
001 0010			011 1111		
001 0011			100 0000		
001 0100	I/O	RP20	100 0001		_
001 0101		_	100 0010		
001 0110		_	100 0011		_
001 0111		_	100 0100		_
001 1000	1	RPI24	100 0101		_
001 1001		RPI25	100 0110		_
001 1010		_	100 0111		_
001 1011	1	RPI27	100 1000		_
001 1100	· ·	RPI28	100 1001		
001 1101	·		100 1010		
001 1110		_	100 1010		_
001 1111			100 1011		
010 0000	1	RPI32	100 1101		
010 0001	· ·	RPI33	100 1110		
010 0010	· ·	RPI34	100 1111		_
010 0010	I/O	RP35	101 0000		
010 0100	I/O		101 0001		
010 0100	I/O	RP37	101 0010		
010 0101	I/O	RP38	101 0010		
010 0110	I/O	RP39	101 0100		
010 1000	I/O	RP40	101 0100		
010 1000	I/O	RP41	101 0101		
010 1001	1/O	RP41	101 0110		
010 1010	1/O 1/O	RP42 RP43			
	1/0	RF43	101 1000		

TABLE 11-2: INPUT PIN SELECTION FOR SELECTABLE INPUT SOURCES

Note 1: See Section 11.4.3.2 "Virtual Connections" for more information on selecting this pin assignment.

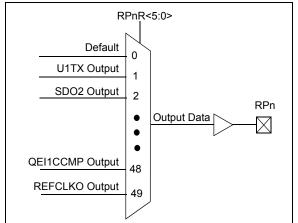
2: These inputs are available on dsPIC33EPXXXGP/MC50X devices only.

Peripheral Pin Select Input Register Value	Input/ Output	Pin Assignment
101 1010	—	—
101 1011	—	—
101 1100	—	—
101 1101	—	—
101 1110	I	RPI94
101 1111	I	RPI95
110 0000	I	RPI96
110 0001	I/O	RP97
110 0010	—	—
110 0011	—	—
110 0100	—	—
110 0101	—	—
110 0110	—	—
110 0111	—	
110 1000	—	_
110 1001	—	_
110 1010	_	_
110 1011	_	_
110 1100	—	_

Peripheral Pin Select Input Register Value	Input/ Output	Pin Assignment
110 1101		_
110 1110	_	_
110 1111	_	_
111 0000	_	_
111 0001	_	_
111 0010	_	_
111 0011	_	_
111 0100	_	_
111 0101	_	—
111 0110	I/O	RP118
111 0111	Ι	RPI119
111 1000	I/O	RP120
111 1001	Ι	RPI121
111 1010	—	_
111 1011	_	_
111 1100	_	_
111 1101	_	_
111 1110	_	_
111 1111		

TABLE 11-2: INPUT PIN SELECTION FOR SELECTABLE INPUT SOURCES (CONTINUED)

Note 1: See Section 11.4.3.2 "Virtual Connections" for more information on selecting this pin assignment.


2: These inputs are available on dsPIC33EPXXXGP/MC50X devices only.

11.4.3.3 Output Mapping

In contrast to inputs, the outputs of the peripheral pin select options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPORx registers are used to control output mapping. Like the RPINRx registers, each register contains sets of 6 bit fields, with each set associated with one RPn pin (see Register 11-18 through Register 11-25). The value of the bit field corresponds to one of the peripherals, and that peripheral's output is mapped to the pin (see Table 11-3 and Figure 11-3).

A null output is associated with the output register reset value of '0'. This is done to ensure that remappable outputs remain disconnected from all output pins by default.

FIGURE 11-3: MULTIPLEXING REMAPPABLE OUTPUT FOR RPn

11.4.3.4 Mapping Limitations

The control schema of the peripheral select pins is not limited to a small range of fixed peripheral configurations. There are no mutual or hardware-enforced lockouts between any of the peripheral mapping SFRs. Literally any combination of peripheral mappings across any or all of the RPn pins is possible. This includes both many-to-one and one-to-many mappings of peripheral inputs and outputs to pins. While such mappings may be technically possible from a configuration point of view, they may not be supportable from an electrical point of view.

TABLE 11-3: OUTPUT SELECTION FOR REMAPPABLE PINS (RPn)

Function	RPnR<5:0>	Output Name
DEFAULT PORT	000000	RPn tied to default pin
U1TX	000001	RPn tied to UART1 transmit
U2TX	000011	RPn tied to UART2 transmit
SDO2	001000	RPn tied to SPI2 data output
SCK2	001001	RPn tied to SPI2 clock output
SS2	001010	RPn tied to SPI2 slave select
C1TX ⁽²⁾	001110	RPn tied to CAN1 transmit
OC1	010000	RPn tied to Output Compare 1 output
OC2	010001	RPn tied to Output Compare 2 output
OC3	010010	RPn tied to Output Compare 3 output
OC4	010011	RPn tied to Output Compare 4 output
C1OUT	011000	RPn tied to Comparator Output 1
C2OUT	011001	RPn tied to Comparator Output 2
C3OUT	011010	RPn tied to Comparator Output 3
SYNCO1 ⁽¹⁾	101101	RPn tied to PWM primary time base sync output
QEI1CCMP ⁽¹⁾	101111	RPn tied to QEI 1 counter comparator output
REFCLKO	110001	RPn tied to Reference Clock output
C4OUT	110010	RPn tied to Comparator Output 4

Note 1: This function is available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

2: This function is available in dsPIC33EPXXXGP/MC50X devices only.

11.5 Peripheral Pin Select Registers

REGISTER 11-1: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				INT1R<6:0>			
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_		—
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set		'0' = Bit is cleared x = Bit is unknown					

bit 15 Unimplemented: Read as '0

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				INT2R<6:0>			
bit 7							bit 0

REGISTER 11-2: RPINR1: PERIPHERAL PIN SELECT INPUT REGISTER 1

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-7 Unimplemented: Read as '0'

bit 6-0 INT2R<6:0>: Assign External Interrupt 2 (INT2) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers) 1111001 = Input tied to RPI121

> . 0000001 = Input tied to CMP1 0000000 = Input tied to Vss

-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	IOWN
R = Readable	bit	W = Writable b	oit	U = Unimpler	nented bit, rea	ad as '0'	
Legend:							
bit 7							bit C
				T2CKR<6:0>			h.:
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15							bit 8
—		—		—		_	—
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0

REGISTER 11-3: **RPINR3: PERIPHERAL PIN SELECT INPUT REGISTER 3**

bit 6-0 T2CKR<6:0>: Assign Timer2 External Clock (T2CK) to the Corresponding RPn pin bits (see Table 11-2 for input pin selection numbers) 1111001 = Input tied to RPI121 .

0000001 = Input tied to CMP1

0000000 = Input tied to Vss

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				IC2R<6:0>			
bit 15	-						bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				IC1R<6:0>			
bit 7							bit (
Legend:							
R = Readat		W = Writable		U = Unimplen			
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
	1111001 =	I1-2 for input pin Input tied to RPI Input tied to CM Input tied to Vss	121 P1				
bit 7	Unimpleme	ented: Read as '	0'				
bit 6-0		Assign Input Ca			onding RPn Pi	n bits	
	1111001 =	Input tied to RPI	121				
	•						
	0000001 =	Input tied to CM	P1				
		Input tied to Vss					

REGISTER 11-4: RPINR7: PERIPHERAL PIN SELECT INPUT REGISTER 7

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				IC4R<6:0>			
oit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	10,00-0	10/0-0	10/00-0	IC3R<6:0>	11/00-0	10/00-0	10.00-0
oit 7				1001(10.02			bit (
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
	1111001 =	1-2 for input pin Input tied to RPI Input tied to CM Input tied to Vss	121 P1				
bit 7	Unimpleme	nted: Read as '	0'				
bit 6-0	(see Table 1 1111001 =	Assign Input Ca 1-2 for input pin Input tied to RPI	selection nun 121		onding RPn P	in bits	
		Input tied to CM Input tied to Vss					

REGISTER 11-5: RPINR8: PERIPHERAL PIN SELECT INPUT REGISTER 8

REGISTER 11-6: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—		—	_	_	—	_	—		
bit 15							bit 8		
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	OCFAR<6:0>								
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'			
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown									
bit 15-7	Unimplemen	ted: Read as ')'						

bit 6-0 OCFAR<6:0>: Assign Output Compare Fault A (OCFA) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers) 1111001 = Input tied to RPI121

> . 0000001 = Input tied to CMP1 0000000 = Input tied to Vss

© 2011 Microchip Technology Inc.

REGISTER 11-7: RPINR12: PERIPHERAL PIN SELECT INPUT REGISTER 12 (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				FLT2R<6:0>			
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				FLT1R<6:0>			
bit 7							bit C
Legend: R = Readat	ole bit	W = Writable	bit	U = Unimpler	nented bit, re	ad as '0'	
-n = Value a		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown
	1111001 = 	nput tied to RPI	121	·			
bit 14-8		: Assign PWM F 1-2 for input pin			onding RPn I	Pin bits	
	•		121				
	• • • • • • • • • • • • • • • • • • • •	nput tied to CMI	D1				
		nput tied to Vss					
bit 7	Unimpleme	nted: Read as '	כי				
bit 6-0		: Assign PWM F 1-2 for input pin			onding RPn I	Pin bits	
	-	nput tied to RPI					
	•						
		nput tied to CM					
	0000000 = 	nput tied to Vss					

REGISTER 11-8: RPINR14: PERIPHERAL PIN SELECT INPUT REGISTER 14 (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				QEB1R<6:0>	>		
bit 15	·						bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				QEA1R<6:0>	>		
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimpler	nented bit, rea	ad as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown
			o.1				
bit 15	Unimpleme	nted: Read as '	0.				
bit 14-8		Assign B (QE 1-2 for input pin			n Pin bits		
		Input tied to RP		ilbers)			
	•		1121				
	•	Input tigd to CM	D1				
		Input tied to CM Input tied to Vss					
bit 7		nted: Read as '					
bit 6-0	-	>: Assign A (QE		responding RP	n Pin bits		
	(see Table 1	1-2 for input pin	selection nun	nbers)			
	1111001 =	Input tied to RP	121				
	•						
		Input tied to CM					
	0000000 =	Input tied to Vss	3				

REGISTER 11-9: RPINR15: PERIPHERAL PIN SELECT INPUT REGISTER 15 (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				HOME1R<6:0	>		
bit 15	·						bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				INDX1R<6:0	>		
bit 7							bit (
Legend:							
R = Readat	ble bit	W = Writable	bit	U = Unimpler	nented bit, rea	ad as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
		nput tied to RPI nput tied to CM nput tied to Vss	P1				
bit 7		nted: Read as '					
bit 6-0	IND1XR<6:0 (see Table 1	 >: Assign QEI1 1-2 for input pin 	INDEX1 (IND		responding R	Pn Pin bits	
	1111001 = 	nput tied to RPI	121				
	•						
		nput tied to CM					
	0000000 = I	nput tied to Vss	5				

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
	—	—	_	—	—	—	—		
bit 15							bit 8		
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
				U1RXR<6:0>	>				
bit 7	bit 7 bit 0								
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 15-7	Unimplemen	ted: Read as '	0'						
bit 6-0 U1RXR<6:0>: Assign UART1 Receive (U1RX) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers) 1111001 = Input tied to RPI121									

. 0000001 = Input tied to CMP1 0000000 = Input tied to Vss

.

© 2011 Microchip Technology Inc.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—		—	_
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				U2RXR<6:0>	>		
bit 7	·						bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-7	Unimplemen	ted: Read as '	כי				
bit 6-0		•	•	,	rresponding RP	n Pin bits	
	,	-2 for input pin		iders)			
	1111001 = II	put tied to RPI	121				
	•						
	•						

REGISTER 11-11: RPINR19: PERIPHERAL PIN SELECT INPUT REGISTER 19

0000001 = Input tied to CMP1 0000000 = Input tied to Vss

			-				
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				SCK2<6:0>			
bit 15							bit
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				SDI2<6:0>			
bit 7							bit
Legend:	1. 1.9		1.11				
R = Readab		W = Writable			nented bit, rea		
-n = Value a	it POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown
	1111001 = 0000001 = 0000000 =	1-2 for input pin Input tied to RPI Input tied to CM	121 P1	nbers)			
bit 7	•	nted: Read as '					
bit 6-0	(see Table 1	Assign SPI2 Da 1-2 for input pin Input tied to RPI	selection num		ponding RPn	Pin bits	
		Input tied to CM					

REGISTER 11-12: RPINR22: PERIPHERAL PIN SELECT INPUT REGISTER 22

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
_	—	—	—	—	—	—	—			
bit 15							bit 8			
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
_				SS2<6:0>						
bit 7							bit 0			
Legend:										
R = Readal	ble bit	W = Writable bit		U = Unimplemented bit, read as '0'						
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown				
bit 15	Unimplemen	ted: Read as '	כ'							
bit 6-0		ssign SPI2 Slav -2 for input pin	•	,	sponding RPn F	Pin bits				
1111001 = Input tied to RPI121										
	•									
	•									
0000001 = Input tied to CMP1										

REGISTER 11-13: RPINR23: PERIPHERAL PIN SELECT INPUT REGISTER 23

0000000 = Input tied to Vss

REGISTER 11-14: RPINR26: PERIPHERAL PIN SELECT INPUT REGISTER 26 (dsPIC33EPXXXGP/MC50X DEVICES ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—		—	—	—	—	—
bit 15						•	bit 8
U-0	R/W-0						

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				C1RXR<6:0>	>		
bit 7							bit 0

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-7 Unimplemented: Read as '0'

bit 6-0 C1RXR<6:0>: Assign CAN1 RX Input (CRX1) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers) 1111001 = Input tied to RPI121

0000001 = Input tied to CMP1 0000000 = Input tied to Vss

REGISTER 11-15: RPINR37: PERIPHERAL PIN SELECT INPUT REGISTER 37 (dsPIC33EPXXXMC20X/50X AND PIC24EPXXXMC20X DEVICES ONLY)

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
_	SYNCI1R<6:0>								
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
	<u> </u>		—		_		—		
bit 7							bit C		
Legend:									
R = Readab	ole bit	W = Writable bit		U = Unimpler	mented bit, rea	d as '0'			
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			
bit 15	Unimpleme	nted: Read as '	0'						
bit 14-8		:0>: Assign PW 1-2 for input pin			the Correspor	nding RPn Pin b	oits		
	1111001 = Input tied to RPI121								
	·								
		nput tied to CM nput tied to Vss							
hit 7₋0		-							
bit 7-0		nted: Read as '							

REGISTER 11-16: RPINR38: PERIPHERAL PIN SELECT INPUT REGISTER 38 (dsPIC33EPXXXMC02X AND PIC24EPXXXMC20X DEVICES ONLY)

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				DTCMP1R<6:0)>		
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	—	—	—	—
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			oit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown			nown

bit 15 Unimplemented: Read as '0'

 bit 14-8
 DTCMP1R<6:0>: Assign PWM Dead Time Compensation Input 1 to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers)

 1111001 = Input tied to RPI121

 .

 .

 .0000001 = Input tied to CMP1

 .000000 = Input tied to Vss

 bit 7-0

REGISTER 11-17: RPINR39: PERIPHERAL PIN SELECT INPUT REGISTER 39 (dsPIC33EPXXXMC20X/50X AND PIC24EPXXXMC20X DEVICES ONLY)

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
—				DTCMP3R<6:0)>					
bit 15							bit 8			
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	10000	10000	-	DTCMP2R<6:	-	10000	1010 0			
bit 7					•		bit C			
Legend:										
R = Readab	ole bit	W = Writable	bit	U = Unimpler	nented bit, rea	ad as '0'				
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown				
	•	Input tied to RP								
		Input tied to CM								
bit 7	Unimpleme	nted: Read as '	0'							
bit 6-0		DTCMP2R<6:0>: Assign PWM Dead Time Compensation Input 2 to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers)								
	1111001 =	1111001 = Input tied to RPI121								
	•									
	•									
		Input tied to CM Input tied to Vss								

REGISTER 11-18: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP35	R<5:0>		
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_			RP20	R<5:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
-----------	----------------------------

- bit 13-8 **RP35R<5:0>:** Peripheral Output Function is Assigned to RP35 Output Pin bits (see Table 11-3 for peripheral function numbers)
- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP20R<5:0>:** Peripheral Output Function is Assigned to RP20 Output Pin bits (see Table 11-3 for peripheral function numbers)

REGISTER 11-19: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP37	R<5:0>		
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP36	R<5:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP37R<5:0>:** Peripheral Output Function is Assigned to RP37 Output Pin bits (see Table 11-3 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP36R<5:0>:** Peripheral Output Function is Assigned to RP36 Output Pin bits (see Table 11-3 for peripheral function numbers)

REGISTER 11-20: RPOR2: PERIPHERAL PIN SELECT OUTPUT REGISTER 2

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP39	₹<5:0>		
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—		RP38R<5:0>				
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
-n = Value at P	OR	'1' = Bit is set '0' = Bit is cleared x = Bit is unknown			nown		

bit 15-14	Unimplemented: Read as '0'

- bit 13-8 **RP39R<5:0>:** Peripheral Output Function is Assigned to RP39 Output Pin bits (see Table 11-3 for peripheral function numbers)
- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP38R<5:0>:** Peripheral Output Function is Assigned to RP38 Output Pin bits (see Table 11-3 for peripheral function numbers)

REGISTER 11-21: RPOR3: PERIPHERAL PIN SELECT OUTPUT REGISTER 3

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP41	R<5:0>		
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP40	R<5:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP41R<5:0>:** Peripheral Output Function is Assigned to RP41 Output Pin bits (see Table 11-3 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP40R<5:0>:** Peripheral Output Function is Assigned to RP40 Output Pin bits (see Table 11-3 for peripheral function numbers)

REGISTER 11-22: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP43	R<5:0>		
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP42	R<5:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
-----------	----------------------------

- bit 13-8 **RP43R<5:0>:** Peripheral Output Function is Assigned to RP43 Output Pin bits (see Table 11-3 for peripheral function numbers)
- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP42R<5:0>:** Peripheral Output Function is Assigned to RP42 Output Pin bits (see Table 11-3 for peripheral function numbers)

REGISTER 11-23: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—		RP55R<5:0>						
bit 15							bit 8		

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—	RP54R<5:0>						
bit 7							bit 0	

Legend:			
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP55R<5:0>:** Peripheral Output Function is Assigned to RP55 Output Pin bits (see Table 11-3 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP54R<5:0>:** Peripheral Output Function is Assigned to RP54 Output Pin bits (see Table 11-3 for peripheral function numbers)

REGISTER 11-24: RPOR6: PERIPHERAL PIN SELECT OUTPUT REGISTER 6

R/W-0 bit 8 R/W-0				
R/W-0				
R/W-0				
bit (
U = Unimplemented bit, read as '0'				
'0' = Bit is cleared x = Bit is unknown				
nkr				

bit 13-8	RP57R<5:0>: Peripheral Output Function is Assigned to RP57 Output Pin bits (see Table 11-3 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP56R<5:0>: Peripheral Output Function is Assigned to RP56 Output Pin bits (see Table 11-3 for

peripheral function numbers)

REGISTER 11-25: RPOR7: PERIPHERAL PIN SELECT OUTPUT REGISTER 7

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—		RP97R<5:0>						
bit 15							bit 8		

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—			—			—
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP97R<5:0>:** Peripheral Output Function is Assigned to RP97 Output Pin bits (see Table 11-3 for peripheral function numbers)

bit 7-0 Unimplemented: Read as '0'

REGISTER 11-26: RPOR8: PERIPHERAL PIN SELECT OUTPUT REGISTER 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—		RP118R<5:0>						
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		

	—	—	—	—	—	—
bit 7						bit 0

Legend:						
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP118R<5:0>:** Peripheral Output Function is Assigned to RP118 Output Pin bits (see Table 11-3 for peripheral function numbers)

bit 7-0 Unimplemented: Read as '0'

REGISTER 11-27: RPOR9: PERIPHERAL PIN SELECT OUTPUT REGISTER 9

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—			—		—	—
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_			RP120)R<5:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-6 Unimplemented: Read as '0'

bit 5-0 **RP120R<5:0>:** Peripheral Output Function is Assigned to RP120 Output Pin bits (see Table 11-3 for peripheral function numbers)

NOTES:

12.0 TIMER1

- Note 1: This data sheet summarizes the features dsPIC33EPXXXGP50X of the dsPIC33EPXXXMC20X/50X. and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 11. "Timers' (DS70362) of the "dsPIC33E/PIC24E Family Reference Manual', which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Timer1 module is a 16-bit timer that can operate as a free-running interval timer/counter.

The Timer1 module has the following unique features over other timers:

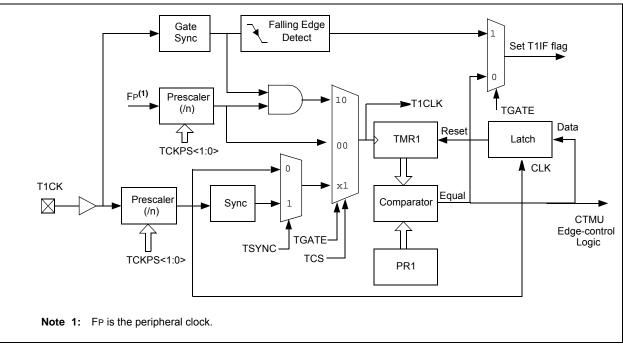
- Can be operated in Asynchronous Counter mode from an external clock source
- The external clock input (T1CK) can optionally be synchronized to the internal device clock and the clock synchronization is performed after the prescaler
- A block diagram of Timer1 is shown in Figure 12-1.

The Timer1 module can operate in one of the following modes:

- · Timer mode
- · Gated Timer mode
- Synchronous Counter mode
- · Asynchronous Counter mode

In Timer and Gated Timer modes, the input clock is derived from the internal instruction cycle clock (FcY). In Synchronous and Asynchronous Counter modes, the input clock is derived from the external clock input at the T1CK pin.

The Timer modes are determined by the following bits:


- Timer Clock Source Control bit (TCS): T1CON<1>
- Timer Synchronization Control bit (TSYNC): T1CON<2>
- Timer Gate Control bit (TGATE): T1CON<6>

Timer control bit setting for different operating modes are given in the Table 12-1.

TABLE 12-1:	TIMER MODE	SETTINGS
-------------	------------	----------

Mode	TCS	TGATE	TSYNC
Timer	0	0	х
Gated timer	0	1	х
Synchronous counter	1	x	1
Asynchronous counter	1	х	0

FIGURE 12-1: 16-BIT TIMER1 MODULE BLOCK DIAGRAM

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
TON ⁽¹⁾		TSIDL		_	_	_	_				
bit 15		•		•			bit 8				
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0				
	TGATE	TCKP	S<1:0>	—	TSYNC ⁽¹⁾	TCS ⁽¹⁾	—				
bit 7							bit 0				
Legend:											
R = Readable		W = Writable		-	mented bit, read						
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is cle	eared	x = Bit is unkno	own				
bit 15	TON: Timori	On hit									
DIL 15	TON: Timer1 1 = Starts 16-										
	0 = Stops 16-										
bit 14	Unimplemen	ted: Read as	'0'								
bit 13	TSIDL: Stop i	n Idle Mode b	it								
	1 = Discontinue module operation when device enters Idle mode										
		•	tion in Idle mo	de							
bit 12-7	•	ted: Read as									
bit 6	TGATE: Timer1 Gated Time Accumulation Enable bit										
	$\frac{\text{When TCS} = 1}{\text{This bit is ignored.}}$										
	When TCS = 0 :										
	1 = Gated time accumulation enabled										
	0 = Gated tim	e accumulatio	on disabled								
bit 5-4	TCKPS<1:0>: Timer1 Input Clock Prescale Select bits										
	11 = 1:256										
	10 = 1:64 01 = 1:8										
	00 = 1:1										
bit 3	Unimplemen	ted: Read as	'0'								
bit 2	TSYNC: Time	er1 External C	lock Input Syn	chronization S	elect bit						
	When TCS =										
	1 = Synchronize external clock input										
	0 = Do not synchronize external clock input When TCS = 0:										
	This bit is igno										
bit 1	•	Clock Source	Select bit								
	1 = External o	clock from pin	T1CK (on the	rising edge)							
	0 = Internal cl Unimplemen										
bit 0											

REGISTER 12-1: T1CON: TIMER1 CONTROL REGISTER

Note 1: When Timer1 is enabled in external synchronous counter mode (TCS = 1, TSYNC = 1, TON = 1), any attempts by user software to write to the TMR1 register is ignored.

13.0 TIMER2/3 AND TIMER4/5

- Note 1: This data sheet summarizes the features dsPIC33EPXXXGP50X, of the dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 11. "Timers" (DS70362) of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

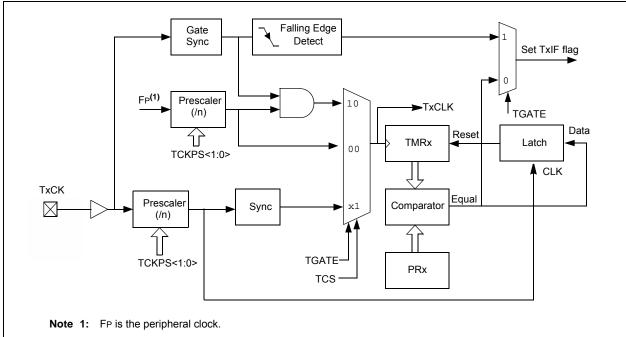
The Timer2/3 and Timer4/5 modules are 32-bit timers, which can also be configured as four independent 16-bit timers with selectable operating modes.

As a 32-bit timer, Timer2/3 and Timer4/5 operate in three modes:

- Two Independent 16-bit Timers (e.g., Timer2 and Timer3) with all 16-bit operating modes (except Asynchronous Counter mode)
- Single 32-bit Timer
- Single 32-bit Synchronous Counter

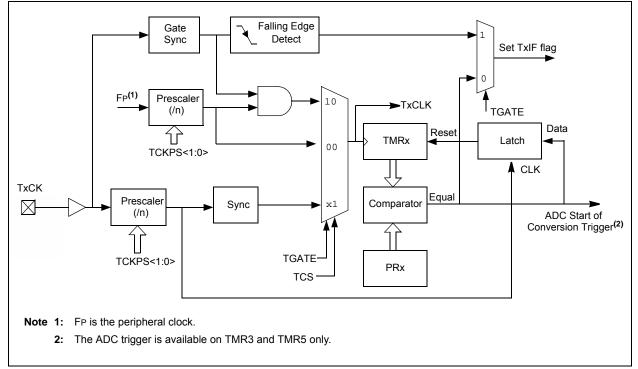
They also support these features:

- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation during Idle and Sleep modes
- Interrupt on a 32-bit Period Register Match
- Time Base for Input Capture and Output Compare Modules (Timer2 and Timer3 only)
- ADC1 Event Trigger (Timer2/3 only)


Individually, all four of the 16-bit timers can function as synchronous timers or counters. They also offer the features listed above, except for the event trigger; this is implemented only with Timer2/3. The operating modes and enabled features are determined by setting the appropriate bit(s) in the T2CON, T3CON, and T4CON, T5CON registers. T2CON and T4CON are shown in generic form in Register 13-1. T3CON and T5CON are shown in Register 13-2.

For 32-bit timer/counter operation, Timer2 and Timer4 are the least significant word (lsw); Timer3 and Timer5 are the most significant word (msw) of the 32-bit timers.

Note: For 32-bit operation, T3CON and T5CON control bits are ignored. Only T2CON and T4CON control bits are used for setup and control. Timer2 and Timer4 clock and gate inputs are utilized for the 32-bit timer modules, but an interrupt is generated with the Timer3 and Timer5 interrupt flags.


A block diagram for a 32-bit timer pair (Timer4/5) example is shown in Figure 13-1 and a timer (Timer4) operating in 16-bit mode example is shown in Figure 13-2.

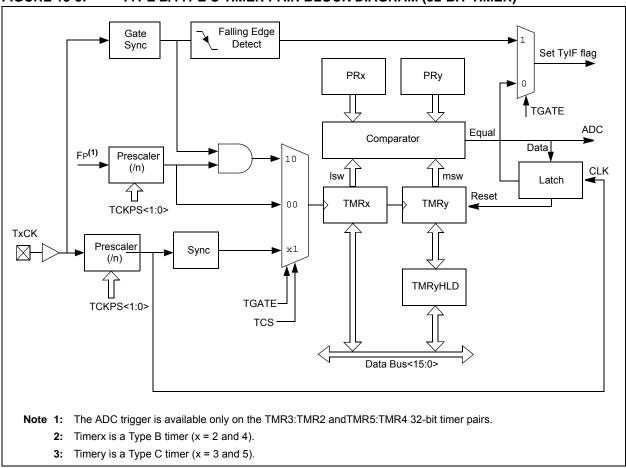

Note: Only Timer2, 3, 4 and 5 can trigger a DMA data transfer.

FIGURE 13-3: TYPE B/TYPE C TIMER PAIR BLOCK DIAGRAM (32-BIT TIMER)

REGISTER	13-1: TxCO	N (T2CON A	ND T4CON)	CONTROL R	EGISTER							
R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0					
TON		TSIDL	—	—		—	—					
bit 15							bit					
U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0					
	TGATE	TCKP	S<1:0>	T32		TCS ⁽¹⁾	_					
bit 7							bit					
Legend:												
R = Readabl	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'						
-n = Value at	t POR	'1' = Bit is se	t	'0' = Bit is clea	ared	x = Bit is unkno	own					
bit 15	TON: Timerx	On bit										
	When T32 =	1:										
	1 = Starts 32-	-bit Timerx/y										
	0 = Stops 32-	-										
		$\frac{\text{When T32} = 0}{2}$										
	1 = Starts 16-bit Timerx 0 = Stops 16-bit Timerx											
bit 14	-	ited: Read as	· ^ '									
bit 13	-											
DIC 15	TSIDL: Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode											
	0 = Continue module operation in Idle mode											
bit 12-7		ted: Read as										
bit 6	TGATE: Timerx Gated Time Accumulation Enable bit											
	When TCS = 1:											
	This bit is ignored.											
	When TCS = 0:											
	1 = Gated time accumulation enabled											
		ne accumulatio										
bit 5-4	TCKPS<1:0>: Timerx Input Clock Prescale Select bits											
	11 = 1:256											
	10 = 1.64											
	00 = 1:1	01 = 1:8 00 = 1:1										
bit 3		T32: 32-bit Timer Mode Select bit										
		nd Timery form										
h # 0		nd Timery act a		imers								
bit 2	-	ted: Read as										
bit 1		Clock Source		riging odes)								
	1 = External (0 = Internal c	clock from pin ` lock (Ep)		nsing eage)								
bit 0		ited: Read as	٠́									
	ommplemen	neu. Neau do	U									

REGISTER 13-1: TxCON (T2CON AND T4CON) CONTROL REGISTER

Note 1: The TxCK pin is not available on all timers. Refer to the "Pin Diagrams" section for the available pins.

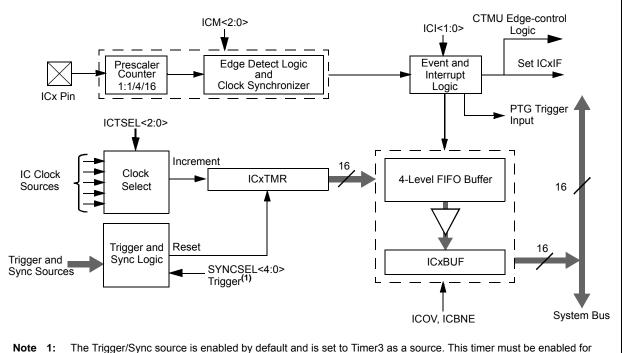
R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
TON ⁽¹⁾		TSIDL ⁽²⁾	_	—	—	—	_				
bit 15							bit 8				
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0				
_	TGATE ⁽¹⁾	TCKPS	<1:0>(1)	<u> </u>	—	TCS ^(1,3)	_				
bit 7							bit (
Legend:											
R = Readab	le bit	W = Writable	bit	U = Unimplei	mented bit, rea	ad as '0'					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkno	own				
bit 15	TON: Timery	On bit ⁽¹⁾									
		1 = Starts 16-bit Timery									
	0 = Stops 16-	-									
bit 14	-	ted: Read as '									
bit 13		TSIDL: Stop in Idle Mode bit ⁽²⁾									
	 Discontinue module operation when device enters Idle mode Continue module operation in Idle mode 										
bit 12-7		•		Jue							
bit 6	•	Unimplemented: Read as '0' TGATE: Timery Gated Time Accumulation Enable bit ⁽¹⁾									
	$\frac{\text{When TCS} = 1:}{\text{This bit is ignored.}}$										
	When TCS = 0:										
	 1 = Gated time accumulation enabled 0 = Gated time accumulation disabled 										
bit 5-4	TCKPS<1:0>	: Timery Input	Clock Presca	le Select bits ⁽¹⁾)						
	11 = 1:256										
	10 = 1:64										
	01 = 1:8 00 = 1:1										
bit 3-2		ted: Read as '	ı'								
bit 1	-	Clock Source S									
		clock from pin T		rising edge)							
bit 0		ted: Read as '(י)								
			,								
	Vhen 32-bit opera unctions are set th			= 1), these bits	have no effec	t on Timery operat	tion; all timer				
		-		1) in the Timer	Control regist	er (TxCON<3>) t	he TSIDL hi				

REGISTER 13-2: TyCON (T3CON AND T5CON) CONTROL REGISTER

- 2: When 32-bit timer operation is enabled (T32 = 1) in the Timer Control register (TxCON<3>), the TSIDL bit must be cleared to operate the 32-bit timer in Idle mode.
- 3: The TyCK pin is not available on all timers. See "Pin Diagrams" section for the available pins.

NOTES:

14.0 INPUT CAPTURE


- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 12. "Input Capture" (DS70352) of the "dsPIC33E/ PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Input Capture module is useful in applications requiring frequency (period) and pulse measurement. The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X, and PIC24EPXXXGP/MC20X devices support up to 4 input capture channels.

Key features of the Input Capture module include:

- Hardware-configurable for 32-bit operation in all modes by cascading two adjacent modules
- Synchronous and Trigger modes of output compare operation, with up to 31 user-selectable trigger/sync sources available
- A 4-level FIFO buffer for capturing and holding timer values for several events
- · Configurable interrupt generation
- Up to six clock sources available for each module, driving a separate internal 16-bit counter

FIGURE 14-1: INPUT CAPTURE MODULE BLOCK DIAGRAM

Inter 1: The Trigger/Sync source is enabled by default and is set to Timer3 as a source. This timer must be enabled for proper ICx module operation or the Trigger/Sync source must be changed to another source option.

14.1 Input Capture Registers

REGISTER 14-1: ICxCON1: INPUT CAPTURE x CONTROL REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0				
_	_	ICSIDL		ICTSEL<2:0>		—					
bit 15	·						bit 8				
	DAMA	DAMO			DAMO	DANIO	DAMO				
U-0	R/W-0	R/W-0	R/HC/HS-0	R/HC/HS-0	R/W-0	R/W-0	R/W-0				
		<1:0>	ICOV	ICBNE		ICM<2:0>	1:1.0				
bit 7							bit 0				
Legend:											
R = Readable	e bit	HC = Cleared	by Hardware	HS = Set by H	lardware	'0' = Bit is	s cleared				
-n = Value at	POR	W = Writable b	it	U = Unimplem	ented bit, rea	ad as '0'					
bit 15-14	-	ted: Read as '0									
bit 13	-	-	n Idle Control bit								
		ture will Halt in	CPU Idle mode e to operate in (
bit 12-10			ire Timer Select								
		111 = Peripheral clock (FP) is the clock source of the ICx 110 = Reserved									
		101 = Reserved									
		100 = Clock source of Timer1 is the clock source of the ICx (only the synchronous clock is supported) 011 = Clock source of Timer5 is the clock source of the ICx									
		011 = Clock source of Timer5 is the clock source of the ICx 010 = Clock source of Timer4 is the clock source of the ICx									
	001 = Clock source of Timer2 is the clock source of the ICx										
	000 = Clock s	source of Timer	3 is the clock sou	urce of the ICx							
bit 9-7	Unimplemen	ted: Read as '0	,								
bit 6-5	ICI<1:0>: Number of Captures per Interrupt Select bits (this field is not used if ICM<2:0> = 001 or 111)										
	11 = Interrupt on every fourth capture event										
	10 = Interrupt on every third capture event 01 = Interrupt on every second capture event										
		t on every seco									
		t on every secor t on every captu	nd capture event								
bit 4	00 = Interrupt	t on every captu	nd capture event								
bit 4	00 = Interrupt ICOV: Input C 1 = Input cap	t on every captu Capture Overflov oture buffer over	nd capture event re event v Status Flag bit flow occurred	(read-only)							
	00 = Interrupt ICOV: Input C 1 = Input cap 0 = No input	t on every captu Capture Overflov oture buffer over capture buffer o	nd capture event re event v Status Flag bit flow occurred verflow occurred	(read-only)							
bit 4 bit 3	00 = Interrupt ICOV: Input C 1 = Input cap 0 = No input ICBNE: Input	t on every captu Capture Overflow uture buffer over capture buffer of Capture Buffer	nd capture event re event v Status Flag bit flow occurred verflow occurred Not Empty Statu	(read-only) d is bit (read-only)		be read					
	00 = Interrupt ICOV: Input C 1 = Input cap 0 = No input ICBNE: Input 1 = Input cap	t on every captu Capture Overflow uture buffer over capture buffer of Capture Buffer	nd capture event re event v Status Flag bit flow occurred verflow occurred Not Empty Statu t empty, at least	(read-only)		be read					
	00 = Interrupt ICOV: Input C 1 = Input cap 0 = No input ICBNE: Input 1 = Input cap 0 = Input cap	t on every captu Capture Overflow oture buffer over capture buffer of Capture Buffer oture buffer is no	nd capture event re event v Status Flag bit flow occurred verflow occurred Not Empty Statu t empty, at least npty	(read-only) d is bit (read-only)		be read					
bit 3	00 = Interrupt ICOV: Input C 1 = Input cap 0 = No input ICBNE: Input 1 = Input cap 0 = Input cap ICM<2:0>: In 111 = Input c	t on every captu Capture Overflow oture buffer over capture buffer of Capture Buffer oture buffer is no oture buffer is er put Capture Mo capture function	nd capture event re event v Status Flag bit flow occurred verflow occurred Not Empty Statu t empty, at least npty de Select bits s as interrupt pi	(read-only) d is bit (read-only) one more captu n only in CPU Sl	ire value can		edge detec				
bit 3	00 = Interrupt ICOV: Input C 1 = Input cap 0 = No input ICBNE: Input 1 = Input cap 0 = Input cap ICM<2:0>: Input 111 = Input co only, a	t on every captu Capture Overflow oture buffer over capture buffer over Capture Buffer oture buffer is no oture buffer is er put Capture Mo capture function Il other control I	nd capture event re event v Status Flag bit flow occurred verflow occurred Not Empty Statu t empty, at least npty de Select bits s as interrupt pinoits are not appli	(read-only) d is bit (read-only) one more captu n only in CPU Sl	ire value can		edge detec				
bit 3	00 = Interrupt ICOV: Input C 1 = Input cap 0 = No input ICBNE: Input 1 = Input cap 0 = Input cap ICM<2:0>: Input 111 = Input co only, a 110 = Unuse	t on every captu Capture Overflow oture buffer over capture buffer over capture buffer over oture buffer is no oture buffer is er put Capture Mo capture function Il other control I ed (module disal	nd capture event re event v Status Flag bit flow occurred verflow occurred Not Empty Statu t empty, at least npty de Select bits s as interrupt pi bits are not appli bled)	(read-only) d is bit (read-only) one more captu n only in CPU Si cable)	re value can leep and Idle		edge detec				
bit 3	00 = Interrupt ICOV: Input C 1 = Input cap 0 = No input ICBNE: Input 1 = Input cap 0 = Input cap ICM<2:0>: Input 111 = Input cap 0 = 0, a 110 = Unuse 101 = Captur 100 = Captur	t on every captu Capture Overflow oture buffer over capture buffer over capture buffer over oture buffer is no oture buffer is en put Capture Mo capture function Il other control I ed (module disal re mode, every re mode, every	nd capture event re event v Status Flag bit flow occurred verflow occurred Not Empty Statu t empty, at least npty de Select bits s as interrupt pi bits are not appli bled) 16th rising edge (th rising edge ((read-only) d is bit (read-only) one more captu n only in CPU Si cable) (Prescaler Captu Prescaler Captu	re value can leep and Idle ure mode) re mode)		edge detec				
bit 3	00 = Interrupt ICOV: Input C 1 = Input cap 0 = No input ICBNE: Input 1 = Input cap 0 = Input cap 0 = Input cap ICM<2:0>: Input 111 = Input cap 0 = 0, a 110 = Unuse 101 = Captur 011 = Captur 011 = Captur	t on every capture Capture Overflow oture buffer over capture buffer over capture buffer over oture buffer is no oture buffer is en put Capture Mo capture function II other control I ed (module disal re mode, every re mode, every re mode, every	nd capture event re event v Status Flag bit flow occurred verflow occurred Not Empty Statu t empty, at least npty de Select bits s as interrupt pi bits are not appli bled) 16th rising edge (th rising edge (Sim	(read-only) d is bit (read-only) one more captu n only in CPU Si cable) (Prescaler Capt Prescaler Captu ple Capture mod	re value can leep and Idle ure mode) re mode) de)		edge detec				
bit 3	00 = Interrupt ICOV: Input C 1 = Input cap 0 = No input ICBNE: Input 1 = Input cap 0 = Input cap 0 = Input cap ICM<2:0>: In 111 = Input c only, a 110 = Unuse 101 = Captur 011 = Captur 010 = Captur 010 = Captur	t on every capture Capture Overflow ture buffer over capture buffer over capture buffer over ture buffer is no ture buffer is en put Capture Mo capture function all other control I d (module disal re mode, every re mode, every re mode, every re mode, every	nd capture event re event v Status Flag bit flow occurred verflow occurred Not Empty Statu t empty, at least npty de Select bits s as interrupt pi bits are not appli bled) 16th rising edge (th rising edge (Sim falling edge (Sim	(read-only) d is bit (read-only) one more captu n only in CPU Si cable) (Prescaler Capt Prescaler Captu ple Capture mod	re value can leep and Idle ure mode) re mode) de) de)	mode (rising					
bit 3	00 = Interrupt ICOV: Input C 1 = Input cap 0 = No input ICBNE: Input 1 = Input cap 0 = Input cap 0 = Input cap ICM<2:0>: In 111 = Input c only, a 110 = Unuse 101 = Captur 011 = Captur 010 = Captur 010 = Captur	t on every capture Capture Overflow oture buffer over capture buffer over capture Buffer oture buffer is no oture buffer is en put Capture Mo capture function II other control I d (module disal re mode, every re mode, every re mode, every re mode, every re mode, every re mode, every	nd capture event re event v Status Flag bit flow occurred verflow occurred Not Empty Statu t empty, at least npty de Select bits s as interrupt pi bits are not appli bled) 16th rising edge (th rising edge (Sim falling edge (Sim	(read-only) d is bit (read-only) one more captu n only in CPU Si cable) (Prescaler Capt Prescaler Captu ple Capture mod	re value can leep and Idle ure mode) re mode) de) de)	mode (rising					

REGISTER	4-2: ICXCO	NZ: INPUT	CAPIUREXCO	UNIROL RE	GISTER 2		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	_	—	—	—	—	IC32
bit 15							bit
R/W-0	R/W/HS-0	U-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-1
ICTRIG ⁽²⁾	TRIGSTAT ⁽³⁾			S`	YNCSEL<4:0>		

ICYCONS INDUT CADTURE Y CONTROL REGISTER 2 DECISTED 44 0.

Leo	en	d
LCU	CII	u.

bit 7

Legend:						
R = Readable bit -n = Value at POR		HS = Set by Hardware	'0' = Bit is cleared			
		W = Writable bit	U = Unimplemented bit, read as '0'			
bit 15-9	Unimplem	ented: Read as '0'				
bit 8	IC32: 32-bi	t Timer Mode Select bit (Casc	ade mode)			
	1 = ODD	C and EVEN IC form a single 32-bit Input Capture module ⁽¹⁾				
	0 = Casca	le module operation disabled				
bit 7 ICTRIG: Trigger Operation Select bit ⁽²⁾						

- 1 = Input source used to trigger the input capture timer (Trigger mode)
- 0 = Input source used to synchronize input capture timer to timer of another module (Synchronization mode)
- TRIGSTAT: Timer Trigger Status bit⁽³⁾ bit 6
 - 1 = ICxTMR has been triggered and is running
 - 0 = ICxTMR has not been triggered and is being held clear
- bit 5 Unimplemented: Read as '0'
- Note 1: The IC32 bit in both the ODD and EVEN IC must be set to enable Cascade mode.
 - 2: The input source is selected by the SYNCSEL<4:0> bits of the ICxCON2 register.
 - 3: This bit is set by the selected input source (selected by SYNCSEL<4:0> bits). It can be read, set, and cleared in software.
 - 4: Do not use the ICx module as its own sync or trigger source.
 - 5: This option should only be selected as trigger source and not as a synchronization source.
 - 6: Each Input Capture module (ICx) has one PTG input source. See Section 24.0 "Peripheral Trigger Generator (PTG) Module" for more information. PTGO8 = IC1 PTGO9 = IC2 PTGO10 = IC3 PTGO11 = IC4

bit 8

bit 0

REGISTER 14-2: ICxCON2: INPUT CAPTURE x CONTROL REGISTER 2 (CONTINUED)

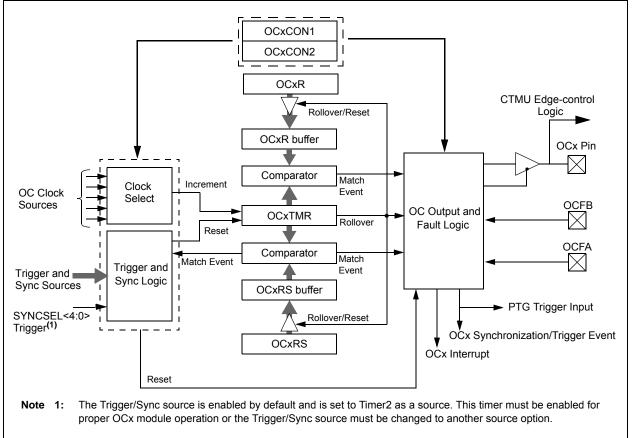
bit 4-0	SYNCSEL<4:0>: Input Source Select for Synchronization and Trigger Operation bits ⁽⁴⁾
	11111 = No sync or trigger source for ICx
	11110 = Reserved
	11101 = Reserved
	11100 = CTMU module synchronizes or triggers ICx
	11011 = ADC1 module synchronizes or triggers ICx ⁽⁵⁾
	11010 = CMP3 module synchronizes or triggers ICx ⁽⁵⁾
	11001 = CMP2 module synchronizes or triggers ICx ⁽⁵⁾
	11000 = CMP1 module synchronizes or triggers ICx ⁽⁵⁾
	10111 = Reserved
	10110 = Reserved
	10101 = Reserved
	10100 = Reserved
	10011 = IC4 module synchronizes or triggers ICx
	10010 = IC3 module synchronizes or triggers ICx
	10001 = IC2 module synchronizes or triggers ICx
	10000 = IC1 module synchronizes or triggers ICx
	01111 = Timer5 synchronizes or triggers ICx
	01110 = Timer4 synchronizes or triggers ICx
	01101 = Timer3 synchronizes or triggers ICx (default)
	01100 = Timer2 synchronizes or triggers ICx
	01011 = Timer1 synchronizes or triggers ICx
	01010 = PTGOx module synchronizes or triggers ICx ⁽⁶⁾
	01001 = Reserved
	01000 = Reserved
	00111 = Reserved
	00110 = Reserved
	00101 = Reserved
	00100 = OC4 module synchronizes or triggers ICx
	00011 = OC3 module synchronizes or triggers ICx
	00010 = OC2 module synchronizes or triggers ICx

Note 1: The IC32 bit in both the ODD and EVEN IC must be set to enable Cascade mode.

00001 = OC1 module synchronizes or triggers ICx

00000 = No sync or trigger source for ICx

- 2: The input source is selected by the SYNCSEL<4:0> bits of the ICxCON2 register.
- **3:** This bit is set by the selected input source (selected by SYNCSEL<4:0> bits). It can be read, set, and cleared in software.
- 4: Do not use the ICx module as its own sync or trigger source.
- 5: This option should only be selected as trigger source and not as a synchronization source.
- 6: Each Input Capture module (ICx) has one PTG input source. See Section 24.0 "Peripheral Trigger Generator (PTG) Module" for more information.
 PTGO8 = IC1
 PTGO9 = IC2
 PTGO10 = IC3
 PTGO11 = IC4


15.0 OUTPUT COMPARE

- This data sheet summarizes the features Note 1: the dsPIC33EPXXXGP50X, of dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 13. "Output Compare" (DS70358) of the "dsPIC33E/PIC24E Family Reference Manual', which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Output Compare module can select one of eight available clock sources for its time base. The module compares the value of the timer with the value of one or two compare registers depending on the operating mode selected. The state of the output pin changes when the timer value matches the compare register value. The output compare module generates either a single output pulse or a sequence of output pulses, by changing the state of the output pin on the compare match events. The output compare module can also generate interrupts on compare match events and trigger DMA data transfers.

Note: See Section 13. "Output Compare" (DS70358) in the "dsPIC33E/PIC24E Family Reference Manual" for OCxR and OCxRS register restrictions.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	
_		OCSIDL		OCTSEL<2:0>			ENFLTB	
bit 15							bit 8	
R/W-0	U-0	R/W-0 HCS	R/W-0 HCS	R/W-0	R/W-0	R/W-0	R/W-0	
ENFLTA		OCFLTB	OCFLTA	TRIGMODE		OCM<2:0>		
bit 7							bit (
Legend:		HCS = Hardw	are Clearable/	Settable bit				
R = Readab	ole bit	W = Writable	bit	U = Unimpleme	ented bit, rea	d as '0'		
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is clear	red	x = Bit is unkn	iown	
bit 15-14	Unimplemer	nted: Read as '	0'					
bit 13	OCSIDL: Sto	op Output Comp	are x in Idle M	ode Control bit				
	1 = Output Compare x halts in CPU Idle mode							
hii 40 40	 0 = Output Compare x continues to operate in CPU Idle mode OCTSEL<2:0>: Output Compare x Clock Select bits 							
bit 12-10			ipare x Clock a	Select Dits				
	111 = Peripheral clock (FP) 110 = Reserved							
	101 = PTGOx clock ⁽²⁾							
	100 = Timer1 clock (only the synchronous clock is supported)							
	011 = Timer5 clock 010 = Timer4 clock							
	001 = Timer3 clock							
	000 = Timer2	2 clock						
bit 9	-	nted: Read as '						
bit 8	ENFLTB: Fault B Input Enable bit 1 = Output Compare Fault B input (OCFB) is enabled							
		Compare Fault E Compare Fault E						
bit 7	ENFLTA: Fault A Input Enable bit							
		Compare Fault A Compare Fault A						
bit 6	•	nted: Read as '	• • •					
bit 5	-	VM Fault B Con		it				
		ault B condition		as occurred				
bit 4		VM Fault A Con						
	1 = PWM Fault A condition on OCFA pin has occurred							
	0 = No PWM Fault A condition on OCFA pin has occurred							
bit 3		Trigger Status						
	 1 = TRIGSTAT (OCxCON2<6>) is cleared when OCxRS = OCxTMR or in software 0 = TRIGSTAT is cleared only by software 							
Note 1: (OCxR and OCxF	RS are double-b	uffered in PWI	/I mode only.				
2: E	Each Output Compare module (OCx) has one PTG clock source. See Section 24.0 "Peripheral Trigger							
	Generator (PTG) Module" for n	nore informatio	n.		-		
	PTGO4 = OC1							
	PTGO5 = OC2 PTGO6 = OC3							
F								

REGISTER 15-1: OCxCON1: OUTPUT COMPAREX CONTROL REGISTER 1

REGISTER 15-1: OCxCON1: OUTPUT COMPAREX CONTROL REGISTER 1 (CONTINUED)

- bit 2-0 OCM<2:0>: Output Compare Mode Select bits
 - 111 = Center-Aligned PWM mode: Output set high when OCxTMR = OCxR and set low when OCxTMR = OCxRS⁽¹⁾
 - 110 = Edge-Aligned PWM mode: Output set high when OCxTMR = 0 and set low when OCxTMR = OCxR⁽¹⁾
 - 101 = Double Compare Continuous Pulse mode: Initialize OCx pin low, toggle OCx state continuously on alternate matches of OCxR and OCxRS
 - 100 = Double Compare Single-Shot mode: Initialize OCx pin low, toggle OCx state on matches of OCxR and OCxRS for one cycle
 - 011 = Single Compare mode: Compare events with OCxR, continuously toggle OCx pin
 - 010 = Single Compare Single-Shot mode: Initialize OCx pin high, compare event with OCxR, forces OCx pin low
 - 001 = Single Compare Single-Shot mode: Initialize OCx pin low, compare event with OCxR, forces OCx pin high
 - 000 = Output compare channel is disabled
- **Note 1:** OCxR and OCxRS are double-buffered in PWM mode only.
 - 2: Each Output Compare module (OCx) has one PTG clock source. See Section 24.0 "Peripheral Trigger Generator (PTG) Module" for more information.
 - PTGO4 = OC1
 - PTGO5 = OC2
 - PTGO6 = OC3
 - PTGO7 = OC4

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0		
FLTMD	FLTOUT	FLTTRIEN	OCINV	—	DCB	<1:0>	OC32		
bit 15							bit		
R/W-0	R/W-0 HS	R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0		
OCTRIG	TRIGSTAT	OCTRIS		Ş	SYNCSEL<4:0	>			
bit 7							bit		
Legend:		HS = Hardwa	e Settable bit						
R = Reada	ble bit	W = Writable I	oit	U = Unimplen	nented bit, read	d as '0'			
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown		
bit 15	FLTMD: Fault Mode Select bit								
		1 = Fault mode is maintained until the Fault source is removed; the corresponding OCFLTx bit							
	cleared in software and a new PWM period starts 0 = Fault mode is maintained until the Fault source is removed and a new PWM period starts								
bit 14	FLTOUT: Fau	ılt Out bit							
	 1 = PWM output is driven high on a Fault 0 = PWM output is driven low on a Fault 								
bit 13	0 = PWM output is driven low on a Fault FLTTRIEN: Fault Output State Select bit								
	1 = OCx pin is tri-stated on Fault condition								
	0 = OCx pin I/O state defined by FLTOUT bit on Fault condition								
bit 12	OCINV: OCM	IP Invert bit							
		 1 = OCx output is inverted 0 = OCx output is not inverted 							
bit 11	-	ted: Read as 'd							
bit 10-9	DCB<1:0>: PWM Duty Cycle Least Significant bits								
	These bits can be considered as the Least Significant bits of the duty cycle in the Pulse Generation modes. They are also used to delay the falling edge of the OCx output in all other modes; rising edge								
	when output conversion is active (OCINV (OCxCON2<12> = 1). 11 = OCx output falling edge transitions on rising edge of system clock plus $3/4$ Tcy								
	11 = OCx output failing edge transitions on rising edge of system clock plus 3/4 TCY 10 = OCx output falling edge transitions on rising edge of system clock plus 1/2 TCY								
	01 = OCx output falling edge transitions on rising edge of system clock plus 1/4 Tcy 00 = OCx output falling edge transitions on rising edge of system clock								
h # 0					•				
bit 8				e bit (32-bit oper	ation)				
	1 = Cascade module operation enabled0 = Cascade module operation disabled								
bit 7	OCTRIG: OC	OCTRIG: OCx Trigger/Sync Select bit							
				by SYNCSELx b ated by SYNCS					
Note 1:	Do not use the O	Cx module as if	s own synchr	onization or trig	ger source.				
	When the OCy m as a trigger source								
3:	Each Output Con "Peripheral Trig PTGO0 = OC1 PTGO1 = OC2	npare module (0	DCx) has one	PTG Trigger/Sy	nchronization	-	-		
	PTGO2 = OC3 PTGO3 = OC4								

REGISTER 15-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2

REGISTER 15-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2 (CONTINUED)

bit 6	TRIGSTAT: Timer Trigger Status bit
	1 = Timer source has been triggered and is running
	0 = Timer source has not been triggered and is being held clear
bit 5	OCTRIS: OCx Output Pin Direction Select bit
	1 = OCx is tri-stated
	0 = Output compare module drives the OCx pin
bit 4-0	SYNCSEL<4:0>: Trigger/Synchronization Source Selection bits
	11111 = No sync or trigger source for OCx
	11110 = INT2 pin synchronizes or triggers OCx
	11101 = INT1 pin synchronizes or triggers OCx
	11100 = CTMU module synchronizes or triggers OCx
	11011 = ADC1 module synchronizes or triggers OCx
	11010 = CMP3 module synchronizes or triggers OCx
	11001 = CMP2 module synchronizes or triggers OCx
	11000 = CMP1 module synchronizes or triggers OCx
	10111 = Reserved
	10110 = Reserved
	10101 = Reserved
	10100 = Reserved
	10011 = IC4 module synchronizes or triggers OCx
	10010 = IC3 module synchronizes or triggers OCx
	10001 = IC2 module synchronizes or triggers OCx
	10000 = IC1 module synchronizes or triggers OCx
	01111 = Timer5 synchronizes or triggers OCx
	01110 = Timer4 synchronizes or triggers OCx
	01101 = Timer3 synchronizes or triggers OCx
	01100 = Timer2 synchronizes or triggers OCx (default)
	01011 = Timer1 synchronizes or triggers OCx
	01010 = PTGOx synchronizes or trigger $OCx^{(3)}$
	01001 = Reserved
	01000 = Reserved
	00111 = Reserved
	00110 = Reserved
	00101 = Reserved
	00100 = OC4 module synchronizes or triggers $OCx^{(1,2)}$
	00011 = OC3 module synchronizes or triggers $OCx^{(1,2)}$
	$00010 = OC2 \text{ module synchronizes or triggers } OCx^{(1,2)}$
	00001 = OC1 module synchronizes or triggers $OCx^{(1,2)}$
	00000 = No sync or trigger source for OCx

- Note 1: Do not use the OCx module as its own synchronization or trigger source.
 - 2: When the OCy module is turned OFF, it sends a trigger out signal. If the OCx module use the OCy module as a trigger source, the OCy module must be unselected as a trigger source prior to disabling it.
 - Each Output Compare module (OCx) has one PTG Trigger/Synchronization source. See Section 24.0 "Peripheral Trigger Generator (PTG) Module" for more information. PTGO0 = OC1
 - PTGO1 = OC2
 - PTGO2 = OC3
 - PTGO3 = OC4

NOTES:

16.0 HIGH-SPEED PWM MODULE (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

- Note 1: This data sheet summarizes the features dsPIC33EPXXXGP50X of the dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 14. "High-Speed **PWM**" (DS70645) of the "*dsPIC33E/ PIC24E Family Reference Manual*", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices support a dedicated Pulse-Width Modulation (PWM) module with up to 6 outputs.

The High-Speed PWM module consists of the following major features:

- Three PWM generators
- Two PWM outputs per PWM generator
- · Individual period and duty cycle for each PWM pair
- Duty cycle, dead time, phase shift and frequency resolution of 8.32 ns
- Independent Fault and current-limit inputs for six
 PWM outputs
- · Redundant output
- Center-Aligned PWM mode
- Output override control
- Chop mode (also known as Gated mode)
- Special Event Trigger
- Prescaler for input clock
- PWMxL and PWMxH output pin swapping
- Independent PWM frequency, duty cycle and phase shift changes for each PWM generator
- Dead-time compensation
- Enhanced Leading-Edge Blanking (LEB) functionality
- Frequency resolution enhancement
- PWM capture functionality

Note: Duty cycle, dead-time, phase shift and frequency resolution is 8.32 ns in Center-Aligned PWM mode.

The High-Speed PWM module contains up to three PWM generators. Each PWM generator provides two PWM outputs: PWMxH and PWMxL. The master time base generator provides a synchronous signal as a common time base to synchronize the various PWM outputs. The individual PWM outputs are available on the output pins of the device. The input Fault signals and current-limit signals, when enabled, can monitor and protect the system by placing the PWM outputs into a known "safe" state.

Each PWM can generate a trigger to the ADC module to sample the analog signal at a specific instance during the PWM period. In addition, the High-Speed PWM module also generates a Special Event Trigger to the ADC module based on either of the two master time bases.

The High-Speed PWM module can synchronize itself with an external signal or can act as a synchronizing source to any external device. The SYNCI1 input pin that utilizes PPS, can synchronize the High-Speed PWM module with an external signal. The SYNCO1 pin is an output pin that provides a synchronous signal to an external device.

Figure 16-1 illustrates an architectural overview of the High-Speed PWM module and its interconnection with the CPU and other peripherals.

16.1 PWM Faults

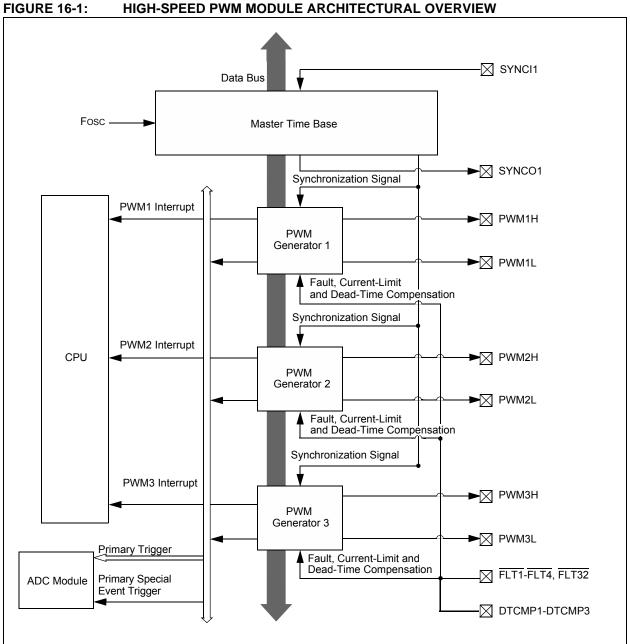
The PWM module incorporates multiple external Fault inputs to include FLT1 and FLT2, which are remappable using the PPS feature, FLT3 and FLT4, which are available only on the larger 44-pin and 64-pin packages, and FLT32, which has been implemented with Class B safety features, and is available on a fixed pin on all dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

These faults provide a safe and reliable way to safely shut down the PWM outputs when the Fault input is asserted.

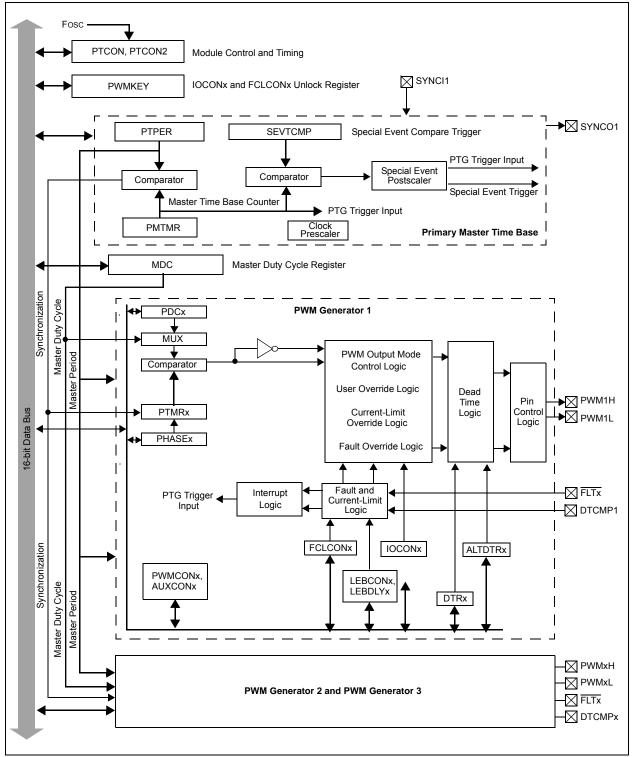
16.1.1 PWM FAULTS AT RESET

During any reset event, the <u>PWM</u> module maintains ownership of the Class B fault FLT32. At reset, this fault is enabled in latched mode to guarantee the fail-safe power-up of the application. The application software must clear the PWM fault before enabling the High-Speed Motor <u>Control PWM</u> module. To clear the fault condition, the FLT32 pin must first be pulled high externally or the internal pull up resistor in the CNPUx register can be enabled.

Note: The Fault mode may be changed using the FLTMOD<1:0> bits (FCLCON<1:0>) regardless of the state of FLT32.


16.1.2 WRITE-PROTECTED REGISTERS

On dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices, write protection is implemented for the IOCONx and FCLCONx registers. The write protection feature prevents any inadvertent writes to these registers. This protection feature can be controlled by the PWMLOCK Configuration bit (FOSCSEL<6>). The default state of the write protection feature is enabled (PWMLOCK = 1). The write protection feature can be disabled by configuring PWMLOCK = 0. To gain write access to these locked registers, the user application must write two consecutive values of (0xABCD and 0x4321) to the PWMKEY register to perform the unlock operation. The write access to the IOCONx or FCLCONx registers must be the next SFR access following the unlock process. There can be no other SFR accesses during the unlock process and subsequent write access. To write to both the IOCONx and FCLCONx registers requires two unlock operations.


The correct unlocking sequence is described in Example 16-1.

EXAMPLE 16-1: PWM WRITE-PROTECTED REGISTER UNLOCK SEQUENCE

; FLT32 pin must be pu	lled high externally in order to clear and disable the fault						
; Writing to FCLCON1 register requires unlock sequence							
mov #0xabcd,w10	; Load first unlock key to w10 register						
mov #0x4321,w11	; Load second unlock key to wll register						
mov #0x0000,w0	; Load desired value of FCLCON1 register in w0						
mov w10, PWMKEY	; Write first unlock key to PWMKEY register						
mov w11, PWMKEY	; Write second unlock key to PWMKEY register						
mov w0,FCLCON1	; Write desired value to FCLCON1 register						
; Set PWM ownership an	d polarity using the IOCON1 register						
; Writing to IOCON1 re	; Writing to IOCON1 register requires unlock sequence						
_							
mov #0xabcd,w10	; Load first unlock key to w10 register						
mov #0x4321,w11	; Load second unlock key to w11 register						
mov #0xF000,w0	; Load desired value of IOCON1 register in w0						
mov w10, PWMKEY	; Write first unlock key to PWMKEY register						
mov w11, PWMKEY	; Write second unlock key to PWMKEY register						
mov w0,IOCON1	; Write desired value to IOCON1 register						
•							

HIGH-SPEED PWM MODULE ARCHITECTURAL OVERVIEW

FIGURE 16-2: HIGH-SPEED PWM MODULE REGISTER INTERCONNECTION DIAGRAM

R/W-0	U-0	R/W-0	HS/HC-0	R/W-0	R/W-0	R/W-0	R/W-0		
PTEN		PTSIDL	SESTAT	SEIEN	EIPU ⁽¹⁾	SYNCPOL ⁽¹⁾	SYNCOEN ⁽¹⁾		
bit 15			•	•			bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
SYNCEN ⁽¹⁾	S	SYNCSRC<2:0	<mark>⊳</mark> (1)		SEVT	PS<3:0>(1)			
bit 7							bit 0		
Legend:		HC = Cleare	d in Hardware	HS = Set in	Hardware				
R = Readable		W = Writable bit			U = Unimplemented bit, read as '0'				
-n = Value at I	POR	R '1' = Bit is set			'0' = Bit is cleared x = Bit is unl				
L:1 4 F			- 1- 14						
bit 15	PTEN: PWM Module Enable bit								
	1 = PWM module is enabled 0 = PWM module is disabled								
bit 14									
bit 13	Unimplemented: Read as '0' PTSIDL: PWM Time Base Stop in Idle Mode bit								
	1 = PWM time base halts in CPU Idle mode								
	0 = PWM time base runs in CPU Idle mode								
bit 12		ecial Event Inte		t					
	 Special Event Interrupt is pending Special Event Interrupt is not pending 								
L:1 44		-							
bit 11	SEIEN: Special Event Interrupt Enable bit 1 = Special Event Interrupt is enabled								
	0 = Special Event Interrupt is disabled								
bit 10				bit ⁽¹⁾					
	EIPU: Enable Immediate Period Updates bit ⁽¹⁾ 1 = Active Period register is updated immediately								
	0 = Active Period register updates occur on PWM cycle boundaries								
bit 9	SYNCPOL: Synchronize Input and Output Polarity bit ⁽¹⁾								
	1 = SYNCI1/SYNCO1 polarity is inverted (active-low) 0 = SYNCI1/SYNCO1 is active-high								
bit 8		Primary Time E	-	blo bit(1)					
DILO		1 output is enal							
		1 output is disa							
bit 7	SYNCEN: E	xternal Time Ba	ase Synchroniz	zation Enable	bit ⁽¹⁾				
	1 = External synchronization of primary time base is enabled								
	0 = External synchronization of primary time base is disabled								
bit 6-4		2:0>: Synchror	nous Source Se	election bits ⁽¹⁾					
	111 = Rese r	rved							
	•								
	•								
	100 = Reser								
	011 = PTGC 010 = PTGC								
	001 = Reser								
		CI 1 input from I	PPS						

REGISTER 16-1: PTCON: PWM TIME BASE CONTROL REGISTER

- **Note 1:** These bits should be changed only when PTEN = 0. In addition, when using the SYNCI1 feature, the user application must program the period register with a value that is slightly larger than the expected period of the external synchronization input signal.
 - 2: See Section 24.0 "Peripheral Trigger Generator (PTG) Module" for information on this selection.

REGISTER 16-1: PTCON: PWM TIME BASE CONTROL REGISTER (CONTINUED)

bit 3-0 SEVTPS<3:0>: PWM Special Event Trigger Output Postscaler Select bits⁽¹⁾ 1111 = 1:16 Postscaler generates Special Event Trigger on every sixteenth compare match event . . 0001 = 1:2 Postscaler generates Special Event Trigger on every second compare match event 0000 = 1:1 Postscaler generates Special Event Trigger on every compare match event

- **Note 1:** These bits should be changed only when PTEN = 0. In addition, when using the SYNCI1 feature, the user application must program the period register with a value that is slightly larger than the expected period of the external synchronization input signal.
 - 2: See Section 24.0 "Peripheral Trigger Generator (PTG) Module" for information on this selection.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	_	—	_	_		—	—	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	
—	—	—	—	—	P	CLKDIV<2:0>(1)	
bit 7							bit 0	
Legend:								
R = Readable b	bit	W = Writable I	oit	U = Unimpler	nented bit, read	as '0'		
-n = Value at Po	OR	'1' = Bit is set		'0' = Bit is cle	ared	-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unkno		

REGISTER 16-2: PTCON2: PWM PRIMARY MASTER CLOCK DIVIDER SELECT REGISTER

bit 15-3 Unimplemented: Read as '0'

bit 2-0

PCLKDIV<2:0>: PWM Input Clock Prescaler (Divider) Select bits⁽¹⁾

111 = Reserved

110 = Divide by 64, maximum PWM timing resolution

101 = Divide by 32, maximum PWM timing resolution

100 = Divide by 16, maximum PWM timing resolution

011 = Divide by 8, maximum PWM timing resolution

010 = Divide by 4, maximum PWM timing resolution

001 = Divide by 2, maximum PWM timing resolution

000 = Divide by 1, maximum PWM timing resolution (power-on default)

Note 1: These bits should be changed only when PTEN = 0. Changing the clock selection during operation will yield unpredictable results.

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
		PTPER	<15:8>			
						bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0
		PTPE	R<7:0>			
						bit (
			PTPER R/W-1 R/W-1 R/W-1	PTPER<15:8>	PTPER<15:8> R/W-1 R/W-1 R/W-1 R/W-0	PTPER<15:8> R/W-1 R/W-1 R/W-0 R/W-0

REGISTER 16-3: PTPER: PRIMARY MASTER TIME BASE PERIOD REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 PTPER<15:0>: Primary Master Time Base (PMTMR) Period Value bits

REGISTER 16-4: SEVTCMP: PWM PRIMARY SPECIAL EVENT COMPARE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SEVTC	MP<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SEVTO	CMP<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bi	t	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 SEVTCMP<15:0>: Special Event Compare Count Value bits

R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
CHPCLKEN	_		_	_	—	CHOF	P<9:8>
bit 15			·	·			bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CHOF	P<7:0>			
bit 7							bit 0

REGISTER 16-5: CHOP: PWM CHOP CLOCK GENERATOR REGISTER

Legend:				
R = Readable bit -n = Value at POR		W = Writable bit	U = Unimplemented bit,	read as '0'
		'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknowr
bit 15		EN: Enable Chop Clock Ge		
	•	clock generator is enabled		
	0 = Chop	clock generator is disabled		
bit 14-10	Unimpler	nented: Read as '0'		

Dit 14-10	Onimplemented. Read as 0
bit 9-0	CHOP<9:0>: Chop Clock Divider bits
	The frequency of the chop clock signal is given by the following expression:
	Chop Frequency = (FP/PLKDIV<2:0)/(CHOP<9:0> + 1)

REGISTER 16-6: MDC: PWM MASTER DUTY CYCLE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			MDC	C<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			MD	C<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimpler	nented bit, rea	ad as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x =		x = Bit is unkı	nown				

bit 15-0 MDC<15:0>: Master PWM Duty Cycle Value bits

HS/HC-		HS/HC-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FLTSTA	(¹⁾ CLSTAT ⁽¹⁾	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB ⁽²⁾	MDCS ⁽²⁾
bit 15	·		·	·	·		bit
	D 444 0	D 444 0		D 444 0	D 444 0	D 444 0	D 444 0
R/W-0	-	R/W-0	U-0	R/W-0	R/W-0 CAM ^(2,4)	R/W-0	R/W-0
	DTC<1:0>	DTCP ⁽³⁾		MTBS	CAM	XPRES ⁽⁵⁾	IUE ⁽²⁾
bit 7							bit
Legend:		HC = Cleared	l in Hardware	HS = Set in H	Hardware		
R = Read	able bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
L:: 4 C							
bit 15		ult Interrupt Sta					
		nterrupt is pendini					
		ared by setting					
bit 14	CLSTAT: Curr	rent-Limit Inter	rupt Status bit	(1)			
		mit interrupt is					
		It-limit interrupt ared by setting					
bit 13		igger Interrupt					
DIL 13		terrupt is pend					
		interrupt is pe	•				
		ared by setting					
bit 12	FLTIEN: Faul	t Interrupt Ena	ble bit				
		rrupt is enabled rrupt is disable		T hit is cleared	4		
bit 11		nt-Limit Interru			J		
		mit interrupt en					
		mit interrupt dis		STAT bit is cle	ared		
bit 10	TRGIEN: Trig	ger Interrupt E	nable bit				
		event generate /ent interrupts :			bit is cleared		
bit 9	ITB: Independ	dent Time Base	e Mode bit ⁽²⁾				
		register provide			⊃WM generator ator		
bit 8	MDCS: Maste	er Duty Cycle F	Register Selec	t bit ⁽²⁾			
					s PWM generato s PWM generat		
Note 1:	Software must clea	ar the interrupt	status here ar	nd in the corre	spondina IFS bi	t in the interrup	t controller.
2:	These bits should						
3:	DTC<1:0> = 11 for	-					
4:	The Independent T CAM bit is ignored	īme Base (ITB			•	Aligned mode.	If ITB = 0, the
_							

REGISTER 16-7: PWMCONx: PWM CONTROL REGISTER

5: To operate in External Period Reset mode, the ITB bit must be '1' and the CLMOD bit in the FCLCONx register must be '0'.

REGISTER 16-7: PWMCONX: PWM CONTROL REGISTER (CONTINUED)

bit 7-6	3	DTC<1:0>: Dead-Time Control bits
		11 = Dead-Time Compensation mode
		10 = Dead-time function is disabled
		01 = Negative dead time actively applied for Complementary Output mode
		00 = Positive dead time actively applied for all output modes
bit 5		DTCP: Dead-Time Compensation Polarity bit ⁽³⁾
		When set to '1':
		If DTCMPx = 0, PWMLx is shortened and PWMHx is lengthened.
		If DTCMPx = 1, PWMHx is shortened and PWMLx is lengthened.
		When set to '0':
		If DTCMPx = 0, PWMHx is shortened and PWMLx is lengthened.
		If DTCMPx = 1, PWMLx is shortened and PWMHx is lengthened.
bit 4		Unimplemented: Read as '0'
bit 3		MTBS: Master Time Base Select bit
		1 = PWM generator uses the secondary master time base for synchronization and as the clock source
		for the PWM generation logic (if secondary time base is available)
		0 = PWM generator uses the primary master time base for synchronization and as the clock source
		for the PWM generation logic
bit 2		CAM: Center-Aligned Mode Enable bit ^(2,4)
		1 = Center-Aligned mode is enabled
		0 = Edge-Aligned mode is enabled
bit 1		XPRES: External PWM Reset Control bit ⁽⁵⁾
		1 = Current-limit source resets the time base for this PWM generator if it is in Independent Time Base
		mode
		0 = External pins do not affect PWM time base
bit 0		IUE: Immediate Update Enable bit
		1 = Updates to the active MDC/PDCx/DTx/ALTDTRx/PHASEx registers are immediate
		 Updates to the active MDC/PDCx/DTx/ALTDTRx/PHASEx registers are synchronized to the PWM time base
Note	1:	Software must clear the interrupt status here and in the corresponding IFS bit in the interrupt controller.
	2:	These bits should not be changed after the PWM is enabled (PTEN = 1).
	3:	DTC<1:0> = 11 for DTCP to be effective; otherwise, DTCP is ignored.

- 4: The Independent Time Base (ITB = 1) mode must be enabled to use Center-Aligned mode. If ITB = 0, the CAM bit is ignored.
- **5:** To operate in External Period Reset mode, the ITB bit must be '1' and the CLMOD bit in the FCLCONx register must be '0'.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PDCx	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PDC	x<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at P	-n = Value at POR '1' = Bit is set			'0' = Bit is cle	ared	x = Bit is unkr	nown

REGISTER 16-8: PDCx: PWM GENERATOR DUTY CYCLE REGISTER

bit 15-0 PDCx<15:0>: PWM Generator # Duty Cycle Value bits

REGISTER 16-9: PHASEX: PWM PRIMARY PHASE SHIFT REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PHASE	x<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PHAS	Ex<7:0>			
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable I	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unkr	nown
	TITB (PWMCO	5:0>: PWM Phas Nx<9>) = 0, the f , Redundant and	ollowing appl	ies based on th	ne mode of op	eration:	
2 : I		= Phase shift va Nx<9>) = 1, the f	ollowing appl	ies based on th	ne mode of op		

REGISTER 16-10: DTRx: PWM DEAD-TIME REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_			DTR	<13:8>		
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			DTRx	<7:0>			
bit 7							bit 0
Legend:							

Logona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-0 DTRx<13:0>: Unsigned 14-bit Dead-Time Value bits for PWMx Dead-Time Unit

REGISTER 16-11: ALTDTRx: PWM ALTERNATE DEAD-TIME REGISTER

			D 44/ 0	5444.0	D 44/ 0					
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
—			ALTDTRx<13:8>							
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
			ALTDT	Rx<7:0>						
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable b	it	U = Unimplemented bit, read as '0'						
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			

bit 15-14 Unimplemented: Read as '0'

bit 13-0 ALTDTRx<13:0>: Unsigned 14-bit Dead-Time Value bits for PWMx Dead-Time Unit

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PENH	PENL	POLH	POLL	PMOD	<1:0> ⁽¹⁾	OVRENH	OVRENL
bit 15			1				bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
OVRDAT<1:0>		FLTDA	\T<1:0>	CLDA	T<1:0>	SWAP	OSYNC
bit 7							bit
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value a	t POR	'1' = Bit is se	t	'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15	1 = PWM mo	kH Output Pin dule controls F dule controls F					
bit 14		L Output Pin dule controls F dule controls F	WMxL pin				
bit 13		KH Output Pin bin is active-low bin is active-high	N				
bit 12		L Output Pin I in is active-lov in is active-hig	V				
bit 11-10	11 = Reserve 10 = PWM I/C 01 = PWM I/C 00 = PWM I/C	d; do not use) pin pair is in) pin pair is in) pin pair is in	•	t Output mode entary Output n	node		
bit 9	1 = OVRDAT		for PWMxH Pi utput on PWM s PWMxH pin				
bit 8	1 = OVRDAT		for PWMxL Pir utput on PWM: s PWMxL pin				
bit 7-6	If OVERENH	= 1, PWMxH i	s driven to the	Pins if Overrio state specified state specified	by OVRDAT	<1>.	
bit 5-4	IFLTMOD (FC	CLCONx<15>) ve, PWMxH is	= 0: Normal F driven to the s	MxL Pins if FLT ault mode: tate specified I tate specified b	by FLTDAT<1	>.	
		is active, PW	MxH is driven t	ent Fault mode to the state specified b	cified by FLTI		

REGISTER 16-12: IOCONX: PWM I/O CONTROL REGISTER⁽²⁾

- Note 1: These bits should not be changed after the PWM module is enabled (PTEN = 1).
 - 2: If the PWMLOCK Configuration bit (FOSCEL<6>) is a '1', the IOCONx register can only be written after the unlock sequence has been executed.

REGISTER 16-12: IOCONx: PWM I/O CONTROL REGISTER⁽²⁾ (CONTINUED)

- bit 3-2 CLDAT<1:0>: Data for PWMxH and PWMxL Pins if CLMOD is Enabled bits IFLTMOD (FCLCONx<15>) = 0: Normal Fault mode: If current-limit is active, PWMxH is driven to the state specified by CLDAT<1>. If current-limit is active, PWMxL is driven to the state specified by CLDAT<0>. IFLTMOD (FCLCONx<15>) = 1: Independent Fault mode: The CLDAT<1:0> bits are ignored. bit 1 SWAP: SWAP PWMxH and PWMxL Pins bit 1 = PWMxH output signal is connected to PWMxL pins; PWMxL output signal is connected to PWMxH pins 0 = PWMxH and PWMxL pins are mapped to their respective pins **OSYNC:** Output Override Synchronization bit bit 0 1 = Output overrides via the OVRDAT<1:0> bits are synchronized to the PWM time base 0 = Output overrides via the OVDDAT<1:0> bits occur on the next CPU clock boundary
- Note 1: These bits should not be changed after the PWM module is enabled (PTEN = 1).
 - 2: If the PWMLOCK Configuration bit (FOSCEL<6>) is a '1', the IOCONx register can only be written after the unlock sequence has been executed.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IFLTMO	D	C	CLSRC<4:0>(2	2,3)		CLPOL ⁽¹⁾	CLMOD
bit 15							bit
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0
	FL	TSRC<4:0>(2,3	3)		FLTPOL ⁽¹⁾	FLTMO	D<1:0>
bit 7							bit
Legend:							
R = Reada	ble bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	iown
bit 15	1 = Independ maps FL 0 = Normal I	TDAT<0> to P\ Fault_mode: Ci	e: Current-limi NMxL output. urrent-Limit m	t input maps F The CLDAT< [,] ode maps CL	LTDAT<1> to P 1:0> bits are not .DAT<1:0> bits to the PWMxH	used for overrie to the PWMxH	de functions. and PWMx
	11111 = Fau 11110 = Res 01100 = Res 01011 = Con 01010 = Op 01001 = Op 01000 = Op 0111 = Res 00110 = Res 00101 = Res 00101 = Fau 00010 = Fau 00001 = Fau	It 32 served nparator 4 amp/Comparate amp/Comparate amp/Comparate served served served to 4 it 4 it 3 it 2 it 1 (default)	or 3 or 2 or 1		npensation input	signal, DTCM	Px.
bit 9	1 = The select	rent-Limit Polar cted current-lim cted current-lim	it source is ac	tive-low	(1)		
	These bits should yield unpredictable	-	lly when PTEN	N = 0. Changir	ng the clock sele	ction during op	eration will
2:	When Independer (FLTSRC<4:0> = (unused current-lim PWMxL outputs.	nt Fault mode is 01000), the Cu	rrent-Limit Co	ntrol Source S	elect bits (CLSR	C<4:0>) should	d be set to a
	When Independer	t Foult mode in	onabled (IEL		nd Foult 1 is uso	d for Current I	imit modo

REGISTER 16-13: FCLCONx: PWM FAULT CURRENT-LIMIT CONTROL REGISTER⁽⁴⁾

- 3: When Independent Fault mode is enabled (IFLIMOD = 1), and Fault 1 is used for Current-Limit mode (CLSRC<4:0> = 01000), the Fault Control Source Select bits (FLTSRC<4:0>) should be set to an unused Fault source to prevent Fault 1 from disabling both the PWMxL and PWMxH outputs.
- **4:** If the PWMLOCK Configuration bit (FOSCEL<6>) is a '1', the IOCONx register can only be written after the unlock sequence has been executed.

REGISTER 16-13: FCLCONx: PWM FAULT CURRENT-LIMIT CONTROL REGISTER⁽⁴⁾ (CONTINUED)

bit 8	CLMOD: Current-Limit Mode Enable bit for PWM Generator # 1 = Current-Limit mode is enabled 0 = Current-Limit mode is disabled
bit 7-3	<pre>FLTSRC<4:0>: Fault Control Signal Source Select bits for PWM Generator #^(2,3) 11111 = Fault 32 (default) 11110 = Reserved 01100 = Reserved 01011 = Comparator 4 01010 = Op amp/Comparator 3</pre>
	01001 = Op amp/Comparator 2 01000 = Op amp/Comparator 1 00111 = Reserved 00100 = Reserved 00101 = Reserved 00101 = Fault 4 00010 = Fault 3 00001 = Fault 2 00000 = Fault 1
bit 2	FLTPOL: Fault Polarity bit for PWM Generator # ⁽¹⁾ 1 = The selected Fault source is active-low 0 = The selected Fault source is active-high
bit 1-0	FLTMOD<1:0>: Fault Mode bits for PWM Generator # 11 = Fault input is disabled 10 = Reserved 01 = The selected Fault source forces PWMxH, PWMxL pins to FLTDAT values (cycle) 00 = The selected Fault source forces PWMxH, PWMxL pins to FLTDAT values (latched condition)
Note 1:	These bits should be changed only when PTEN = 0. Changing the clock selection during operation will yield unpredictable results.
2:	When Independent Fault mode is enabled (IFLTMOD = 1), and Fault 1 is used for Fault mode (FLTSRC<4:0> = 01000), the Current-Limit Control Source Select bits (CLSRC<4:0>) should be set to an unused current-limit source to prevent the current-limit source from disabling both the PWMxH and

- PWMxL outputs.
- 3: When Independent Fault mode is enabled (IFLTMOD = 1), and Fault 1 is used for Current-Limit mode (CLSRC<4:0> = 01000), the Fault Control Source Select bits (FLTSRC<4:0>) should be set to an unused Fault source to prevent Fault 1 from disabling both the PWMxL and PWMxH outputs.
- 4: If the PWMLOCK Configuration bit (FOSCEL<6>) is a '1', the IOCONx register can only be written after the unlock sequence has been executed.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0				
PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN		_				
bit 15		•					bit				
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
_	_	BCH	BCL	BPHH	BPHL	BPLH	BPLL				
bit 7			1				bit				
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown				
bit 15	PHR: PWMxH	Rising Edge	Trigger Enabl	e bit							
		. = Rising edge of PWMxH will trigger Leading-Edge Blanking counter									
	•	•	• •	edge of PWM>	кН						
bit 14		I Falling Edge									
				ading-Edge Bla g edge of PWM							
bit 13	•	Rising Edge	•								
				ading-Edge Bla	nkina counter						
	U .	0	00	edge of PWM	Ų						
bit 12	PLF: PWMxL	PLF: PWMxL Falling Edge Trigger Enable bit									
	•	1 = Falling edge of PWMxL will trigger Leading-Edge Blanking counter									
	0 = Leading-Edge Blanking ignores falling edge of PWMxL										
bit 11	FLTLEBEN: Fault Input Leading-Edge Blanking Enable bit 1 = Leading-Edge Blanking is applied to selected Fault input										
				to selected Fault in							
bit 10	-				-						
		CLLEBEN: Current-Limit Leading-Edge Blanking Enable bit 1 = Leading-Edge Blanking is applied to selected current-limit input									
	-			to selected cur	rrent-limit input						
bit 9-6	•	ted: Read as '			<i>(</i>)						
bit 5		BCH: Blanking in Selected Blanking Signal High Enable bit ⁽¹⁾ 1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is high									
					nals) when seled	ted blanking si	ignal is high				
hit 1		ng when selec	-	al Low Enable I	_;;(1)						
bit 4		-			nals) when seled	ted blanking si	ional is low				
		ng when selec					grial to to t				
bit 3	BPHH: Blank	ing in PWMxH	High Enable	bit							
					nals) when PWM	1xH output is h	igh				
		0 = No blanking when PWMxH output is high									
bit 2		ng in PWMxH									
		ng when PWM			nals) when PWM	IXH output is ic	W				
bit 1		ng in PWMxL	-								
		0	0		nals) when PWM	1xL output is hi	gh				
		ng when PWM			-,		0				
bit 0	BPLL: Blanki	ng in PWMxL l	ow Enable b	it							
					nals) when PWM	1xL output is lo	w				
	∩ = No blanki	ng when PWM	vloutoutield	714 /							

REGISTER 16-14: LEBCONX: LEADING-EDGE BLANKING CONTROL REGISTER

Note 1: The blanking signal is selected via the BLANKSEL bits in the AUXCONx register.

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—	—	_	LEB<11:8>					
bit 15			bi						
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			LEB	<7:0>					
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable I	bit	U = Unimplemented bit, read as '0'					
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is clea	'0' = Bit is cleared x = Bit is unknown				

REGISTER 16-15: LEBDLYx: LEADING-EDGE BLANKING DELAY REGISTER

bit 15-12 Unimplemented: Read as '0'

bit 11-0 LEB<11:0>: Leading-Edge Blanking Delay bits for Current-Limit and Fault Inputs

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
		_	_		BLANK	SEL<3:0>	
bit 15		·					bit
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	_		CHOP	SEL<3:0>		CHOPHEN	CHOPLEN
bit 7						- I	bit
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	id as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-12	Unimplemer	nted: Read as '	0'				
bit 11-8	The selected BCH and BC 1001 = Rese • • • 0100 = Rese 0011 = PWM 0010 = PWM	L bits in the LE	nal will block BCONx regis s state blank s s state blank s	the current-limit ter). source source	and/or Fault ii	nput signals (if e	nabled via th
	0000 = No s t	-					
bit 7-6	•	nted: Read as '					
bit 5-2	The selected 1001 = Rese • • • • • • • • • • • • • • • • • •	erved erved 13H selected as 12H selected as	ble and disab S CHOP clock S CHOP clock	le (CHOP) the s	elected PWM	outputs.	
bit 1 bit 0	0000 = Chor CHOPHEN: 1 = PWMxH 0 = PWMxH	11H selected as clock generate PWMxH Output chopping functi chopping functi PWMxL Output	or selected as t Chopping Ei on is enabled on is disabled	S CHOP clock so nable bit I	burce		
	1 = PWMxL o	chopping functio	on is enabled				

REGISTER 16-16: AUXCONX: PWM AUXILIARY CONTROL REGISTER

17.0 QUADRATURE ENCODER INTERFACE (QEI) MODULE (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

- Note 1: This data sheet summarizes the features dsPIC33EPXXXGP50X, of the dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 15. "Quadrature Encoder Interface (QEI)" (DS70601) of "dsPIC33E/PIC24E the Family Reference Manual', which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This chapter describes the Quadrature Encoder Interface (QEI) module and associated operational modes. The QEI module provides the interface to incremental encoders for obtaining mechanical position data.

The operational features of the QEI module include:

- 32-bit position counter
- 32-bit Index pulse counter
- 32-bit Interval timer
- · 16-bit velocity counter
- 32-bit Position Initialization/Capture/Compare High register
- 32-bit Position Compare Low register
- · 4X Quadrature Count mode
- External Up/Down Count mode
- External Gated Count mode
- · External Gated Timer mode
- Internal Timer mode

Figure 17-1 illustrates the QEI block diagram.

FIGURE 17-1: QEI BLOCK DIAGRAM

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, AND PIC24EPXXXGP/MC20X

0

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
QEIEN		QEISIDL		PIMOD<2:0>	(1)	IMV<	1:0> (2)				
bit 15							bit				
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
		INTDIV<2:0>(3)		CNTPOL	GATEN	-	<1:0>				
bit 7							bit				
Legend:											
R = Readab	ole bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'					
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown				
bit 15	QEIEN: Qua	adrature Encode	r Interface M								
		counters are ena counters are dis		Rs can be rea	d or written to						
bit 14	Unimpleme	ented: Read as '	0'								
bit 13	QEISIDL: S	top in Idle Mode	bit								
		nue module ope e module operat			dle mode						
bit 12-10	PIMOD<2:0	PIMOD<2:0>: Position Counter Initialization Mode Select bits ⁽¹⁾									
	101 = Rese 100 = Seco regis 011 = First 010 = Next 001 = Every	Ilo count mode for ts the position co nd index event a ter index event after index input even y Index input even c input event doe	ounter when t fter home event home event t initializes the nt resets the	the position cou ent initializes p initializes positi le position court position courte	osition counter tion counter with nter with conten er	with contents of QI	f QEI1IC EI1IC registe				
bit 9-8	IMV<1:0>:	ndex Match Valu	ie bits ⁽²⁾								
	10 = Index 01 = Index	match occurs wh match occurs wh match occurs wh input event does	ien QEB = 1 ien QEB = 0	and QEA = 0 and QEA = 1							
bit 7	Unimpleme	ented: Read as '	0'								
bit 6-4	INTDIV<2:0 velocity cou	INTDIV<2:0>: Timer Input Clock Prescale Select bits (interval timer, main timer (position counter) velocity counter and index counter internal clock divider select) ⁽³⁾									
	111 = 1:256 110 = 1:64 101 = 1:32 100 = 1:16 011 = 1:8 p 010 = 1:4 p 001 = 1:2 p	o prescale value prescale value prescale value prescale value rescale value rescale value rescale value rescale value									
	When CCM = 10 gnored.	or CCM = 11, a	ll of the QEI	counters opera	te as timers and	the PIMOD<2	:0> bits are				
2 : V	-	and QEA and C ers are reset.	EB values m	atch Index Ma	tch Value (IMV)	, the POSCNTH	I and				

REGISTER 17-1: QEI1CON: QEI CONTROL REGISTER

3: The selected clock rate should be at least twice the expected maximum quadrature count rate.

REGISTER 17-1: QEI1CON: QEI CONTROL REGISTER (CONTINUED)

bit 3	CNTPOL: Position and Index Counter/Timer Direction Select bit
	1 = Counter direction is negative unless modified by external Up/Down signal0 = Counter direction is positive unless modified by external Up/Down signal
bit 2	GATEN: External Count Gate Enable bit
	1 = External gate signal controls position counter operation
	0 = External gate signal does not affect position counter/timer operation
bit 1-0	CCM<1:0>: Counter Control Mode Selection bits
	11 = Internal timer mode with optional external count is selected

- 10 = External clock count with optional external count is selected
- 01 = External clock count with external up/down direction is selected
- 00 = Quadrature Encoder Interface (x4 mode) count mode is selected
- **Note 1:** When CCM = 10 or CCM = 11, all of the QEI counters operate as timers and the PIMOD<2:0> bits are ignored.
 - 2: When CCM = 00 and QEA and QEB values match Index Match Value (IMV), the POSCNTH and POSCNTL registers are reset.
 - 3: The selected clock rate should be at least twice the expected maximum quadrature count rate.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
QCAPEN	FLTREN		QFDIV<2:0>		OUTFN	C<1:0>	SWPAB				
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R-x	R-x	R-x	R-x				
HOMPOL	IDXPOL	QEBPOL	QEAPOL	HOME	INDEX	QEB	QEA				
bit 7		QEDI OL		TIOWE	INDEX		bit (
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'					
-n = Value at F	POR	'1' = Bit is se	t	'0' = Bit is cle		x = Bit is unk	nown				
bit 15	QCAPEN: Po	osition Counte	r Input Capture	e Enable bit							
	1 = Positive e	edge detect of	Home input trig	ggers position of	capture functior	ı					
	0 = HOMEx i	input event (po	sitive edge) do	oes not trigger a	a capture event						
bit 14	FLTREN: QE	EAx/QEBx/IND	Xx/HOMEx Dig	gital Filter Enab	le bit						
		Digital filter is		N							
			disabled (bypa								
bit 13-11	QFDIV<2:0>: QEAx/QEBx/INDXx/HOMEx Digital Input Filter Clock Divide Select bits 111 = 1:256 clock divide										
	111 = 1.256 clock divide $110 = 1.64 clock divide$										
	101 = 1:32 c										
	100 = 1:16 c										
	011 = 1:8 clo										
	010 = 1:4 clock divide 001 = 1:2 clock divide										
	000 = 1.2 clo										
bit 10-9	OUTFNC<1:	0>: QEI Modu	le Output Func	tion Mode Sele	ect bits						
					SxCNT ≥ QEI1	GEC					
				POSxCNT ⊴QE							
			es high when I	$POSxCNT \ge QI$	EI1GEC						
h # 0	00 = Output i										
bit 8		ap QEA and C	-	quadrature de	andarlagia						
		d QEBx are so		quadrature de	coder logic						
bit 7			olarity Select b	it							
	1 = Input is ir	-									
	0 = Input is n										
bit 6	IDXPOL: HO	MEx Input Pol	arity Select bit								
	1 = Input is ir										
	0 = Input is n	ot inverted									
bit 5		EBx Input Pola	arity Select bit								
	1 = Input is i 0 = Input is r										
bit 4	QEAPOL: Q	EAx Input Pola	arity Select bit								
	1 = Input is i	-	-								
	0 = Input is r										
bit 3	HOME: Statu	is of HOMEx I	nput Pin After F	Polarity Control							
	1 = Pin is at 0 = Pin is at	•									

REGISTER 17-2: QEI1IOC: QEI I/O CONTROL REGISTER

REGISTER 17-2: QEI1IOC: QEI I/O CONTROL REGISTER (CONTINUED)

- bit 2 INDEX: Status of INDXx Input Pin After Polarity Control
 - 1 = Pin is at logic '1'
 - 0 = Pin is at logic '0'
- bit 1 QEB: Status of QEBx Input Pin After Polarity Control And SWPAB Pin Swapping 1 = Pin is at logic '1'
 - 0 = Pin is at logic '0'
- bit 0 QEA: Status of QEAx Input Pin After Polarity Control And SWPAB Pin Swapping
 - 1 = Pin is at logic '1'
 - 0 = Pin is at logic '0'

REGISTER I	1-3. QEII3	TAL QEI STA	ATUS REGIS				
U-0	U-0	HS, RC-0	R/W-0	HS, RC-0	R/W-0	HS, RC-0	R/W-0
	—	PCHEQIRQ	PCHEQIEN	PCLEQIRQ	PCLEQIEN	POSOVIRQ	POSOVIEN
bit 15							bit 8
HS, RC-0	R/W-0	HS, RC-0	R/W-0	HS, RC-0	R/W-0	HS, RC-0	R/W-0
PCIIRQ ⁽¹⁾	PCIIEN	VELOVIRQ	VELOVIEN	HOMIRQ	HOMIEN	IDXIRQ	IDXIEN
bit 7							bit 0
Lonondi			landurana		hu Cofficiente		
Legend: R = Readable	hit	HS = Set by H W = Writable		C = Cleared	nented bit, read		
-n = Value at F		'1' = Bit is set	DIL	'0' = Bit is cle		x = Bit is unkr	
	OK	I – DILIS SEL			aleu		IOWIT
bit 15-14	Unimplemen	ted: Read as '	י)				
bit 13	-			an or Equal Co	ompare Status b	bit	
2.1.10	1 = POSxCN	T ≥ QEI1GEC					
		T < QEI1GEC					
bit 12	1 = Interrupt i		er Greater Tha	an or Equal Co	ompare Interrup	t Enable bit	
	0 = Interrupt i						
bit 11	-	Position Counter	er Less Than o	or Equal Comp	oare Status bit		
	1 = POSxCN						
	$0 = POSxCN^{2}$			F 10			
bit 10	1 = Interrupt i		er Less Than d	or Equal Comp	are Interrupt Er	hable bit	
	0 = Interrupt i						
bit 9		Position Count	er Overflow St	tatus bit			
	1 = Overflow	has occurred ow has occurre	d				
bit 8		Position Counte		terrunt Enable	bit		
bit b	1 = Interrupt i				bit		
	0 = Interrupt i					<i>(</i> ,)	
bit 7				lization Proces	s Complete Sta	itus bit ⁽¹⁾	
		T was reinitializ T was not reinit					
bit 6				ization Proces	s Complete inte	errupt Enable bi	it
	1 = Interrupt i	s enabled	0,		·	•	
	0 = Interrupt i						
bit 5	1 = Overflow	Velocity Counte	er Overflow Sta	atus bit			
		ow has not occ	urred				
bit 4	VELOVIEN: \	Velocity Counte	r Overflow Int	errupt Enable	bit		
	1 = Interrupt i						
hit 2	0 = Interrupt i		ma Evant Sta	tuo hit			
bit 3		atus Flag for Ho ent has occurre		IUS DIL			
		event has occ					
bit 2		ome Input Ever	nt Interrupt En	able bit			
	1 = Interrupt i 0 = Interrupt i						
	5 – monupti						

REGISTER 17-3: QEI1STAT: QEI STATUS REGISTER

Note 1: This status bit is only applicable to PIMOD<2:0> modes '011' and '100'.

REGISTER 17-3: QEI1STAT: QEI STATUS REGISTER (CONTINUED)

bit 1	IDXIRQ: Status Flag for Index Event Status bit 1 = Index event has occurred 0 = No Index event has occurred
bit 0	IDXIEN: Index Input Event Interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is disabled

Note 1: This status bit is only applicable to PIMOD<2:0> modes '011' and '100'.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			POSC	NT<31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			POSC	NT<23:16>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	ritable bit U = Unimplemented bit, read as '0'				
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknow		nown	

bit 15-0 **POSCNT<31:16>:** High word used to form 32-bit Position Counter Register (POSxCNT) bits

REGISTER 17-5: POSxCNTL: POSITION COUNTER LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			POSCI	NT<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			POSC	NT<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented b		mented bit, rea	d as '0'				
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknow		nown	

bit 15-0 Position Counter<15:0>: Low word used to form 32-bit Position Counter Register (POSxCNT) bits

REGISTER 17-6: POSxHLD: POSITION COUNTER HOLD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
		POSH	LD<15:8>				
						bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
		POSH	ILD<7:0>				
						bit 0	
Legend: R = Readable bit W = Writable bit			II = IInimplemented bit read as '0'				
POR			'0' = Bit is clearedx = Bit is unknown		nown		
	R/W-0	R/W-0 R/W-0	POSH R/W-0 R/W-0 R/W-0 POSH bit W = Writable bit	POSHLD<15:8> R/W-0 R/W-0 R/W-0 POSHLD<7:0> POSHLD<7:0>	POSHLD<15:8> R/W-0 R/W-0 R/W-0 POSHLD<7:0> bit W = Writable bit U = Unimplemented bit, rea	POSHLD<15:8> R/W-0 R/W-0 POSHLD<7:0>	

bit 15-0 **POSHLD<15:0>:** Hold register bits for reading and writing POSxCNTH

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			VELC	NT<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			VELC	NT<7:0>			
bit 7							bit 0
1							
Legend:							
R = Readable	bit	W = Writable bit U = Unimplemented bit, read as '0'					
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	d x = Bit is unknown	

REGISTER 17-7: VELxCNT: VELOCITY COUNTER REGISTER

bit 15-0 VELCNT<15:0>: Velocity Counter bits

REGISTER 17-8: INDXxCNTH: INDEX COUNTER HIGH WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INDXCI	NT<31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INDXCI	NT<23:16>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		it	U = Unimplemented bit, read as '0'				
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown	

bit 15-0 INDXCNT<31:16>: High word used to form 32-bit Index Counter Register (INDXxCNT) bits

REGISTER 17-9: INDXxCNTL: INDEX COUNTER LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INDXC	NT<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INDXC	CNT<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		pit	U = Unimplemented bit, read as '0'				
-n = Value at P	OR	'1' = Bit is set	= Bit is set '0' = Bit is cleared x = Bit is unknown		nown		

bit 15-0 INDXCNT<15:0>: Low word used to form 32-bit Index Counter Register (INDXxCNT) bits

REGISTER 17-10: INDXxHLD: INDEX COUNTER HOLD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INDXH	LD<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INDXI	ILD<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimplemented bit, read as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown		nown	

bit 15-0 INDXHLD<15:0>: Hold register for reading and writing INDXxCNTH bits

REGISTER 17-11: QEI1ICH: INITIALIZATION/CAPTURE HIGH WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			10000	R/VV-U	R/W-0	R/W-0
		QEIIC	<31:24>			
						bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		QEIIC	<23:16>			
						bit 0
R = Readable bit W = Writable bit U = Unimplemented bit, r				nented bit, rea	d as '0'	
	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknow		nown	
	R/W-0	W = Writable bit	QEIIC W = Writable bit	QEIIC<23:16> W = Writable bit U = Unimplen	QEIIC<23:16> W = Writable bit U = Unimplemented bit, rea	QEIIC<23:16> W = Writable bit U = Unimplemented bit, read as '0'

bit 15-0 **QEIIC<31:16>:** High word used to form 32-bit Initialization/Capture Register (QEI1IC) bits

REGISTER 17-12: QEI1ICL: INITIALIZATION/CAPTURE LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			QEII	C<15:8>				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
				C<7:0>				
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bit is s		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		

bit 15-0 **QEIIC<15:0>:** Low word used to form 32-bit Initialization/Capture Register (QEI1IC) bits

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEILE	C<31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
N/ VV-U	FX/ VV-U	F\/ VV-0		C<23:16>	N/W-0	N/W-0	N/ W-U
bit 7			QLILL	0 20.10			bit (
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

REGISTER 17-13: QEI1LECH: LESS THAN OR EQUAL COMPARE HIGH WORD REGISTER

bit 15-0 **QEILEC<31:16>:** High word used to form 32-bit Less Than or Equal Compare Register (QEI1LEC) bits

REGISTER 17-14: QEI1LECL: LESS THAN OR EQUAL COMPARE LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEILE	C<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEILE	EC<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		oit	U = Unimplemented bit, read as '0'				
-n = Value at P	-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknow			nown

bit 15-0 **QEILEC<15:0>:** Low word used to form 32-bit Less Than or Equal Compare Register (QEI1LEC) bits

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			QEIGE	C<31:24>					
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			QEIGE	C<23:16>					
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable b	oit	U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bit is set				'0' = Bit is clea	ared	x = Bit is unknown			

REGISTER 17-15: QEI1GECH: GREATER THAN OR EQUAL COMPARE HIGH WORD REGISTER

REGISTER 1/	(-16: QEI	GECL: GREAT					GISTER
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEIGE	C<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEIG	EC<7:0>			
bit 7							bit (
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at P	-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is			nown

bit 15-0 **QEIGEC<15:0>:** Low word used to form 32-bit Greater Than or Equal Compare Register (QEI1GEC) bits

REGISTER 17-17: INTxTMRH: INTERVAL TIMER HIGH WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
		INTTM	R<31:24>				
						bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
		INTTM	R<23:16>				
						bit C	
R = Readable bit W = Writable bit		oit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unkr			nown	
	R/W-0	R/W-0 R/W-0	INTTMI R/W-0 R/W-0 R/W-0 INTTMI bit W = Writable bit	INTTMR<31:24> R/W-0 R/W-0 R/W-0 INTTMR<23:16> INTTMR<23:16>	INTTMR<31:24> R/W-0 R/W-0 R/W-0 INTTMR<23:16> bit W = Writable bit U = Unimplemented bit, read	INTTMR<31:24> R/W-0 R/W-0 R/W-0 R/W-0 INTTMR<23:16> Dit W = Writable bit U = Unimplemented bit, read as '0'	

bit 15-0 INTTMR<31:16>: High word used to form 32-bit Interval Timer Register (INTxTMR) bits

bits

REGISTER 17-18: INTxTMRL: INTERVAL TIMER LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			INTTM	R<15:8>				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			INTTN	/IR<7:0>				
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is		x = Bit is unkr	nown	

bit 15-0 INTTMR<15:0>: Low word used to form 32-bit Interval Timer Register (INTxTMR) bits

REGISTER 17-19: INTxHLDH: INTERVAL TIMER HOLD HIGH WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTHL	D<31:24>			
bit 15							bit 8
DAMA	D 444 0	D 44/0	D 444 0	DAMA		DAVA	DAVA
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTHL	D<23:16>			
bit 7					bit 0		
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at P	OR	'1' = Bit is set '0' = Bit is cleared x = Bit is ur		x = Bit is unkr	nown		

bit 15-0 INTHLD<31:16>: Hold register for reading and writing INTxTMRH bits

REGISTER 17-20: INTxHLDL: INTERVAL TIMER HOLD LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTHL	_D<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTH	LD<7:0>			
bit 7							bit C
Legend:							
R = Readable bit W = Writal		W = Writable	bit	U = Unimplen	ad as '0'		
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

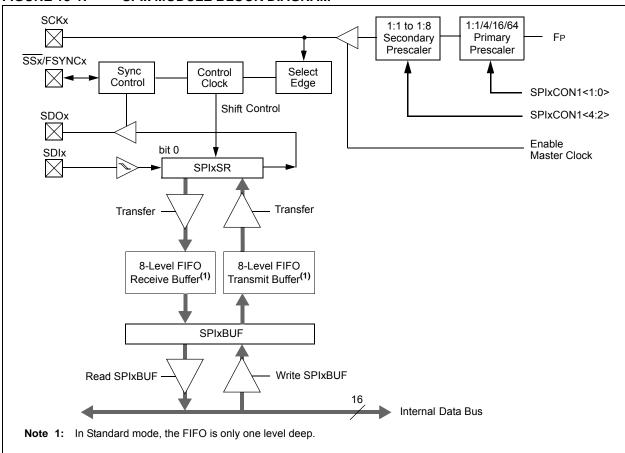
bit 15-0 **INTHLD<15:0>:** Hold register for reading and writing INTxTMRL bits

18.0 SERIAL PERIPHERAL INTERFACE (SPI)

- Note 1: This data sheet summarizes the features dsPIC33EPXXXGP50X, of the dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 18. "Serial Peripheral Interface (SPI)" (DS70569) the "dsPIC33E/PIC24E of Familv Reference Manual', which is available Microchip from the web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The SPI module is a synchronous serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices can be serial EEPROMs, shift registers, display drivers, A/D converters, etc. The SPI module is compatible with Motorola's SPI and SIOP interfaces.

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X, and PIC24EPXXXGP/MC20X device family offers two SPI modules on a single device. These modules, which are designated as SPI1 and SPI2, are functionally identical. Each SPI module includes an eight-word FIFO buffer and allows DMA bus connections. When using the SPI module with DMA, FIFO operation can be disabled.


Note: In this section, the SPI modules are referred to together as SPIx, or separately as SPI1 and SPI2. Special Function Registers follow a similar notation. For example, SPIxCON refers to the control register for the SPI1 and SPI2 module. The SPI1 module uses dedicated pins which allow for a higher speed when using SPI1. The SPI2 module takes advantage of the Peripheral Pin Select (PPS) feature to allow for greater flexibility in pin configuration of the SPI2 module, but results in a lower maximum speed for SPI2. See **Section 30.0** "**Electrical Characteristics**" for more information.

The SPIx serial interface consists of four pins, as follows:

- · SDIx: Serial Data Input
- SDOx: Serial Data Output
- SCKx: Shift Clock Input or Output
- SSx/FSYNCx: Active-Low Slave Select or Frame Synchronization I/O Pulse

The SPIx module can be configured to operate with two, three or four pins. In 3-pin mode, SSx is not used. In 2-pin mode, neither SDOx nor SSx is used.

Figure 18-1 illustrates the block diagram of the SPI module in Standard and Enhanced modes.

FIGURE 18-1: SPIX MODULE BLOCK DIAGRAM

REGISTER 18-1:	SPIXSTAT: SPIX STATUS AND CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
SPIEN	_	SPISIDL	_	_		SPIBEC<2:0>	-
bit 15							bit 8
R/W-0	R/C-0, HS	R/W-0	R/W-0	R/W-0	R/W-0	R-0, HS, HC	R-0, HS, HC
SRMPT	SPIROV	SRXMPT		SISEL<2:0>		SPITBF	SPIRBF
bit 7		1	•				bit 0
Legend:		C = Clearable	e bit				
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, r	ead as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
HS = Set in	Hardware bit	HC = Cleared	in Hardware bit	U = Unimpler	mented bit, r	ead as '0'	
bit 15	SPIEN: SPIx						
	1 = Enables t 0 = Disables		configures SCk	(x, SDOx, SDI	x and SSx as	s serial port pins	6
bit 14		ited: Read as '	0'				
bit 13	•	p in Idle Mode					
		•	operation when	device enters	Idle mode		
			eration in Idle m				
bit 12-11	Unimplemen	ted: Read as '	0'				
bit 10-8			Element Count b	oits (valid in En	hanced Buff	er mode)	
	Master mode	<u>:</u> Plx transfers ar	e nendina				
	Slave mode:		e pending.				
		Plx transfers ar	e unread.				
bit 7	SRMPT: Shift	t Register (SPI)	(SR) Empty bit (valid in Enhan	ced Buffer m	iode)	
	1 = SPIx Shif	t register is em	pty and ready to			,	
		t register is not					
bit 6		ceive Overflow	Flag bit etely received an	d discorded T		otion has not re-	ad the provieue
		e SPIxBUF regis			ie usei applic	auonnas nourea	au the previous
	0 = No overflo	w has occurred					
bit 5			pty bit (valid in I	Enhanced Buff	er mode)		
	1 = RX FIFO 0 = RX FIFO						
bit 4-2			errupt Mode bits	, (valid in Enh	anced Buffer	mode)	
Dit 4-2			Plx transmit buffe				
	110 = Interru	pt when last bit	is shifted into S	PIxSR, and as	a result, the	TX FIFO is em	pty
			t bit is shifted ou				haa ana anan
		pt when one da	ta is shifted into	UNE OFIXOR, 8	inu as a resu		nas one open
	011 = Interru	pt when the SF	Ix receive buffe	,	,		
			Ix receive buffe			in ant)	
		-	available in the t data in the rec		-		empty
		IPT bit set)					

REGISTER 18-1: SPIxSTAT: SPIx STATUS AND CONTROL REGISTER (CONTINUED)

bit 1 SPITBF: SPIx Transmit Buffer Full Status bit

1 = Transmit not yet started, SPIxTXB is full 0 = Transmit started, SPIxTXB is empty

Standard Buffer Mode:

Automatically set in hardware when core writes to the SPIxBUF location, loading SPIxTXB. Automatically cleared in hardware when SPIx module transfers data from SPIxTXB to SPIxSR.

Enhanced Buffer Mode:

Automatically set in hardware when CPU writes to the SPIxBUF location, loading the last available buffer location. Automatically cleared in hardware when a buffer location is available for a CPU write operation.

bit 0 SPIRBF: SPIx Receive Buffer Full Status bit

1 = Receive complete, SPIxRXB is full

0 = Receive is incomplete, SPIxRXB is empty

Standard Buffer Mode:

Automatically set in hardware when SPIx transfers data from SPIxSR to SPIxRXB. Automatically cleared in hardware when core reads the SPIxBUF location, reading SPIxRXB.

Enhanced Buffer Mode:

Automatically set in hardware when SPIx transfers data from SPIxSR to the buffer, filling the last unread buffer location. Automatically cleared in hardware when a buffer location is available for a transfer from SPIxSR.

REGISTER 1											
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0 CKE ⁽¹⁾				
	—	_	DISSCK	DISSDO	MODE16	SMP					
bit 15							bit				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
SSEN ⁽²⁾	CKP	MSTEN		SPRE<2:0>		PPRE	<1:0>				
bit 7							bit				
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimplei	mented bit, read	as '0'					
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is cle		x = Bit is unkr	nown				
hit 15 10	Unimplomen	ted. Dood oo	0'								
bit 15-13 bit 12	-	ted: Read as	bit (SPI Maste	ar modes only)							
JILIZ			abled, pin func	• •							
		PI clock is ena									
bit 11		able SDOx Pir									
	1 = SDOx pin	is not used by	/ the module; p	oin functions a	s I/O						
	•	is controlled b									
bit 10	MODE16: Word/Byte Communication Select bit										
			-wide (16 bits)								
bit 9		cation is byte- ata Input Sam									
DIL 9	Master mode:		Sie Fliase bit								
			end of data o	utput time							
			middle of data								
	Slave mode:	-									
bit 8		lock Edge Sele	SPIx is used i	n Slave mode							
		•		on from active	clock state to id	le clock state (i	refer to hit 6)				
bit 7	 0 = Serial output data changes on transition from idle clock state to active clock state (refer to bit 6) SSEN: Slave Select Enable bit (Slave mode)⁽²⁾ 										
	1 = \overline{SSx} pin is used for Slave mode 0 = SSx pin is not used by module. Pin is controlled by port function										
				controlled by p	ort function						
bit 6		Polarity Select									
			high level; activ								
bit 5		ter Mode Enal	ow level; active	e state is a nig	n level						
DILU	1 = Master m										
	0 = Slave mo										
bit 4-2	SPRE<2:0>:	Secondary Pre	escale bits (Ma	ister mode)							
	111 = Reserv	ved									
	110 = Second	dary prescale	2:1								
	•										
	•										
	•	don un recercie	0.1								
	000 = Second	dary prescale	D. I								
	e CKE bit is not RMEN = 1).	used in the Fr	amed SPI mod	des. Program f	his bit to '0' for	Framed SPI m	odes				

REGISTER 18-2: SPIXCON1: SPIX CONTROL REGISTER 1

2: This bit must be cleared when FRMEN = 1.

REGISTER 18-2: SPIXCON1: SPIX CONTROL REGISTER 1 (CONTINUED)

bit 1-0 **PPRE<1:0>:** Primary Prescale bits (Master mode)

- 11 = Reserved
- 10 = Primary prescale 4:1
- 01 = Primary prescale 16:1
- 00 = Primary prescale 64:1
- Note 1: The CKE bit is not used in the Framed SPI modes. Program this bit to '0' for Framed SPI modes (FRMEN = 1).
 - 2: This bit must be cleared when FRMEN = 1.

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0					
FRMEN	SPIFSD	FRMPOL	_	_	_	_	_					
bit 15	·						bit 8					
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0					
—	—	—	—	—	—	FRMDLY	SPIBEN					
bit 7							bit C					
Legend:												
R = Readable bit W = Writable bit				U = Unimplen	nented bit, rea	ad as '0'						
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown					
bit 15		med SPIx Suppo		_								
				x pin used as fra	ime sync puls	e input/output)						
L:1 4 4		SPIx support is o		utual hit								
bit 14		SPIFSD: Frame Sync Pulse Direction Control bit										
	1 = Frame sync pulse input (slave) 0 = Frame sync pulse output (master)											
bit 13	•	FRMPOL: Frame Sync Pulse Polarity bit										
		1 = Frame sync pulse is active-high										
		nc pulse is activ	0									
bit 12-2	Unimplemen	ted: Read as '0	,									
bit 1	FRMDLY: Fra	ame Sync Pulse	Edge Selec	t bit								
		1 = Frame sync pulse coincides with first bit clock										
	,	nc pulse precec		lock								
bit 0		nanced Buffer E										
	1 = Enhance	d Buffer is enabl	ed									
		d Buffer is disab										

REGISTER 18-3: SPIXCON2: SPIX CONTROL REGISTER 2

NOTES:

19.0 INTER-INTEGRATED CIRCUIT™ (I²C™)

- Note 1: This data sheet summarizes the features dsPIC33EPXXXGP50X, of the dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 19. "Inter-Integrated Circuit[™] (I²C[™])" (DS70330) of the "dsPIC33E/PIC24E Family Reference Manual', which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X, and PIC24EPXXXGP/MC20X family of devices contain two Inter-Integrated Circuit (I^2C) modules: I2C1 and I2C2.

The l^2C module provides complete hardware support for both Slave and Multi-Master modes of the l^2C serial communication standard, with a 16-bit interface.

The I^2C module has a 2-pin interface:

- · The SCLx pin is clock.
- The SDAx pin is data.

The I²C module offers the following key features:

- I²C interface supporting both Master and Slave modes of operation.
- I²C Slave mode supports 7 and 10-bit address.
- I²C Master mode supports 7 and 10-bit address.
- I²C port allows bidirectional transfers between master and slaves.
- Serial clock synchronization for I²C port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control).
- I²C supports multi-master operation, detects bus collision and arbitrates accordingly.
- IPMI support
- · SMBus support

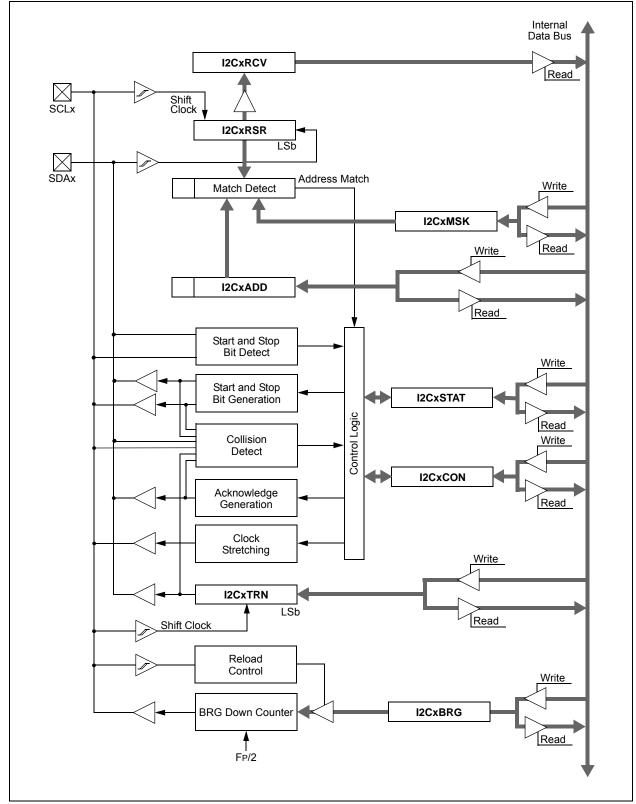


FIGURE 19-1: I^2C^{TM} BLOCK DIAGRAM (x = 1 OR 2)

R/W-0	U-0	R/W-0	R/W-1 HC	R/W-0	R/W-0	R/W-0	R/W-0					
I2CEN	0-0	I2CSIDL	SCLREL	IPMIEN ⁽¹⁾	A10M	DISSLW	SMEN					
bit 15	_	IZCSIDL	JULKEL		ATOM	DISSLW	bit 8					
DIL 15							DILO					
R/W-0	R/W-0	R/W-0	R/W-0 HC	R/W-0 HC	R/W-0 HC	R/W-0 HC	R/W-0 HC					
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN					
bit 7			1				bit 0					
Legend:		U = Unimpler	mented bit, rea	d as '0'								
R = Readable	e bit	W = Writable	bit	HS = Set in h	nardware	HC = Cleared	in hardware					
-n = Value at	POR	'1' = Bit is set	t	'0' = Bit is cle	ared	x = Bit is unkr	nown					
bit 15	12CEN: 12Cx	Enable bit										
					and SCLx pins a		าร					
			•	ns are controll	ed by port funct	ions						
bit 14	-	ted: Read as '										
bit 13		p in Idle Mode										
		ue module ope module operat			n Idle mode							
bit 12		-			I ² C slave)							
51(12	SCLREL: SCLx Release Control bit (when operating as I ² C slave) 1 = Release SCLx clock											
	0 = Hold SCLx clock low (clock stretch)											
	<u>If STREN = 1:</u>											
	•				nd write '1' to re	,						
		rdware clear a			ware clear at en e reception.	d of every slave	e address byte					
	$\frac{\text{If STREN} = 0}{Division Bias for a final second se$				、. .		<i>.</i> .					
					.). Hardware clea slave address b		of every slave					
bit 11	•											
bit II	IPMIEN: Intelligent Peripheral Management Interface (IPMI) Enable bit ⁽¹⁾ 1 = IPMI mode is enabled; all addresses Acknowledged											
		0 = IPMI mode is enabled, all addresses Acknowledged $0 = IPMI mode disabled$										
bit 10	A10M: 10-bit	Slave Address	s bit									
		is a 10-bit slav										
		is a 7-bit slave										
bit 9		able Slew Rate										
		1 = Slew rate control disabled 0 = Slew rate control enabled										
bit 8		us Input Levels										
bit o		D pin threshold		ith SMBus spe	cification							
		MBus input the										
bit 7	GCEN: Gene	ral Call Enable	e bit (when ope	rating as I ² C s	slave)							
				ddress is recei	ived in the I2Cx	RSR						
		s enabled for re all address dis										

REGISTER 19-1: I2CxCON: I2Cx CONTROL REGISTER

Note 1: When performing Master operations, ensure that the IPMIEN bit is '0'.

REGISTER 19-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)

bit 6	STREN: SCLx Clock Stretch Enable bit (when operating as I ² C slave) Used in conjunction with SCLREL bit.
	1 = Enable software or receive clock stretching
	0 = Disable software or receive clock stretching
bit 5	ACKDT: Acknowledge Data bit (when operating as I ² C master, applicable during master receive)
	Value that is transmitted when the software initiates an Acknowledge sequence. 1 = Send NACK during Acknowledge 0 = Send ACK during Acknowledge
bit 4	ACKEN: Acknowledge Sequence Enable bit
	(when operating as I ² C master, applicable during master receive)
	 1 = Initiate Acknowledge sequence on SDAx and SCLx pins and transmit ACKDT data bit. Hardware clear at end of master Acknowledge sequence. 0 = Acknowledge sequence not in progress
bit 3	RCEN: Receive Enable bit (when operating as l^2C master)
	 1 = Enables Receive mode for l²C. Hardware clear at end of eighth bit of master receive data byte. 0 = Receive sequence not in progress
bit 2	PEN: Stop Condition Enable bit (when operating as I ² C master)
	 1 = Initiate Stop condition on SDAx and SCLx pins. Hardware clear at end of master Stop sequence. 0 = Stop condition not in progress
bit 1	RSEN: Repeated Start Condition Enable bit (when operating as I ² C master)
	 1 = Initiate Repeated Start condition on SDAx and SCLx pins. Hardware clear at end of master Repeated Start sequence.
	0 = Repeated Start condition not in progress
bit 0	SEN: Start Condition Enable bit (when operating as I ² C master)
	 1 = Initiate Start condition on SDAx and SCLx pins. Hardware clear at end of master Start sequence. 0 = Start condition not in progress

Note 1: When performing Master operations, ensure that the IPMIEN bit is '0'.

R-0 HSC	R-0 HSC	U-0	U-0	U-0	R/C-0 HS	R-0 HSC	R-0 HSC				
ACKSTAT	TRSTAT			_	BCL	GCSTAT	ADD10				
bit 15							bit 8				
R/C-0 HS	R/C-0 HS	R-0 HSC	R/C-0 HSC	R/C-0 HSC	R-0 HSC	R-0 HSC	R-0 HSC				
IWCOL	I2COV	D_A	P	S	R_W	RBF	TBF				
bit 7	12001	0_7		0			bit 0				
Legend:		U = Unimpler	nented bit, rea	ad as '0'							
R = Readable	bit	W = Writable		HS = Set in h	ardware	HSC = Hardwa	are set/cleared				
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn					
bit 15	(when operati 1 = NACK rec 0 = ACK rece	cknowledge St ing as l ² C™ m ceived from slav ived from slav or clear at end	aster, applical ve e		ransmit operati	on)					
bit 14	1 = Master tra 0 = Master tra	ansmit is in pro ansmit is not in	gress (8 bits + progress	+ ACK)		to master trans					
bit 13-11	Unimplemen	ted: Read as '	0'								
bit 10	BCL: Master	Bus Collision [Detect bit								
	0 = No collisio	lision has beer on ⊨at detection o		-	peration						
bit 9	GCSTAT: General Call Status bit										
	0 = General c	all address wa all address wa when address	s not received		ess. Hardware c	lear at Stop det	ection.				
bit 8	1 = 10-bit add 0 = 10-bit add	it Address Stat dress was mate dress was not r at match of 2r	ched matched	ched 10-bit ad	dress. Hardwa	re clear at Stop	detection.				
bit 7	IWCOL: Write	e Collision Dete	ect bit								
	0 = No collisio	on			ause the I ² C mo usy (cleared by						
bit 6	1 = A byte wa 0 = No overflo	wc	ile the I2CxRC	-	till holding the	-					
bit 5	D_A: Data/Ac 1 = Indicates 0 = Indicates	ddress bit (whe that the last by that the last by	n operating a /te received w /te received w	s l ² C slave) as data as device add							
bit 4	 P: Stop bit 1 = Indicates 0 = Stop bit w 	that a Stop bit vas not detecte or clear when	has been dete d last	ected last							

REGISTER 19-2: I2CxSTAT: I2Cx STATUS REGISTER

REGISTER 19-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

bit 3	S: Start bit
	 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Start bit was not detected last Hardware set or clear when Start, Repeated Start or Stop detected.
bit 2	R_W: Read/Write Information bit (when operating as I^2C slave)
	1 = Read – indicates data transfer is output from slave 0 = Write – indicates data transfer is input to slave Hardware set or clear after reception of I^2C device address byte.
bit 1	RBF: Receive Buffer Full Status bit 1 = Receive complete, I2CxRCV is full 0 = Receive not complete, I2CxRCV is empty Hardware set when I2CxRCV is written with received byte. Hardware clear when software reads I2CxRCV.
bit 0	TBF: Transmit Buffer Full Status bit 1 = Transmit in progress, I2CxTRN is full 0 = Transmit complete, I2CxTRN is empty Hardware set when software writes I2CxTRN. Hardware clear at completion of data transmission.

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	_	—	—	AMSK9	AMSK8
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
AMSK7	AMSK6	AMSK5	AMSK4	AMSK3	AMSK2	AMSK1	AMSK0
bit 7	•		-	•			bit 0

REGISTER 19-3: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER

Legend:					
R = Readable bit	W = Writable bit	le bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-10 Unimplemented: Read as '0'

bit 9-0

AMSKx: Mask for Address bit x Select bit

For 10-bit Address:

1 = Enable masking for bit Ax of incoming message address; bit match is not required in this position

0 = Disable masking for bit Ax; bit match is required in this position

For 7-bit Address (I2CxMSK<6:0> only):

1 = Enable masking for bit Ax + 1 of incoming message address; bit match is not required in this position

0 = Disable masking for bit Ax + 1; bit match is required in this position

NOTES:

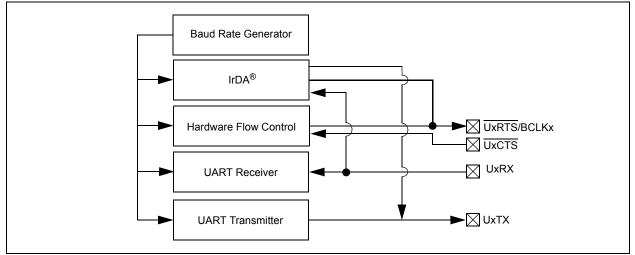
20.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 17. "UART"** (DS70582) of the *"dsPIC33E/PIC24E Family Reference Manual"*, which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X, and PIC24EPXXXGP/MC20X family of devices contain two UART modules.

The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X device family. The UART is a full-duplex asynchronous system that can communicate with peripheral devices, such as personal computers, LIN, RS-232 and RS-485 interfaces. The module also supports a hardware flow control option with the UxCTS and UxRTS pins and also includes an IrDA[®] encoder and decoder.

Note: Hardware flow control using UxRTS and UxCTS is not available on all pin count devices. See the "Pin Diagrams" section for availability.


The primary features of the UART module are:

- Full-Duplex, 8- or 9-bit Data Transmission through the UxTX and UxRX pins
- Even, Odd or No Parity Options (for 8-bit data)
- One or two stop bits
- <u>Hardware</u> flow control option with <u>UxCTS</u> and UxRTS pins
- Fully integrated Baud Rate Generator with 16-bit prescaler
- Baud rates ranging from 3.75 Mbps to 57 bps at 16x mode at 60 MIPS
- Baud rates ranging from 15 Mbps to 228 bps at 4x mode at 60 MIPS
- 4-deep First-In First-Out (FIFO) Transmit Data buffer
- · 4-deep FIFO Receive Data buffer
- · Parity, framing and buffer overrun error detection
- Support for 9-bit mode with Address Detect (9th bit = 1)
- · Transmit and Receive interrupts
- · A separate interrupt for all UART error conditions
- · Loopback mode for diagnostic support
- Support for Sync and Break characters
- · Support for automatic baud rate detection
- IrDA[®] encoder and decoder logic
- 16x baud clock output for IrDA[®] support

A simplified block diagram of the UART module is shown in Figure 20-1. The UART module consists of these key hardware elements:

- · Baud Rate Generator
- Asynchronous Transmitter
- Asynchronous Receiver

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0				
UARTEN ⁽¹⁾		USIDL	IREN ⁽²⁾	RTSMD		UEN	<1:0>				
bit 15							bit 8				
R/W-0 HC	R/W-0	R/W-0 HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSE	L<1:0>	STSEL				
bit 7							bit				
a non di											
Legend:	- I-:4	HC = Hardwa				1 (0)					
R = Readable		W = Writable		-	mented bit, read						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	IOWN				
bit 15		ARTx Enable b	t								
bit 15				o controlled by	UARTx as defi	nod by LIEN/1	.0>				
					PORT latches						
	minimal	, , , , ,									
bit 14	Unimplemen	ted: Read as '	0'								
bit 13	USIDL: Stop	USIDL: Stop in Idle Mode bit									
	1 = Discontinue module operation when device enters Idle mode										
	0 = Continue	e module opera	tion in Idle mo	de							
bit 12	IREN: IrDA [®] Encoder and Decoder Enable bit ⁽²⁾										
	 1 = IrDA encoder and decoder enabled 0 = IrDA encoder and decoder disabled 										
bit 11	RTSMD: Mode Selection for UxRTS Pin bit										
		oin in Simplex r oin in Flow Con									
bit 10	•	ited: Read as '									
bit 9-8	-	IARTx Pin Ena									
		-		abled and use	d; UxCTS pin c	ontrolled by PC)RT latches ⁽³				
	10 = UxTX , U	JxRX, UxCTS a	and UxRTS pir	ns are enabled	l and used ⁽⁴⁾	-					
	01 = UxTX, UxRX and UxRTS pins are enabled and used; UxCTS pin controlled by PORT latches										
	00 = UxTX and UxRX pins are enabled and used; UxCTS and UxRTS/BCLKx pins controlled by PORT latches										
bit 7			t Dotoot Durin	a Sloop Modo	Enchlo bit						
		e-up on Start bi				alling adda: bit	alaarad				
		 I = UARTx continues to sample the UxRX pin; interrupt generated on falling edge; bit cleared in hardware on following rising edge 									
	0 = No wake		g noing ougo								
bit 6		ARTx Loopback	Mode Select	bit							
		oopback mode									
	0 = Loopbac	k mode is disa	bled								
bit 5	ABAUD: Auto	o-Baud Enable	bit								
					ter – requires re	eception of a Sy	ync field (55h				
		her data; clear			etion						
	0 = Baud rate	e measuremer	t disabled or c	completed							
Note 1: Re	efer to Section 1	ח ד. "UART " (ח	S70582) in the	e "dsPIC.33F/F	PIC24F Family F	Reference Man	ual" for infor-				
	ation on enabling				-						
	is feature is only	-			-						
	is feature is only			-	,						
4 T	1. f f f f f f f f f f f .	,									

REGISTER 20-1: UXMODE: UARTX MODE REGISTER

4: This feature is only available on 64-pin devices.

REGISTER 20-1: UxMODE: UARTx MODE REGISTER (CONTINUED)

bit 4	URXINV: Receive Polarity Inversion bit 1 = UxRX Idle state is '0' 0 = UxRX Idle state is '1'
bit 3	BRGH: High Baud Rate Enable bit
	 1 = BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode) 0 = BRG generates 16 clocks per bit period (16x baud clock, Standard mode)
bit 2-1	PDSEL<1:0>: Parity and Data Selection bits
	11 = 9-bit data, no parity 10 = 8-bit data, odd parity 01 = 8-bit data, even parity 00 = 8-bit data, no parity
bit 0	STSEL: Stop Bit Selection bit
	1 = Two Stop bits
	0 = One Stop bit

- **Note 1:** Refer to **Section 17. "UART"** (DS70582) in the *"dsPIC33E/PIC24E Family Reference Manual"* for information on enabling the UART module for receive or transmit operation.
 - 2: This feature is only available for the 16x BRG mode (BRGH = 0).
 - **3:** This feature is only available on 44-pin and 64-pin devices.
 - 4: This feature is only available on 64-pin devices.

R/W-0	R/W-0	R/W-0	U-0	R/W-0 HC	R/W-0	R-0	R-1				
UTXISEL1	UTXINV	UTXISEL0		UTXBRK	UTXEN ⁽¹⁾	UTXBF	TRMT				
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	R-1	R-0	R-0	R/C-0	R-0				
	SEL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA				
bit 7	OLLY1.02	ADDEN	NIDEL			OLINIX	bit				
Legend:		HC = Hardwar	e cleared								
R = Readab	le bit	W = Writable b	bit	U = Unimpler	mented bit, read	d as '0'					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown				
bit 15,13	11 = Reserve 10 = Interrupt transmit 01 = Interrupt operatio 00 = Interrupt	when a charac buffer become when the last on ns are complete	ter is transfe s empty character is s ed ter is transfe	rred to the Trar hifted out of the rred to the Trar	nsmit Shift Reg e Transmit Shif	ister, and as a r t Register; all tr ister (this implie	ansmit				
bit 14	<u>If IREN = 0:</u> 1 = UxTX Idle 0 = UxTX Idle <u>If IREN = 1:</u> 1 = IrDA ence		state is '1'								
bit 12	Unimplemen	ted: Read as '0	,								
bit 11	UTXBRK: Transmit Break bit										
	cleared b 0 = Sync Bre	y hardware upo ak transmissior	on completion disabled or	า	lowed by twelv	e '0' bits, follow	ed by Stop bi				
bit 10	1 = Transmit	smit Enable bit enabled, UxTX disabled, any p	pin controlle		rted and buffer	is reset. UxTX	pin controlle				
bit 9	1 = Transmit	smit Buffer Full buffer is full buffer is not ful			er can be writte	n					
bit 8	1 = Transmit	nit Shift Registe Shift Register is Shift Register is	empty and t	ransmit buffer is		t transmission h	as completed				
oit 7-6		D>: Receive Inte				1					
	11 = Interrupt 10 = Interrupt 0x = Interrupt	is set on UxRS is set on UxRS	R transfer m R transfer m y character	aking the recei aking the recei is received and	ve buffer 3/4 fu	e., has 4 data c III (i.e., has 3 da om the UxRSR	ta characters				

REGISTER 20-2: UxSTA: UARTx STATUS AND CONTROL REGISTER

Note 1: Refer to **Section 17. "UART**" (DS70582) in the *"dsPIC33E/PIC24E Family Reference Manual"* for information on enabling the UART module for transmit operation.

REGISTER 20-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

bit 5	ADDEN: Address Character Detect bit (bit 8 of received data = 1)
	 1 = Address Detect mode enabled. If 9-bit mode is not selected, this does not take effect. 0 = Address Detect mode disabled
bit 4	RIDLE: Receiver Idle bit (read-only)
	1 = Receiver is Idle0 = Receiver is active
bit 3	PERR: Parity Error Status bit (read-only)
	1 = Parity error has been detected for the current character (character at the top of the receive FIFO)0 = Parity error has not been detected
bit 2	FERR: Framing Error Status bit (read-only)
	1 = Framing error has been detected for the current character (character at the top of the receive FIFO)
	0 = Framing error has not been detected
bit 1	OERR: Receive Buffer Overrun Error Status bit (read/clear only)
	 1 = Receive buffer has overflowed 0 = Receive buffer has not overflowed. Clearing a previously set OERR bit (1 →0 transition) resets the receiver buffer and the UxRSR to the empty state.
bit 0	URXDA: Receive Buffer Data Available bit (read-only)
	 1 = Receive buffer has data, at least one more character can be read 0 = Receive buffer is empty

Note 1: Refer to **Section 17. "UART"** (DS70582) in the *"dsPIC33E/PIC24E Family Reference Manual"* for information on enabling the UART module for transmit operation.

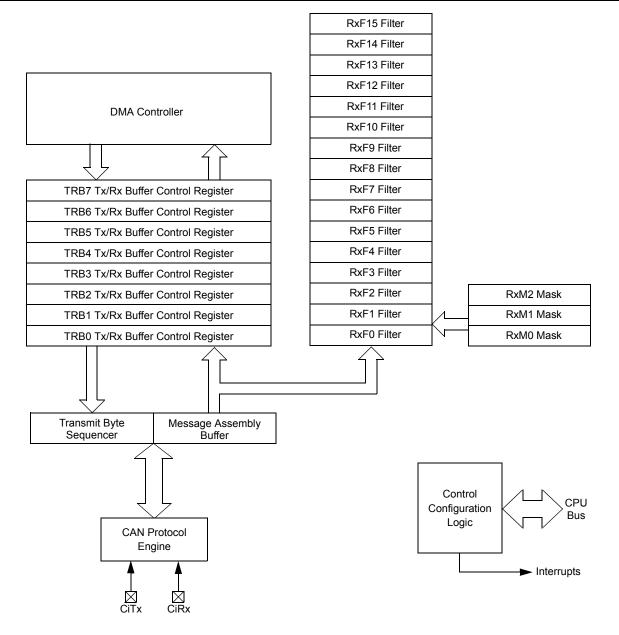
NOTES:

21.0 ENHANCED CAN (ECAN™) MODULE (dsPIC33EPXXXGP/ MC50X DEVICES ONLY)

- Note 1: This data sheet summarizes the features dsPIC33EPXXXGP50X of the dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 21. "Enhanced Controller Area Network (ECAN™)" (DS70353) of the "dsPIC33E/PIC24E Family Reference Manual', which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

21.1 Overview

The Enhanced Controller Area Network (ECAN) module is a serial interface, useful for communicating with other CAN modules or microcontroller devices. This interface/protocol was designed to allow communications within noisy environments. The dsPIC33EPXXXGP/MC50X devices contain one ECAN module.


The ECAN module is a communication controller implementing the CAN 2.0 A/B protocol, as defined in the BOSCH CAN specification. The module supports CAN 1.2, CAN 2.0A, CAN 2.0B Passive and CAN 2.0B Active versions of the protocol. The module implementation is a full CAN system. The CAN specification is not covered within this data sheet. The reader can refer to the BOSCH CAN specification for further details.

The ECAN module features are as follows:

- Implementation of the CAN protocol, CAN 1.2, CAN 2.0A and CAN 2.0B
- · Standard and extended data frames
- 0-8 bytes data length
- Programmable bit rate up to 1 Mbit/sec
- Automatic response to remote transmission requests
- Up to eight transmit buffers with application specified prioritization and abort capability (each buffer can contain up to 8 bytes of data)
- Up to 32 receive buffers (each buffer can contain up to 8 bytes of data)
- Up to 16 full (standard/extended identifier) acceptance filters
- Three full acceptance filter masks
- DeviceNet[™] addressing support
- Programmable wake-up functionality with integrated low-pass filter
- Programmable Loopback mode supports self-test operation
- Signaling via interrupt capabilities for all CAN receiver and transmitter error states
- Programmable clock source
- Programmable link to Input Capture module (IC2) for time-stamping and network synchronization
- · Low-power Sleep and Idle mode

The CAN bus module consists of a protocol engine and message buffering/control. The CAN protocol engine handles all functions for receiving and transmitting messages on the CAN bus. Messages are transmitted by first loading the appropriate data registers. Status and errors can be checked by reading the appropriate registers. Any message detected on the CAN bus is checked for errors and then matched against filters to see if it should be received and stored in one of the receive registers.

21.2 Modes of Operation

The ECAN module can operate in one of several operation modes selected by the user. These modes include:

- · Initialization mode
- · Disable mode
- Normal Operation mode
- Listen Only mode
- Listen All Messages mode
- Loopback mode

Modes are requested by setting the REQOP<2:0> bits (CiCTRL1<10:8>). Entry into a mode is Acknowledged by monitoring the OPMODE<2:0> bits (CiCTRL1<7:5>). The module does not change the mode and the OPMODE bits until a change in mode is acceptable, generally during bus Idle time, which is defined as at least 11 consecutive recessive bits.

Refer to Section 21. "Enhanced Controller Area Network (ECAN™)" (DS70353) of the "*dsPIC33E/ PIC24E Family Reference Manual*" for more details on ECAN.

Advance Information

REGISTER	21-1: CiCT	RL1: ECAN™	CONTROL	REGISTER 1							
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0				
_	_	CSIDL	ABAT	CANCKS		REQOP<2:0>					
bit 15							bit 8				
R-1	R-0	R-0	U-0	R/W-0	U-0	U-0	R/W-0				
	OPMODE<2:0)>		CANCAP	_		WIN				
bit 7							bit (
Legend:		C = Writable	bit, but only '0	' can be writter	to clear the bi	t r = Bit is Rese	erved				
R = Readabl	le bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'					
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15-14	Unimpleme	nted: Read as	0'								
bit 13	•	o in Idle Mode b									
	•	nue module ope		levice enters Id	lle mode						
		e module opera									
bit 12	ABAT: Abor	t All Pending Tra	ansmissions b	oit							
	1 = Signal a	ABAT: Abort All Pending Transmissions bit 1 = Signal all transmit buffers to abort transmission									
	0 = Module will clear this bit when all transmissions are aborted										
bit 11	CANCKS: ECAN Module Clock (FCAN) Source Select bit										
	1 = FCAN is equal to twice FP										
	0 = FCAN is	equal to FP									
bit 10-8	REQOP<2:0>: Request Operation Mode bits										
	111 = Set Listen All Messages mode										
	110 = Reserved										
	101 = Reserved 100 = Set Configuration mode										
		isten Only Mode									
	010 = Set Loopback mode										
	001 = Set Disable mode										
	000 = Set N	lormal Operation	n mode								
bit 7-5	OPMODE<2:0>: Operation Mode bits										
	111 = Module is in Listen All Messages mode										
	110 = Reserved										
	101 = Reserved										
	100 = Module is in Configuration mode 011 = Module is in Listen Only mode										
	011 = Module is in Listen Only mode										
		010 = Module is in Loopback mode									
	001 = Module is in Disable mode										
		ile is in Normal	•	de							
bit 4	-	nted: Read as									
bit 3		CAN Message R		-							
		nput capture ba CAN capture	sed on CAN r	nessage receiv	/e						
bit 2-1	Unimpleme	nted: Read as	0'								
bit 0	WIN: SFR M	lap Window Se	ect bit								
	1 = Use filte										
	0 = Use buff	fer window									

REGISTER 21-1: CiCTRL1: ECAN™ CONTROL REGISTER 1

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	_	—	—	—	_	—	—
bit 15							bit 8
U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0
_	—	—			DNCNT<4:0>		
bit 7							bit 0
Legend:		C = Writable b	oit, but only '0	' can be writter	n to clear the bit		
R = Readab	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unk			own
bit 15-5	Unimplemen	ted: Read as '	0'				
bit 4-0	DNCNT<4:0>	: DeviceNet™	Filter Bit Num	ber bits			
	10010-1111	1 = Invalid sele	ection				
	10001 = Con	pare up to data	a byte 3, bit 6	with EID<17>			
	•						
	•						

REGISTER 21-2: CiCTRL2: ECAN™ CONTROL REGISTER 2

•

00001 = Compare up to data byte 1, bit 7 with EID<0> 00000 = Do not compare data bytes

DS70657B-page 270

REGISTER	21-3: CiVEC	ECAN™ IN	TERRUPT	CODE REGIS	TER		
U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0
	—				FILHIT<4:0	>	
oit 15							bit
U-0	R-1	R-0	R-0	R-0	R-0	R-0	R-0
				ICODE<6:0>	•		
bit 7							bit
l agand.		C = Writabla k	hut only (0' oon ho writton	to close the h	:4	
Legend:	la hit		-	0' can be writter			
R = Readab		W = Writable		-	nented bit, rea		
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
bit 15-13	Unimplomon	ted: Read as '					
bit 12-8	=	Filter Hit Num					
DIL 12-0	10000-1111						
	01111 = Filte						
	•	1 10					
	•						
	00001 = Filte	r 1					
	000001 = Filte						
bit 7		ted: Read as '	ר י				
bit 6-0	=	: Interrupt Flag					
		111111 = Rese					
		IFO almost full					
		eceiver overflo					
		/ake-up interru					
	1000001 = E						
	1000000 = N	o interrupt					
	•						
	•						
	•						
		11111 = Rese					
	0001111 = R	B15 buffer Inte	rrupt				
	•						
	•						
	•						
		B9 buffer interr					
		B8 buffer inter					
		RB7 buffer inte					
		RB6 buffer inte RB5 buffer inte					
		RB4 buffer inte					
		RB3 buffer inte	•				
		RB2 buffer inte					
		RB1 buffer inte					
	0000000 = T	RB0 Buffer inte	errupt				

REGISTER 21-3: CiVEC: ECAN™ INTERRUPT CODE REGISTER

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
	DMABS<2:0>		—	—	_	_	—
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	—			FSA<4:0>		
bit 7							bit 0
Legend:			•	' can be written			
R = Readabl		W = Writable I	oit	•	nented bit, read	l as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
	111 = Reserv 110 = 32 buff 101 = 24 buff 100 = 16 buff 011 = 12 buff 010 = 8 buffe 001 = 6 buffe 000 = 4 buffe	fers in RAM fers in RAM fers in RAM fers in RAM ers in RAM ers in RAM ers in RAM					
bit 12-5	-	ted: Read as 'o					
bit 4-0	11111 = Rea 11110 = Rea •	IFO Area Starts ad buffer RB31 ad buffer RB30 Rx buffer TRB1	with Buffer t	nts			

REGISTER 21-4: CIFCTRL: ECAN™ FIFO CONTROL REGISTER

00000 = Tx/Rx buffer TRB0

U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
	_			FBF	P<5:0>		
bit 15							bit
U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
_				FNR	B<5:0>		
bit 7							bit
Legend:			•	0' can be writter			
R = Readab		W = Writable			mented bit, rea		
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknow	vn
bit 15-14	•	nted: Read as '					
bit 13-8	FBP<5:0>:	FIFO Buffer Poir	nter bits				
	011111 = R 011110 = R						
	•						
	•						
	•						
	000001 = T 000000 = T						
bit 7-6	000000 = T		0'				
	000000 = T Unimpleme	RB0 buffer		nter bits			
	000000 = T Unimpleme	RB0 buffer n ted: Read as 'i : FIFO Next Rea		nter bits			
	000000 = T Unimpleme FNRB<5:0>	RB0 buffer n ted: Read as 'i : FIFO Next Rea :B31 buffer		nter bits			
	000000 = T Unimpleme FNRB<5:0> 011111 = R	RB0 buffer n ted: Read as 'i : FIFO Next Rea :B31 buffer		nter bits			
	000000 = T Unimpleme FNRB<5:0> 011111 = R 011110 = R	RB0 buffer n ted: Read as 'i : FIFO Next Rea :B31 buffer		nter bits			
bit 7-6 bit 5-0	000000 = T Unimpleme FNRB<5:0> 011111 = R 011110 = R	RB0 buffer n ted: Read as 'i : FIFO Next Rea :B31 buffer		nter bits			
	000000 = T Unimpleme FNRB<5:0> 011111 = R 011110 = R	RB0 buffer nted: Read as 'i : FIFO Next Rea :B31 buffer :B30 buffer		nter bits			

REGISTER 21-5: CIFIFO: ECAN™ FIFO STATUS REGISTER

U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
_	_	TXBO	TXBP	RXBP	TXWAR	RXWAR	EWARN
oit 15			•				bit 8
R/C-0	R/C-0	R/C-0	U-0	R/C-0	R/C-0	R/C-0	R/C-0
IVRIF		ERRIF	0-0	FIFOIF		RBIF	TBIF
Dit 7	WAKIF	ERRIF	—		RBOVIF	RDIF	bit (
Legend:		C = Writable	hit but only 'O	' can be writter	n to clear the bit	ł	
R = Readabl	e hit	W = Writable	-		mented bit, read		
n = Value at		'1' = Bit is se		'0' = Bit is cle		x = Bit is unkr	
	FUR		L		aleu		IOWII
oit 15-14	Unimpleme	nted: Read as	0'				
oit 13	-	smitter in Error		hit			
		ter is in Bus Of		NIL .			
		ter is not in Bus	01010				
oit 12	TXBP: Trans	mitter in Error	State Bus Pas	sive bit			
	1 = Transmit	ter is in Bus Pa	ssive state				
	0 = Transmit	ter is not in Bus	Passive state	e			
oit 11		eiver in Error St		/e bit			
		is in Bus Pass					
		is not in Bus F		h:t			
oit 10		insmitter in Erro ter is in Error V		ng dit			
		ter is not in Err		ite			
oit 9		ceiver in Error	-				
		is in Error War		bit			
		is not in Error					
oit 8		ansmitter or Re			bit		
	1 = Transmit	ter or Receiver	is in Error Sta	te Warning stat	te		
	0 = Transmit	ter or Receiver	is not in Error	State Warning	state		
oit 7		d Message Inte					
		Request has o					
	-	Request has n					
oit 6		Wake-up Activ		ag bit			
		Request has o Request has n					
oit 5	-	-		ources in CilNIT	F<13:8> regist	or)	
511 5		Request has o					
	•	Request has n					
oit 4	-	nted: Read as					
oit 3	•	D Almost Full Ir		it			
		Request has o					
		Request has n					
oit 2	RBOVIF: RX	Buffer Overflo	w Interrupt Fla	ag bit			
		Request has o					
	0 = Interrupt	Request has n	ot occurred				
oit 1		uffer Interrupt F					
	1 - Interrupt	B · · · · · · · · · · ·	agurrad				
		Request has o					
	0 = Interrupt	Request has n	ot occurred				
oit 0	0 = Interrupt TBIF: TX Bu		ot occurred ag bit				

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	_	—		_
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IVRIE	WAKIE	ERRIE		FIFOIE	RBOVIE	RBIE	TBIE
bit 7							bit (
		0.000					
Legend:					n to clear the bit		
R = Readab		W = Writable			mented bit, read		
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15-8	Unimalamat	ted. Dood oo '	0'				
	•	nted: Read as '					
bit 7		IE: Invalid Message Interrupt Enable bit Interrupt Request Enabled					
		terrupt Request not enabled					
bit 6	•	•		ag bit			
		: Bus Wake-up Activity Interrupt Flag bit rrupt Request Enabled					
		Request not er					
bit 5	ERRIE: Error	r Interrupt Enab	le bit				
	1 = Interrupt	Request Enabl	ed				
	0 = Interrupt	Request not er	abled				
bit 4	Unimplemer	nted: Read as '	0'				
bit 3		O Almost Full In		e bit			
		Request Enabl					
		Request not er					
bit 2		Buffer Overflor	•	able bit			
		Request Enabl Request not er					
bit 1	-	Iffer Interrupt E					
		Request Enabl					
		Request not er					
bit 0	-	ffer Interrupt Er					
	1 = Interrupt	Request Enabl	ed				

REGISTER 21-8: CIEC: ECAN™ TRANSMIT/RECEIVE ERROR COUNT REGISTER

21-8: CIEC:	ECAN™ TRA	ANSMIT/RE	CEIVE ERRO	OR COUNT F	REGISTER		
R-0	R-0	R-0	R-0	R-0	R-0	R-0	
		TERR	CNT<7:0>				
						bit	
R-0	R-0	R-0	R-0	R-0	R-0	R-0	
	_	RERR	CNT<7:0>	-	-	-	
						bit (
	C = Writable	bit, but only '	0' can be writter	n to clear the	bit		
le bit	W = Writable	bit	U = Unimplei	mented bit, re	ad as '0'		
t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unki	nown	
TERRCNT<	7:0>: Transmit I	Error Count b	oits				
RERRCNT<	7:0>: Receive E	Error Count b	its				
21-9: CiCF	G1: ECAN™ E	BAUD RAT	E CONFIGUR	ATION REG	GISTER 1		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—		—		—	—	
						bit 8	
D/M/ 0	D/M/ 0		D/M/ O		D/M/ O	R/W-0	
-	N/W-0	N/ VV-0			R/W-0	N/ VV-U	
			Bra	0.0		bit (
le bit	W = Writable	bit			ad as '0'		
t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown	
Unimpleme	nted: Read as '	0'					
SJW<1:0>: \$	Synchronization	I Jump Width	bits				
01 = Length 00 = Length							
		caler hits					
BRP<5:0>: 1	Baud Rate Pres						
BRP<5:0>: 1							
BRP<5:0>: 1	Baud Rate Pres						
BRP<5:0>: 1	Baud Rate Pres						
BRP<5:0>:1	Baud Rate Pres TQ = 2 x 64 x 1/	FCAN					
BRP<5:0>: F 11 1111 = 7	Baud Rate Pres	FCAN CAN					
	R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0	R-0 R-0 R-0 R-0 C = Writable C = Writable le bit W = Writable t POR '1' = Bit is set TERRCNT<7:0>: Transmit I RERRCNT<7:0>: Transmit I RERRCNT<7:0>: Receive E 21-9: CiCFG1: ECAN TM E U-0 U-0 W<1:0> Print is set Unimplemented: Read as '	R-0 R-0 R-0 R-0 R-0 TERR R-0 R-0 RERR C = Writable bit, but only ' RERR Ie bit W = Writable bit t POR '1' = Bit is set TERRCNT<7:0>: Transmit Error Count b 21-9: CiCFG1: ECAN™ BAUD RAT U-0 U-0 U-0 Image: CiCFG1: ECAN™ BAUD RAT U-0 U-0 U-0 U-0 Image: CiCFG1: ECAN™ BAUD RAT U-0 U-0 U-0 U-0 U-0 U-0 U-0 Image: CiCFG1: ECAN™ BAUD RAT U-0 U-0 U-0 U-0 Image: CiCFG1: ECAN™ BAUD RAT U-0 U-0 U-0 U-0 Image: CiCFG1: ECAN™ BAUD RAT U-0 U-0 U-0 U-0 Image: CiCFG1: ECAN™ BAUD RAT U-0 Image: CiCFG1: ECAN™ BAUD RAT U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 UN UN UN	R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 RERRCNT<7:0> RERRCNT<7:0> C = Writable bit, but only '0' can be written t POR '1' = Bit is set '0' = Bit is cle TERRCNT<7:0>: Transmit Error Count bits RERRCNT<7:0>: Transmit Error Count bits 21-9: CiCFG1: ECAN™ BAUD RATE CONFIGUR U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 BR/ Ie bit W = Writable bit U = Unimplexity Ie bit W = Writable bit U = Unimplexity Ie bit W = Writable bit U = Unimplexity It = Length is 4 x TQ 10 = Length is 3 x TQ	R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 RERRCNT<7:0> RERRCNT<7:0> RERRCNT<7:0> C = Writable bit, but only '0' can be written to clear the le bit W = Writable bit U = Unimplemented bit, ret IPOR '1' = Bit is set '0' = Bit is cleared '0' = Bit is cleared TERRCNT<7:0>: Transmit Error Count bits RERRCNT<7:0>: RERRCNT<7:0>: Receive Error Count bits 21-9: CiCFG1: ECAN™ BAUD RATE CONFIGURATION REG U-0 U-0 U-0 — — — R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 W<= Writable bit	R-0 R-0 R-0 R-0 R-0 R-0 R-0 TERRCNT<7:0> C = Writable bit, but only '0' can be written to clear the bit Le bit W = Writable bit U = Unimplemented bit, read as '0' TERRCNT<7:0> C = Writable bit U = Unimplemented bit, read as '0' TERRCNT<7:0> TERRCNT<7:0>: TERRCNT<7:0>: Transmit Error Count bits RERRCNT<7:0>: Transmit Error Count bits RERRCNT<7:0>: Receive Error Count bits 21-9: CiCFG1: ECAN™ BAUD RATE CONFIGURATION REGISTER 1 U-0 U-0 U-0 U-0 W U-0 U-0 U-0 U-0 W W.0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 Writable bit U = Unimplemented bit, read as '0' It bit is set '0' = Bit is cleared x = Bit is unkr Unimplemented: Read as '0' Synchronization Jump Width bits 11 = Length is 4 x TQ <td colspa<="" td=""></td>	

R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x SEG2PHTS SAM SEG1PH<2:0> PRSEG<2:0> bit Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' bit in = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as '0' 0' = Bit is cleared x = Bit is unknown bit 14 WAKFIL: Select CAN bus Line Filter for Wake-up bit 1 = Use CAN bus line filter for wake-up 0 = CAN bus line filter for wake-up 0 = CAN bus line filter for wake-up 0 = CAN bus line filter for wake-up 0 = CAN bus line filter for wake-up 0 = CAN bus line filter for wake-up 0 = CAN bus line filter for wake-up 0 = CAN bus line filter for wake-up 0 = CAN bus line filter for wake-up 0 = CAN bus line filter for wake-up 0 = CAN bus line filter for wake-up 0 = CAN bus line filter for wake-up 0 = CAN bus line filter for wake-up 0 = CAN bus line filter for wake-up 000 = Length is 1 x TQ 000 = Length is 1 x TQ 00	REGISTER 2	1-10: CiCFO	G2: ECAN™ E	BAUD RATE		ATION REG	ISTER 2	
bit 15 bit RW-x RW-x RW-x RW-x RW-x RW-x RW-x RW-x	U-0	R/W-x	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
R/W-x R/W-x <th< td=""><td>—</td><td>WAKFIL</td><td>—</td><td>—</td><td>—</td><td></td><td>SEG2PH<2:0></td><td></td></th<>	—	WAKFIL	—	—	—		SEG2PH<2:0>	
SEG2PHTS SAM SEG1PH<2:0> PRSEG<2:0> bit 7 bit bit bit U = Unimplemented bit, read as '0' Image: Segret and Segret a	bit 15							bit
SEG2PHTS SAM SEG1PH<2:0> PRSEG<2:0> bit 7 bit bit bit U = Unimplemented bit, read as '0' Image: Segret and Segret a					D/M/ v			
bit 7 bit Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as '0' bit 1 = Use CAN bus line filter for Wake-up bit 1 = Use CAN bus line filter for wake-up 0 = CAN bus line filter is not used for wake-up 0 = CAN bus line filter is not used for wake-up 0 = CAN bus line filter is not used for wake-up 0 = CAN bus line filter is not used for wake-up 0 = CAN bus line filter is not used for wake-up 0 = CAN bus line filter is not used for wake-up 0 = CAN bus line filter is not used for wake-up 0 = CAN bus line filter is not used for wake-up 0 = CAN bus line filter is not used for wake-up 0 = CAN bus line filter is not used for wake-up 0 = CAN bus line filter for Wake-up bit 1 = Use CAN bus line filter for Wake-up bit 10 = SEG2PH-2:0s: Phase Segment 2 bits 111 = Length is 1 x To 0 = Maximum of SEG1PH bits or Information Processing Time (IPT), whichever is greater bit 6 SAM: Sample of the CAN bus Line bit 1 = Bus line is sampled once at the sample point 0 = Bus line is sampled once at the sample point o = Bus line is sampled once at the sample point 0 = Maximum of SEG1PH-2:0s: Phase Segment 1 bits 111 = Length is 8 x To 000 = Length i						N/W-X		N/ W-X
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' in = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as '0' oit 14 WAKFLL: Select CAN bus Line Filter for Wake-up bit 1 = Use CAN bus line filter for wake-up 0 = CAN bus line filter is not used for wake-up 0 = CAN bus line filter so tused for wake-up 0 = CAN bus line filter so tused for wake-up 0 = CAN bus line filter so tused for wake-up 0 = CAN bus line filter so tused for wake-up 0 = CAN bus line filter so tused for wake-up 0 = CAN bus line filter so tused for wake-up 0 = CAN bus line filter so tused for wake-up 0 = CAN bus line filter so tused for wake-up 0 = CAN bus line filter so tused for wake-up 0 = CAN bus line filter for Wake-up bit 111 = Length is 1 x TQ 0 = Maximum of SEG1PH bits or Information Processing Time (IPT), whichever is greater 0 = Maximum of SEG1PH bits or Information Processing Time (IPT), whichever is greater 0 = Maximum of SEG1PH bits or Information Processing Time (IPT), whichever is greater 0 = Maximum of SEG1PH bits or Information Processing Time (IPT), whichever is greater 0 = Bus line is sampled once at the sample point 0 = Bus line is sampled once at the sample point 0 = Bus line is sampled once at the sample point 0 = Bus line is sampled once at the sample point 0 = Bus line is sampled once at the sample point 0 = Bus line is sampled once at the sample point 0 = Bus line is sampled once at the sample point 0 = Bus line is sampled once at the sample point 0 = Bus line is sampled once at the sample point 0 = Bus line is sampled once at the sample point 0 = Bus line is sampled once at the sample point 0 = Bus line is sampled once at the sample point 0 = Bus line is sampled once at the sample point 0 = Bus line is sampled once at the sample point 0 = Bus line is sampled once at the sample point 0 = Bus line is sampled once at the sample point 0 = Bus line is sampled three times at the sample point 0 = Bus line is sampled		5AM		520111-2.0			11020-2.02	bit
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' in = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as '0' ''' = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as '0' ''' = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as '0' ''' = Bit is cleared x = Bit is unknown bit 14 WAKFIL: Select CAN bus Line Filter for Wake-up ''' '''' 0 = CAN bus line filter is not used for wake-up '''' ''''' ''''' bit 13-11 Unimplemented: Read as '0' ''''' '''''' '''''' bit 13-11 Unimplemented: Read as '0' ''''''''''''''''''''''''''''''''''''	SICT							bit
In = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as '0' '' bit 14 WAKFIL: Select CAN bus Line Filter for Wake-up bit 1 = Use CAN bus line filter for wake-up 0 = CAN bus line filter is not used for wake-up 0 = CAN bus line filter is not used for wake-up 0 = CAN bus line filter is not used for wake-up 0 = CAN bus line filter is not used for wake-up 0 = CAN bus line filter is not used for wake-up 0 = CAN bus line filter is not used for wake-up 0 = CAN bus line filter is not used for wake-up 0 = CAN bus line filter is not used for wake-up 0 = CAN bus line filter is not used for wake-up 0 = CAN bus line filter is not used for wake-up 0 = CAN bus line filter is not used for wake-up 0 = CAN bus line filter is make-up 0 = Length is 1 x TQ 000 = Length is 1 x TQ 0 = Bus line is sampled three times at the sample point 0 = Bus line is sampled once at the sample point 0 = Bus line is sampled once at the sample point 0 = Bus line is 8 x TQ 0 = 0 It = Length is 1 x TQ 0 = 0 PRSEG-2:0>: Propagation Time Segment bits 1 = Length is 8 x TQ It = Length is 8 x TQ It = Length is 8 x TQ It = Length is 8 x TQ It = Length is	Legend:							
bit 15 Unimplemented: Read as '0' bit 14 WAKFIL: Select CAN bus Line Filter for Wake-up bit 1 = Use CAN bus line filter for wake-up 0 = CAN bus line filter is not used for wake-up bit 13-11 Unimplemented: Read as '0' bit 10-8 SEG2PH-2:0>: Phase Segment 2 bits 111 = Length is 8 x TQ • • • • • • • • • • • • • • • • • • •	R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, rea	id as '0'	
 bit 14 WAKFIL: Select CAN bus Line Filter for Wake-up bit Use CAN bus line filter is not used for wake-up CAN bus line filter is not used for wake-up CAN bus line filter is not used for wake-up bit 13-11 Unimplemented: Read as '0' SEG2PH<2:0>: Phase Segment 2 bits Length is 8 x TQ Length is 1 x TQ bit 7 SEG2PHTS: Phase Segment 2 Time Select bit Freely programmable Maximum of SEG1PH bits or Information Processing Time (IPT), whichever is greater bit 6 SAM: Sample of the CAN bus Line bit Bus line is sampled three times at the sample point Bus line is sampled once at the sample point Bus line is sampled once at the sample point Bus line is 8 x TQ bit 5-3 SEG1PH SEG1PH<2:0>: Phase Segment 1 bits Length is 1 x TQ bit 5-3 PRSEG PRSEG Propagation Time Segment bits Length is 1 x TQ 	-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
 bit 14 WAKFIL: Select CAN bus Line Filter for Wake-up bit Use CAN bus line filter is not used for wake-up CAN bus line filter is not used for wake-up CAN bus line filter is not used for wake-up bit 13-11 Unimplemented: Read as '0' SEG2PH<2:0>: Phase Segment 2 bits Length is 8 x TQ Length is 1 x TQ bit 7 SEG2PHTS: Phase Segment 2 Time Select bit Freely programmable Maximum of SEG1PH bits or Information Processing Time (IPT), whichever is greater bit 6 SAM: Sample of the CAN bus Line bit Bus line is sampled three times at the sample point Bus line is sampled once at the sample point Bus line is sampled once at the sample point Bus line is 8 x TQ bit 5-3 SEG1PH SEG1PH<2:0>: Phase Segment 1 bits Length is 1 x TQ bit 5-3 PRSEG PRSEG Propagation Time Segment bits Length is 1 x TQ 								
 1 = Use CAN bus line filter for wake-up 0 = CAN bus line filter is not used for wake-up 0 = CAN bus line filter is not used for wake-up 0 = CAN bus line filter is not used for wake-up 0 = CAN bus line filter is not used for wake-up 0 = CAN bus line filter is not used for wake-up 0 = SEG2PH-2:0>: Phase Segment 2 bits 111 = Length is 1 x TQ 000 = Maximum of SEG1PH bits or Information Processing Time (IPT), whichever is greater 0 = Maximum of SEG1PH bits or Information Processing Time (IPT), whichever is greater 0 = Maximum of SEG1PH bits or line is sample point 0 = Bus line is sampled three times at the sample point 0 = Bus line is sampled noce at the sample point 0 = Bus line is 8 x TQ . . 000 = Length is 1 x TQ 000 = Length is 1 x TQ PRSEG<2:0>: Propagation Time Segment bits 111 = Length is 8 x TQ . 	bit 15	-						
 0 = CAN bus line filter is not used for wake-up 0it 13-11 Unimplemented: Read as '0' SEG2PH<2:0>: Phase Segment 2 bits 111 = Length is 8 x TQ . .	bit 14				Vake-up bit			
 bit 13-11 Unimplemented: Read as 'o' bit 10-8 SEG2PH<2:0>: Phase Segment 2 bits 111 = Length is 8 x TQ . .<td></td><td></td><td></td><td>•</td><td></td><td></td><td></td><td></td>				•				
bit 10-8 SEG2PH<2:0>: Phase Segment 2 bits 111 = Length is 8 x TQ	hit 40 44				e-up			
 111 = Length is 8 x TQ 000 = Length is 1 x TQ 000 = Length is 1 x TQ SEG2PHTS: Phase Segment 2 Time Select bit Freely programmable Maximum of SEG1PH bits or Information Processing Time (IPT), whichever is greater bit 6 SAM: Sample of the CAN bus Line bit Bus line is sampled three times at the sample point Bus line is sampled once at the sample point Bus line is sampled once at the sample point Bus line is sampled once at the sample point Bus line is sampled once at the sample point bit 5-3 SEG1PH bit 5-3 SEG1PH and the sample once at the sample point Bus line is 1 x TQ Bus line is 1 x TQ bit 2-0 PRSEG Propagation Time Segment bits Length is 8 x TQ 		-						
 out and the second se	DIT 10-8		-	nent 2 bits				
bit 7 SEG2PHTS: Phase Segment 2 Time Select bit 1 = Freely programmable 0 = Maximum of SEG1PH bits or Information Processing Time (IPT), whichever is greater bit 6 SAM: Sample of the CAN bus Line bit 1 = Bus line is sampled three times at the sample point 0 = Bus line is sampled once at the sample point 0 = Bus line is sampled once at the sample point 0 = Bus line is sampled once at the sample point bit 5-3 SEG1PH<2:0>: Phase Segment 1 bits 111 = Length is 8 x TQ • • •			IISBXIQ					
bit 7 SEG2PHTS: Phase Segment 2 Time Select bit 1 = Freely programmable 0 = Maximum of SEG1PH bits or Information Processing Time (IPT), whichever is greater bit 6 SAM: Sample of the CAN bus Line bit 1 = Bus line is sampled three times at the sample point 0 = Bus line is sampled once at the sample point 0 = Bus line is sampled once at the sample point 0 = Bus line is sampled once at the sample point bit 5-3 SEG1PH<2:0>: Phase Segment 1 bits 111 = Length is 8 x TQ • • •		•						
bit 7 SEG2PHTS: Phase Segment 2 Time Select bit 1 = Freely programmable 0 = Maximum of SEG1PH bits or Information Processing Time (IPT), whichever is greater bit 6 SAM: Sample of the CAN bus Line bit 1 = Bus line is sampled three times at the sample point 0 = Bus line is sampled once at the sample point 0 = Bus line is sampled once at the sample point 0 = Bus line is sampled once at the sample point bit 5-3 SEG1PH<2:0>: Phase Segment 1 bits 111 = Length is 8 x TQ • • •		•						
bit 7 SEG2PHTS: Phase Segment 2 Time Select bit 1 = Freely programmable 0 = Maximum of SEG1PH bits or Information Processing Time (IPT), whichever is greater bit 6 SAM: Sample of the CAN bus Line bit 1 = Bus line is sampled three times at the sample point 0 = Bus line is sampled once at the sample point 0 = Bus line is sampled once at the sample point 0 = Bus line is sampled once at the sample point bit 5-3 SEG1PH<2:0>: Phase Segment 1 bits 111 = Length is 8 x TQ • • •		-						
 1 = Freely programmable 0 = Maximum of SEG1PH bits or Information Processing Time (IPT), whichever is greater bit 6 SAM: Sample of the CAN bus Line bit 1 = Bus line is sampled three times at the sample point 0 = Bus line is sampled once at the sample point 0 = Bus line is sampled once at the sample point bit 5-3 SEG1PH<2:0>: Phase Segment 1 bits 111 = Length is 8 x TQ 000 = Length is 1 x TQ PRSEG<2:0>: Propagation Time Segment bits 111 = Length is 8 x TQ . 	hit 7	-		nt 2 Time Sele	act hit			
 0 = Maximum of SEG1PH bits or Information Processing Time (IPT), whichever is greater bit 6 SAM: Sample of the CAN bus Line bit Bus line is sampled three times at the sample point 0 = Bus line is sampled once at the sample point Bus line is sampled once at the sample point SEG1PH<2:0>: Phase Segment 1 bits 111 = Length is 8 x TQ . 000 = Length is 1 x TQ PRSEG<2:0>: Propagation Time Segment bits 111 = Length is 8 x TQ . .								
bit 6 SAM: Sample of the CAN bus Line bit 1 = Bus line is sampled three times at the sample point 0 = Bus line is sampled once at the sample point bit 5-3 SEG1PH<2:0>: Phase Segment 1 bits 111 = Length is 8 x TQ 000 = Length is 1 x TQ bit 2-0 PRSEG<2:0>: Propagation Time Segment bits 111 = Length is 8 x TQ				ts or Informat	ion Processina	Time (IPT), w	hichever is areat	er
<pre>1 = Bus line is sampled three times at the sample point 0 = Bus line is sampled once at the sample point bit 5-3 SEG1PH<2:0>: Phase Segment 1 bits 111 = Length is 8 x TQ</pre>	bit 6							
<pre>0 = Bus line is sampled once at the sample point bit 5-3 SEG1PH<2:0>: Phase Segment 1 bits 111 = Length is 8 x TQ</pre>					sample point			
<pre>111 = Length is 8 x TQ bit 2-0 PRSEG<2:0>: Propagation Time Segment bits 111 = Length is 8 x TQ</pre>								
• • • • • • • • • • • • • •	bit 5-3	SEG1PH<2:0	D>: Phase Segr	nent 1 bits				
bit 2-0 PRSEG<2:0>: Propagation Time Segment bits 111 = Length is 8 x TQ • •		111 = Length	n is 8 x Tq					
bit 2-0 PRSEG<2:0>: Propagation Time Segment bits 111 = Length is 8 x TQ • •		•						
bit 2-0 PRSEG<2:0>: Propagation Time Segment bits 111 = Length is 8 x TQ • •		•						
bit 2-0 PRSEG<2:0>: Propagation Time Segment bits 111 = Length is 8 x TQ • •		•						
111 = Length is 8 x TQ • •		000 = Length	n is 1 x Tq					
•	bit 2-0	PRSEG<2:0>	>: Propagation	Time Segmer	nt bits			
• • • 000 = Length is 1 x Tq		111 = Length	n is 8 x Tq					
• • 000 = Length is 1 x To		•						
• 000 = Length is 1 x To		•						
000 = Length is 1 x Tq		•						
		000 = Length	n is 1 x Tq					

TION DECISTED 2

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
FLTEN15	FLTEN14	FLTEN13	FLTEN12	FLTEN11	FLTEN10	FLTEN9	FLTEN8	
bit 15							bit 8	
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
FLTEN7	FLTEN6	FLTEN5	FLTEN4	FLTEN3	FLTEN2	FLTEN1	FLTEN0	
bit 7 bit 0								
Legend:	Legend: C = Writable bit, but only '0' can be written to clear the bit							

Legend:	C = Writable bit, but only '0' can be written to clear the bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-0 **FLTENn:** Enable Filter n to Accept Messages bits 1 = Enable Filter n

0 = Disable Filter n

REGISTER 21-12: CiBUFPNT1: ECAN™ FILTER 0-3 BUFFER POINTER REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	F3BP<	<3:0>			F2BP	<3:0>		
bit 15	bit 15 bit 8							
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	F1BP<	:3:0>			F0BP	<3:0>		
bit 7							bit 0	

Legend: C = Writable bit, but only '0' can be written to clear the bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-12	F3BP<3:0>: RX Buffer mask for Filter 3 bits 1111 = Filter hits received in RX FIFO buffer 1110 = Filter hits received in RX Buffer 14
	•
	•
	•
	0001 = Filter hits received in RX Buffer 1 0000 = Filter hits received in RX Buffer 0
bit 11-8	F2BP<3:0>: RX Buffer mask for Filter 2 bits (same values as bit 15-12)
bit 7-4	F1BP<3:0>: RX Buffer mask for Filter 1 bits (same values as bit 15-12)
bit 3-0	F0BP<3:0>: RX Buffer mask for Filter 0 bits (same values as bit 15-12)

REGISTER	21-13: CiBU	FPNT2: ECAN	N™ FILTER	4-7 BUFFER	POINTER RE	EGISTER 2		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	F7BI	><3:0>			F6BF	P<3:0>		
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	F5BI	><3:0>		F4BP<3:0>				
bit 7							bit 0	
Legend:	Legend: C = Writable bit, but only '0')' can be written	to clear the bi	t		
R = Readabl	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at POR (1' = Bit is set			'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 15-12	1111 = Filt e	: RX Buffer mas er hits received in er hits received in	n RX FIFO bu	iffer				

	•
	•
	0001 = Filter hits received in RX Buffer 1
	0000 = Filter hits received in RX Buffer 0
bit 11-8	F6BP<3:0>: RX Buffer mask for Filter 6 bits (same values as bit 15-12)
bit 7-4	F5BP<3:0>: RX Buffer mask for Filter 5 bits (same values as bit 15-12)
bit 3-0	F4BP<3:0>: RX Buffer mask for Filter 4 bits (same values as bit 15-12)

REGISTER 21-14: CiBUFPNT3: ECAN™ FILTER 8-11 BUFFER POINTER REGISTER 3

D M M A							
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	F11BP<3:0>				F10BF	P<3:0>	
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
K/W-U	F9BP<		K/W-U	R/ VV-U	F8BP		K/W-0
1.11.7	F9DP*	-3.0>			FODP	<3.0>	1.1.0
bit 7							bit 0
Legend:		C = Writable	oit, but only '0'	can be written	to clear the bit		
R = Readable	bit	W = Writable			nented bit, read		
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown
bit 15-12	1111 = Filter	RX Buffer ma hits received in hits received in	n RX FIFO buf	fer			
	• • 0001 = Filter	hits received in hits r					
bit 11-8	• • 0001 = Filter 0000 = Filter	hits received in	n RX Buffer 0		ues as bit 15-1:	2)	
bit 11-8 bit 7-4	• • • • • • • • • • • • • • • • • • •	hits received in RX Buffer ma	n RX Buffer 0 sk for Filter 10			2)	

•

REDISTER ZI-IS. CIDUITINIA. ECAN								
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	F15BP<3:0>				F14BF	><3:0>		
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	F13B	P<3:0>			F12BF	><3:0>		
bit 7							bit 0	
Legend:		C = Writable	bit, but only '0	' can be writter	to clear the bit	•		
R = Readable	e bit	W = Writable			nented bit, read			
-n = Value at	POR	'1' = Bit is set		0' = Bit is cleared x = Bit is unknown				
bit 15-12	<pre>F15BP<3:0>: RX Buffer mask for Filter 15 bits 1111 = Filter hits received in RX FIFO buffer 1110 = Filter hits received in RX Buffer 14</pre>							
bit 11-8 bit 7-4	F14BP<3:0;	 RX Buffer ma RX Buffer ma 	sk for Filter 14					
	1 1001 40.02					-,		

REGISTER 21-15: CiBUFPNT4: ECAN™ FILTER 12-15 BUFFER POINTER REGISTER 4

bit 3-0 **F12BP<3:0>:** RX Buffer mask for Filter 12 bits (same values as bit 15-12)

	n (n =	0-15)						
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	
bit 15	-				•		bit 8	
-								
R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x	
SID2	SID1	SID0	—	EXIDE	—	EID17	EID16	
bit 7							bit 0	
Logondi		C – Writchla k	vit but only '0	' oon ho writtor	to clear the hit			
Legend:	- In:14				n to clear the bit			
R = Readable		W = Writable		U = Unimplemented bit, read as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown	
bit 15-5	SID<10:0>: S	Standard Identif	er bits					
	1 = Message	address bit SI	Dx must be '1	' to match filter				
	0 = Message	address bit SI	0x must be '0	' to match filter				
bit 4	Unimplemen	ted: Read as ')'					
bit 3	EXIDE: Exter	nded Identifier E	Enable bit					
	If MIDE = 1:							
	1 = Match on	ly messages wi	th extended i	dentifier addre	sses			
	0 = Match on	ly messages wi	th standard id	dentifier addres	ses			
	If MIDE = 0:							
	Ignore EXIDE	bit.						
bit 2	Unimplemen	ted: Read as ')'					
bit 1-0	EID<17:16>:	Extended Iden	tifier bits					
	1	a dalaa a a la 34 ET II		,				

REGISTER 21-16: CIRXFnSID: ECAN[™] ACCEPTANCE FILTER STANDARD IDENTIFIER REGISTER n (n = 0-15)

1 = Message address bit EIDx must be '1' to match filter

0 = Message address bit EIDx must be '0' to match filter

n (n = 0-15)							
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0
bit 7							bit 0

REGISTER 21-17:	CIRXFnEID: ECAN™ ACCEPTANCE FILTER EXTENDED IDENTIFIER REGISTER
	n (n = 0-15)

Legend:	C = Writable bit, but only '0	' can be written to clear the bi	t
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 EID<15:0>: Extended Identifier bits

1 = Message address bit EIDx must be '1' to match filter

0 = Message address bit EIDx must be '0' to match filter

REGISTER 21-18: CiFMSKSEL1: ECAN™ FILTER 7-0 MASK SELECTION REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F7MSK<1:0>		F6MSł	<<1:0>	F5MS	K<1:0>	F4MSI	<<1:0>
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F3MSK<1:0> F2MSK<1:0>		<<1:0>	F1MS	K<1:0>	F0MSI	<<1:0>	
bit 7							bit 0

Legend:	C = Writable bit, but only '0'	can be written to clear the bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	F7MSK<1:0>: Mask Source for Filter 7 bit 11 = Reserved
	10 = Acceptance Mask 2 registers contain mask
	01 = Acceptance Mask 1 registers contain mask
	00 = Acceptance Mask 0 registers contain mask
bit 13-12	F6MSK<1:0>: Mask Source for Filter 6 bit (same values as bit 15-14)
bit 11-10	F5MSK<1:0>: Mask Source for Filter 5 bit (same values as bit 15-14)
bit 9-8	F4MSK<1:0>: Mask Source for Filter 4 bit (same values as bit 15-14)
bit 7-6	F3MSK<1:0>: Mask Source for Filter 3 bit (same values as bit 15-14)
bit 5-4	F2MSK<1:0>: Mask Source for Filter 2 bit (same values as bit 15-14)
bit 3-2	F1MSK<1:0>: Mask Source for Filter 1 bit (same values as bit 15-14)
bit 1-0	F0MSK<1:0>: Mask Source for Filter 0 bit (same values as bit 15-14)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F15MS	K<1:0>	F14MS	K<1:0>	F13MSK<1:0>		F12MSK<1:0>	
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F11MSK<1:0>		F10MSK<1:0>		F9MSK<1:0>		F8MSK<1:0>	
bit 7						·	bit (
Legend:		C = Writable	hit but only 'C	' can be written	to clear the h	it	
R = Readable bit		W = Writable	-	U = Unimplemented bit, read as 'C			
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared x = Bit is unkno			nown

REGISTER 21-19: CiFMSKSEL2: ECAN™ FILTER 15-8 MASK SELECTION REGISTER

bit 15-14	F15MSK<1:0>: Mask Source for Filter 15 bit 11 = Reserved 10 = Acceptance Mask 2 registers contain mask 01 = Acceptance Mask 1 registers contain mask
bit 13-12	00 = Acceptance Mask 0 registers contain mask F14MSK<1:0>: Mask Source for Filter 14 bit (same values as bit 15-14)
bit 11-10	F13MSK<1:0>: Mask Source for Filter 13 bit (same values as bit 15-14)
bit 9-8	F12MSK<1:0>: Mask Source for Filter 12 bit (same values as bit 15-14)
bit 7-6	F11MSK<1:0>: Mask Source for Filter 11 bit (same values as bit 15-14)
bit 5-4	F10MSK<1:0>: Mask Source for Filter 10 bit (same values as bit 15-14)
bit 3-2	F9MSK<1:0>: Mask Source for Filter 9 bit (same values as bit 15-14)
bit 1-0	F8MSK<1:0>: Mask Source for Filter 8 bit (same values as bit 15-14)

	REGI	STER n (n = 0	-2)				
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3
bit 15							bit 8
R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x
SID2	SID1	SID0	—	MIDE	—	EID17	EID16
bit 7							bit 0
Legend: C = Writable bit, but only '				' can be written	to clear the b	it	
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			nown	

REGISTER 21-20:	CIRXMnSID: ECAN™ ACCEPTANCE FILTER MASK STANDARD IDENTIFIER
	REGISTER n (n = 0-2)

bit 15-5	SID<10:0>: Standard Identifier bits
	1 = Include bit SIDx in filter comparison
	0 = Bit SIDx is don't care in filter comparison
bit 4	Unimplemented: Read as '0'
bit 3	MIDE: Identifier Receive Mode bit
	 1 = Match only message types (standard or extended address) that correspond to EXIDE bit in filter 0 = Match either standard or extended address message if filters match (i.e., if (Filter SID) = (Message SID) or if (Filter SID/EID) = (Message SID/EID))
bit 2	Unimplemented: Read as '0'
bit 1-0	EID<17:16>: Extended Identifier bits
	 1 = Include bit EIDx in filter comparison 0 = Bit EIDx is don't care in filter comparison

REGISTER 21-21: CIRXMnEID: ECAN[™] ACCEPTANCE FILTER MASK EXTENDED IDENTIFIER REGISTER n (n = 0-2)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0
bit 7							bit 0

Legend:	C = Writable bit, but only '0' can be written to clear the bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-0 EID<15:0>: Extended Identifier bits

1 = Include bit EIDx in filter comparison

0 = Bit EIDx is don't care in filter comparison

REGISTER 21-22: Cil	RXFUL1: ECAN™ RECEIVE BUFFER FULL REGISTER 1
---------------------	--

	-		-				
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXFUL15	RXFUL14	RXFUL13	RXFUL12	RXFUL11	RXFUL10	RXFUL9	RXFUL8
bit 15							bit 8
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXFUL7	RXFUL6	RXFUL5	RXFUL4	RXFUL3	RXFUL2	RXFUL1	RXFUL0
bit 7							bit 0

Legend:	C = Writable bit, but only '0' can be written to clear the bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-0

RXFUL<15:0>: Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty (cleared by user software)

REGISTER 21-23: CIRXFUL2: ECAN™ RECEIVE BUFFER FULL REGISTER 2

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXFUL31 | RXFUL30 | RXFUL29 | RXFUL28 | RXFUL27 | RXFUL26 | RXFUL25 | RXFUL24 |
| bit 15 | | | | | | | bit 8 |

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXFUL23 | RXFUL22 | RXFUL21 | RXFUL20 | RXFUL19 | RXFUL18 | RXFUL17 | RXFUL16 |
| bit 7 | | | | | | | bit 0 |

Legend:	C = Writable bit, but only '0' can be written to clear the bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-0

RXFUL<31:16>: Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty (cleared by user software)

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF9	RXOVF8
bit 15							bit 8
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXOVF7	RXOVF6	RXOVF5	RXOVF4	RXOVF3	RXOVF2	RXOVF1	RXOVF0
bit 7							bit 0

REGISTER 21-24: CIRXOVF1: ECAN™ RECEIVE BUFFER OVERFLOW REGISTER 1

Legend:	C = Writable bit, but only '0' can be written to clear the bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-0 RXOVF<15:0>: Receive Buffer n Overflow bits

1 = Module attempted to write to a full buffer (set by module)

0 = No overflow condition (cleared by user software)

REGISTER 21-25: CiRXOVF2: ECAN™ RECEIVE BUFFER OVERFLOW REGISTER 2

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXOVF31 | RXOVF30 | RXOVF29 | RXOVF28 | RXOVF27 | RXOVF26 | RXOVF25 | RXOVF24 |
| bit 15 | | | | | | | bit 8 |

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXOVF23 | RXOVF22 | RXOVF21 | RXOVF20 | RXOVF19 | RXOVF18 | RXOVF17 | RXOVF16 |
| bit 7 | | | | | | | bit 0 |

Legend:	C = Writable bit, but only '	C = Writable bit, but only '0' can be written to clear the bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-0 RXOVF<31:16>: Receive Buffer n Overflow bits

1 = Module attempted to write to a full buffer (set by module)

0 = No overflow condition (cleared by user software)

R/W-0	R-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
TXENn	TXABTn	TXLARBn	TXERRn	TXREQn	RTRENn	TXnPF	RI<1:0>
bit 15	ł						bit
R/W-0	R-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
TXENm	TXABTm ⁽¹⁾	TXLARBm ⁽¹⁾		TXREQm	RTRENm		RI<1:0>
bit 7	170 B TH		THE RUN	i / i / e Qili		174111 1	bit
Legend:		C = Writable I	ait but only '0'	can be writter	n to clear the bit		
R = Readable	e hit	W = Writable	-		mented bit, read	as 'O'	
-n = Value at		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	own
		1 Dit lo oct				X Bit io unit	
bit 15-8	See Definitior	n for Bits 7-0, C	ontrols Buffer	n			
bit 7		RX Buffer Sele					
	1 = Buffer TR	Bn is a transm	it buffer				
	0 = Buffer TR	Bn is a receive	buffer				
bit 6	TXABTm: Me	essage Aborted	l bit ⁽¹⁾				
	1 = Message						
	•	completed tran					
bit 5		Message Lost A					
		lost arbitration did not lose ar					
bit 4	•	ror Detected D		•			
		or occurred wh			ent		
	0 = A bus err	or did not occu	r while the me	ssage was bei	ng sent		
bit 3	TXREQm: M	essage Send R	Request bit				
	1 = Requests sent.	that a messag	e be sent. The	e bit automatica	ally clears when	the message i	s successfull
	0 = Clearing f	the bit to '0' wh	ile set request	s a message a	abort.		
bit 2	RTRENm: Au	uto-Remote Tra	insmit Enable	bit			
		emote transmit					
		emote transmit			unaffected		
bit 1-0		>: Message Tr		iority bits			
		message prior ermediate mes					
	⊥u – ⊓ign inte	enneulate mes	sage priority				
	01 = 1 ow intermediated	ermediate mess	sage priority				

Note: The buffers, SID, EID, DLC, Data Field and Receive Status registers are located in DMA RAM.

21.3 ECAN Message Buffers

ECAN Message Buffers are part of RAM Memory. They are not ECAN Special Function Registers. The user application must directly write into the RAM area that is configured for ECAN Message Buffers. The location and size of the buffer area is defined by the user application.

BUFFER 21-1: ECAN[™] MESSAGE BUFFER WORD 0

DOTTER	LOAN	MECCACE						
U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
_	_	—	SID10	SID9	SID8	SID7	SID6	
bit 15							bit 8	
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
SID5	SID4	SID3	SID2	SID1	SID0	SRR	IDE	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	/ = Writable bit U = Unimplemented bit, read as '0'					
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 15-13	Unimplemen	ted: Read as '	0'					
bit 12-2	SID<10:0>: S	tandard Identif	ier bits					
bit 1	SRR: Substitu	ute Remote Re	quest bit					
	When TXIDE	= 0:						
	1 = Message	will request rer	note transmis	ssion				
	0 = Normal m	essage						
	When TXIDE							
	The SRR bit r	nust be set to '	1'					
bit 0	IDE: Extended	d Identifier bit						

1	= Message	will transmit	extended	identifier
	- mcoouge		CALCHIGCG	i a c i unici

0 = Message will transmit standard identifier

BUFFER 21-2: ECAN™ MESSAGE BUFFER WORD 1

Legend:							
bit 7							bit (
EID13	EID12	EID11	EID10	EID9	EID8	EID7	EID6
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
bit 15							bit 8
_	_	_		EID17	EID16	EID15	EID14
U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x

R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-12 Unimplemented: Read as '0'

bit 11-0 EID<17:6>: Extended Identifier bits

BUFFER 21-3	: ECAN ^T	MESSAGE	BUFFER V	VORD 2			
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID5	EID4	EID3	EID2	EID1	EID0	RTR	RB1
bit 15							bit 8
U-x	U-x	U-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
	_	_	RB0	DLC3	DLC2	DLC1	DLC0
bit 7							bit 0
Legend:							
R = Readable b	bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at PO	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unkn			nown
bit 9	RTR: Remote When TXIDE	will request rer essage = <u>0:</u>	Request bit	ssion			

	The RTR bit is ignored.
bit 8	RB1: Reserved Bit 1
	User must set this bit to '0' per CAN protocol.
bit 7-5	Unimplemented: Read as '0'
bit 4	RB0: Reserved Bit 0
	User must set this bit to '0' per CAN protocol.
bit 3-0	DLC<3:0>: Data Length Code bits

BUFFER 21-4: ECAN™ MESSAGE BUFFER WORD 3

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Ву	/te 1			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			By	/te 0			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'			
-n = Value at Po	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown

bit 15-8 **Byte 1<15:8>:** ECAN™ Message byte 0

bit 7-0 Byte 0<7:0>: ECAN Message byte 1

BUFFER 21-5: ECAN™ MESSAGE BUFFER WORD 4

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
		Ву	rte 3				
						bit 8	
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
		Ву	rte 2				
						bit 0	
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
DR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown	
	R/W-x	R/W-x R/W-x it W = Writable	By R/W-x R/W-x R/W-x By it W = Writable bit	Byte 3 R/W-x R/W-x R/W-x Byte 2 it W = Writable bit U = Unimpler	Byte 3 R/W-x R/W-x R/W-x R/W-x Byte 2 it W = Writable bit U = Unimplemented bit, read	Byte 3 R/W-x R/W-x R/W-x R/W-x Byte 2 Byte 2 Image: State of the s	

bit 15-8 Byte 3<15:8>: ECAN™ Message byte 3

bit 7-0 Byte 2<7:0>: ECAN Message byte 2

BUFFER 21-6: ECAN™ MESSAGE BUFFER WORD 5

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Byt	ie 5			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Byt	e 4			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Byte 5<15:8>: ECAN™ Message byte 5

bit 7-0 Byte 4<7:0>: ECAN Message byte 4

BUFFER 21-7: ECAN™ MESSAGE BUFFER WORD 6

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
			Ву	te 7				
bit 15							bit 8	
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
			By	te 6				
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown	

bit 15-8 Byte 7<15:8>: ECAN™ Message byte 7

bit 7-0 Byte 6<7:0>: ECAN Message byte 6

BUFFER 21-8: ECAN™ MESSAGE BUFFER WORD 7

— bit 15 U-0 U — bit 7	Legend:							
							bit 0	
		—		—	—		—	
bit 15	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
 bit 15							511 0	
_							bit 8	
	_	_	FILHIT<4:0> ⁽¹⁾					
U-0 l	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12-8 FILHIT<4:0>: Filter Hit Code bits⁽¹⁾

Encodes number of filter that resulted in writing this buffer.

bit 7-0 Unimplemented: Read as '0'

Note 1: Only written by module for receive buffers, unused for transmit buffers.

NOTES:

22.0 CHARGE TIME MEASUREMENT UNIT (CTMU)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X. dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X family of devices. It is not intended to be a comprehensive reference source. То complement the information in this data sheet, refer to Section 33. "Charge Time Measurement Unit (CTMU)" (DS70661) in the "dsPIC33E/PIC24E Family Reference Manual", which is available on the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Charge Time Measurement Unit is a flexible analog module that provides accurate differential time measurement between pulse sources, as well as asynchronous pulse generation. Its key features include:

- Four edge input trigger sources
- · Polarity control for each edge source
- · Control of edge sequence
- Control of response to edges
- Precise time measurement resolution of 1 ns
- Accurate current source suitable for capacitive measurement
- On-chip temperature measurement using a built-in diode

Together with other on-chip analog modules, the CTMU can be used to precisely measure time, measure capacitance, measure relative changes in capacitance or generate output pulses that are independent of the system clock.

The CTMU module is ideal for interfacing with capacitive-based sensors.The CTMU is controlled through two registers: CTMUCON and CTMUICON. CTMUCON enables the module and controls edge source selection, edge source polarity selection and edge sequencing. The CTMUICON register controls the selection and trim of the current source.

CTMUCON1 or CTMUCON2 CTMUICON ITRIM<5:0> IRNG<1:0> Current Source ¥ CTED1 X Edge Analog-to-Digital CTMU EDG1STAT Control TGEN Trigger Control CTED2 EDG2STAT Logic Current Logic Control Timer1 OC1 Pulse CTPLS IC1 Generator CMP1 CTMUI to ADC CTMUP Г CTMU TEMP C1IN1-X CTMU Temperature Sensor CDelay 7 Comparator 1 External capacitor for pulse generation **Current Control Selection** TGEN EDG1STAT, EDG2STAT CTMU TEMP EDG1STAT = EDG2STAT 0 CTMUI to ADC 0 EDG1STAT ≠ EDG2STAT CTMUP EDG1STAT ≠ EDG2STAT 1 No Connect EDG1STAT = EDG2STAT 1

FIGURE 22-1: CTMU BLOCK DIAGRAM

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
CTMUEN	—	CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN ⁽¹⁾	CTTRIG			
bit 15							bit			
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
0-0	0-0	0-0	0-0	0-0	0-0	0-0	0-0			
 bit 7	_	_		_	_	_	bit			
Legend:										
R = Readabl	e bit	W = Writable I	oit	U = Unimple	mented bit, read	as '0'				
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkno	own			
										
bit 15	CTMUEN: CTMU Enable bit									
	1 = Module is 0 = Module is									
bit 14		ted: Read as '0)'							
bit 13	-	Stop in Idle Mod								
	1 = Discontin	ue module ope module operat	ration when d		lle mode					
bit 12	TGEN: Time Generation Enable bit									
		edge delay gen edge delay ger								
bit 11	EDGEN: Edge Enable bit									
	1 = Hardware	e modules are ι		•						
bit 10		 0 = Software is used to trigger edges (manual set of EDGxSTAT) EDGSEQEN: Edge Sequence Enable bit 								
	1 = Edge 1 e	vent must occu	r before Edge	e 2 event can o	ccur					
bit 9	 0 = No edge sequence is needed IDISSEN: Analog Current Source Control bit⁽¹⁾ 									
	1 = Analog ci	urrent source o urrent source o	utput is groun	ded						
bit 8	•	C Trigger Contro								
		ggers ADC star oes not trigger								

REGISTER 22-1: CTMUCON1: CTMU CONTROL REGISTER 1

Note 1: The ADC module Sample and Hold capacitor is not automatically discharged between sample/conversion cycles. Software using the ADC as part of a capacitance measurement, must discharge the ADC capacitor before conducting the measurement. The IDISSEN bit, when set to '1', performs this function. The ADC must be sampling while the IDISSEN bit is active to connect the discharge sink to the capacitor array.

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 EDG1MOD EDG1POL EDG1SEL<3:0> EDG2STAT EDG1STAT bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 U-0 U-0 EDG2MOD EDG2POL EDG2SEL<3:0> ____ bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '0' = Bit is cleared x = Bit is unknown '1' = Bit is set bit 15 EDG1MOD: Edge 1 Edge Sampling Mode Selection bit 1 = Edge 1 is edge sensitive 0 = Edge 1 is level sensitive bit 14 EDG1POL: Edge 1 Polarity Select bit 1 = Edge 1 programmed for a positive edge response 0 = Edge 1 programmed for a negative edge response bit 13-10 EDG1SEL<3:0>: Edge 1 Source Select bits 1xxx = Reserved 01xx = Reserved 0011 = CTED1 pin 0010 = CTED2 pin 0001 = OC1 module0000 = Timer1 module bit 9 EDG2STAT: Edge 2 Status bit Indicates the status of Edge 2 and can be written to control the edge source. 1 = Edge 2 has occurred 0 = Edge 2 has not occurred bit 8 EDG1STAT: Edge 1 Status bit Indicates the status of Edge 1 and can be written to control the edge source. 1 = Edge 1 has occurred 0 = Edge 1 has not occurred EDG2MOD: Edge 2 Edge Sampling Mode Selection bit bit 7 1 = Edge 2 is edge sensitive 0 = Edge 2 is level sensitive bit 6 EDG2POL: Edge 2 Polarity Select bit 1 = Edge 2 programmed for a positive edge response 0 = Edge 2 programmed for a negative edge response bit 5-2 EDG2SEL<3:0>: Edge 2 Source Select bits 1111 = Reserved 01xx = Reserved 0100 = CMP1 module 0011 = CTED2 pin 0010 = CTED1 pin 0001 = OC1 module 0000 = IC1 modulebit 1-0 Unimplemented: Read as '0'

REGISTER 22-2: CTMUCON2: CTMU CONTROL REGISTER 2

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
		ITRIM	1<5:0>			IRNG	<1:0>	
bit 15							bit	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
	—	—		_		—		
bit 7							bit	
Legend:								
R = Readat	ole bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'		
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkne	own	
	 011110 = Maximum positive change from nominal current +60% . 000010 = Minimum positive change from nominal current +4% 000001 = Minimum positive change from nominal current +2% 000000 = Nominal current output specified by IRNG<1:0> 111111 = Minimum negative change from nominal current -2% 111110 = Minimum negative change from nominal current -4% 							
	111111 = M 111110 = M •	ominal current o inimum negative inimum negative	utput specified e change from e change from	d by IRNG<1:0> nominal current nominal current	+2% t -2% t -4%			
	111111 = M 111110 = M • • 100010 = M	ominal current o inimum negative inimum negative aximum negativ	e change from change from change from	d by IRNG<1:0> nominal current	+2% t -2% t -4% tt -60%			

REGISTER 22-3: CTMUICON: CTMU CURRENT CONTROL REGISTER

Note 1: This bit setting is not available to be used with the internal temperature measurement diode.

23.0 10-BIT/12-BIT ANALOG-TO-DIGITAL CONVERTER (ADC)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 16. "Analog-to-Digital Converter (ADC)" (DS70621) of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

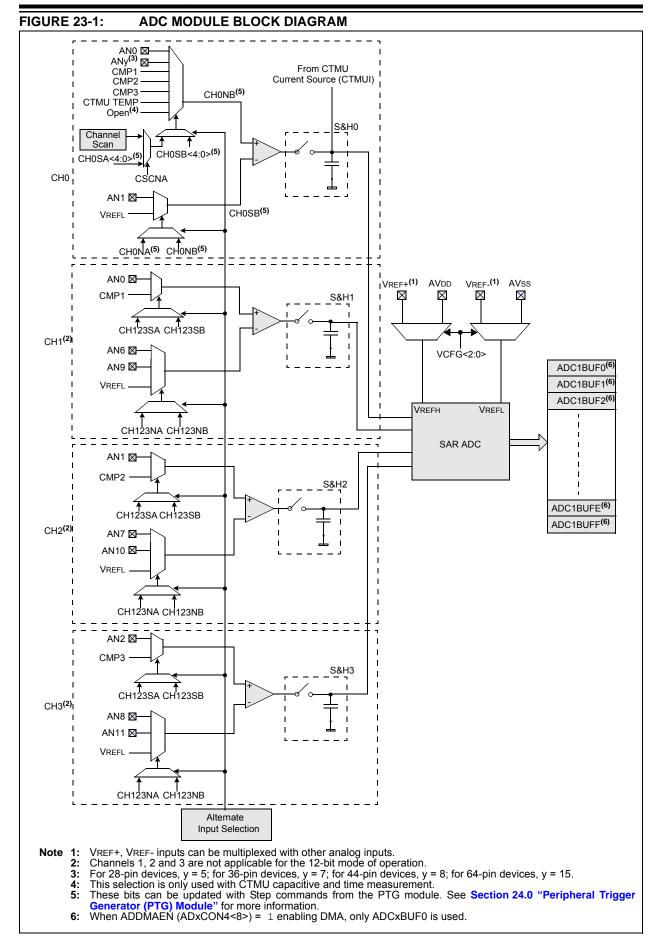
The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X, and PIC24EPXXXGP/MC20X devices have one ADC module. The ADC module supports up to 16 analog input channels.

On ADC1, the AD12B bit (AD1CON1<10>) allows each of the ADC modules to be configured by the user as either a 10-bit, 4-sample/hold ADC (default configuration) or a 12-bit, 1-sample/hold ADC.

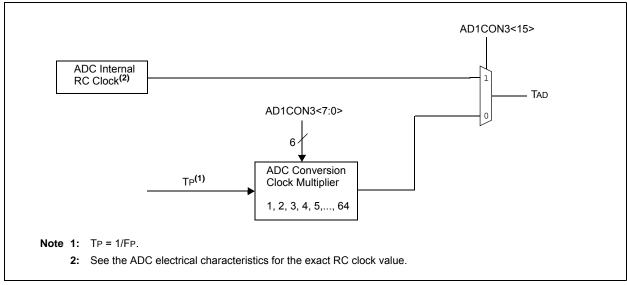
Note: The ADC module needs to be disabled before modifying the AD12B bit.

23.1 Key Features

The 10-bit ADC configuration has the following key features:


- Successive Approximation (SAR) conversion
- Conversion speeds of up to 1.1 Msps
- · Up to 16 analog input pins
- · External voltage reference input pins
- Simultaneous sampling of up to four analog input pins
- Automatic Channel Scan mode
- · Selectable conversion trigger source
- Selectable Buffer Fill modes
- Four result alignment options (signed/unsigned, fractional/integer)
- Operation during CPU Sleep and Idle modes

The 12-bit ADC configuration supports all the above features, except:


- In the 12-bit configuration, conversion speeds of up to 500 ksps are supported
- There is only one sample/hold amplifier in the 12-bit configuration, so simultaneous sampling of multiple channels is not supported.

Depending on the particular device pinout, the ADC can have up to 16 analog input pins, designated AN0 through AN15. In addition, there are two analog input pins for external voltage reference connections. These voltage reference inputs can be shared with other analog input pins. The actual number of analog input pins and external voltage reference input configuration depends on the specific device.

A block diagram of the ADC module is shown in Figure 23-1. Figure 23-2 provides a diagram of the ADC conversion clock period.

FIGURE 23-2: ADC CONVERSION CLOCK PERIOD BLOCK DIAGRAM

REGISTER 2	3-1: AD1CC	ON1: ADC1 (CONTROL RE	EGISTER 1					
R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0		
ADON	—	ADSIDL	ADDMABM	—	AD12B	FORM	/<1:0>		
bit 15							bit		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0 HC,HS	R/C-0 HC, HS		
	SSRC<2:0>		SSRCG	SIMSAM	ASAM	SAMP	DONE ⁽³⁾		
bit 7							bit		
Legend:		HC = Cleared	by hardware	HS = Set by	hardware				
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, read	d as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown		
bit 15	ADON: ADC	Operating Mod	le hit						
bit 15		ule is operating							
bit 14	Unimplement	ted: Read as '	0'						
bit 13	ADSIDL: Stop in Idle Mode bit								
			ration when de ion in Idle mod		e mode				
bit 12	ADDMABM: DMA Buffer Build Mode bit								
	channel th 0 = DMA buffe	nat is the same ers are written	e as the addrest in Scatter/Gath	s used for the ner mode. The	he module prov non-DMA stand module provide g input and the	l-alone buffer. es a Scatter/G	ather addres		
bit 11	Unimplement	ted: Read as '	0'						
bit 10	AD12B: 10-bit or 12-bit Operation Mode bit								
		hannel ADC o hannel ADC o	•						
bit 9-8	FORM<1:0>:	Data Output F	ormat bits						
	10 = Fractiona 01 = Signed in	ractional (Dou al (Dout = ddd nteger (Dout =	ld dddd dd00) 0000) dddd dddd, w	where $s = .NC$				
	For 12-bit ope 11 = Signed fi 10 = Fractiona 01 = Signed li	ration: ractional (Dou ⁻ al (Dout = ddd nteger (Dout =	T = sddd dddo Id dddd dddo	d dddd 0000 d 0000) dddd dddd, y	, where $s = .NC$ where $s = .NOT$				
	e Section 24.0 s setting is avail	"Peripheral Ti	igger Generat	or (PTG) Moc					

REGISTER 23-1: AD1CON1: ADC1 CONTROL REGISTER 1

3: Do not clear the DONE bit in software if Auto-Sample is enabled (ASAM = 1).

REGISTER 2	-1: AD1CON1: ADC1 CONTROL REGISTER 1 (CONTINUED)	
bit 7-5	SSRC<2:0>: Sample Clock Source Select bits	
	If SSRCG = 1:	
	111 = Reserved	
	110 = PTGO15 primary trigger compare ends sampling and starts conversion ⁽¹⁾	
	101 = PTGO14 primary trigger compare ends sampling and starts conversion ⁽¹⁾	
	 100 = PTGO13 primary trigger compare ends sampling and starts conversion⁽¹⁾ 011 = PTGO12 primary trigger compare ends sampling and starts conversion⁽¹⁾ 	
	010 = PWM Generator 3 primary trigger compare ends sampling and starts conversion ⁽²⁾	
	001 = PWM Generator 2 primary trigger compare ends sampling and starts conversion ⁽²⁾	
	000 = PWM Generator 1 primary trigger compare ends sampling and starts conversion ⁽²⁾	
	If SSRCG = 0:	
	111 = Internal counter ends sampling and starts conversion (auto-convert)	
	110 = CTMU ends sampling and starts conversion 101 = Reserved	
	101 - Reserved 100 = Timer5 compare ends sampling and starts conversion	
	011 = PWM primary Special Event Trigger ends sampling and starts conversion ⁽²⁾	
	010 = Timer3 compare ends sampling and starts conversion	
	001 = Active transition on the INT0 pin ends sampling and starts conversion	
	000 = Clearing the Sample bit (SAMP) ends sampling and starts conversion (Manual mode)	
bit 4	SSRCG: Sample Clock Source Group bit	
	See SSRC<2:0> for details.	
bit 3	SIMSAM: Simultaneous Sample Select bit (only applicable when CHPS<1:0> = 01 or 1x)	
	When AD12B = 1, SIMSAM is: U-0, Unimplemented, Read as '0'	
	1 = Samples CH0, CH1, CH2, CH3 simultaneously (when CHPS<1:0> = $1x$); or	
	Samples CH0 and CH1 simultaneously (when CHPS<1:0> = 01) 0 = Samples multiple channels individually in sequence	
bit 2	ASAM: ADC Sample Auto-Start bit	
2	1 = Sampling begins immediately after last conversion. SAMP bit is auto-set.	
	0 = Sampling begins when SAMP bit is set	
bit 1	SAMP: ADC Sample Enable bit	
	1 = ADC Sample/Hold amplifiers are sampling	
	0 = ADC Sample/Hold amplifiers are holding	
	If ASAM = 0, software can write '1' to begin sampling. Automatically set by hardware if ASAM = 1	
	If SSRC = 000, software can write '0' to end sampling and start conversion. If SSRC \neq 000, automatically cleared by hardware to end sampling and start conversion.	
bit 0	DONE: ADC Conversion Status bit ⁽³⁾	
bit 0	1 = ADC conversion cycle is completed.	
	0 = ADC conversion not started or in progress	
	Automatically set by hardware when A/D conversion is complete. Software can write '0' to clear DC	NE
	status (software not allowed to write '1'). Clearing this bit does NOT affect any operation in progre	
	Automatically cleared by hardware at start of a new conversion.	

- Note 1: See Section 24.0 "Peripheral Trigger Generator (PTG) Module" for information on this selection.
 - 2: This setting is available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.
 - **3:** Do not clear the DONE bit in software if Auto-Sample is enabled (ASAM = 1).

R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0				
	VCFG<2:0)>	_		CSCNA	CHPS	<1:0>				
bit 15						•	bit				
		D 844 A					-				
R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
BUFS			SMPI<4:0>			BUFM	ALTS				
bit 7							bit				
Legend:											
R = Readabl	e bit	W = Writable I	oit	U = Unimple	mented bit, read	1 as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	iown				
	V050 0.0)	h:t-						
bit 15-13	VCFG<2:U	>: Converter Volta	-		DITS						
	0.0.0	VREFH AVDD									
	000	External VREF+	Avss Avss								
	010		External VRE	=							
	010	External VREF+	External VRE								
	1xx	AVDD	Avss	·							
bit 12-11		nented: Read as '0)'								
bit 10	-	nput Scan Select b									
	1 = Scan inputs for CH0+ during Sample A bit										
		scan inputs									
oit 9-8	CHPS<1:0>: Channel Select bits										
	When AD12B = 1, CHPS<1:0> is: U-0, Unimplemented, Read as '0'										
	1x = Converts CH0, CH1, CH2 and CH3										
	01 = Converts CH0 and CH1										
	00 = Converts CH0										
nit 7											
bit 7	BUFS: Bu	ffer Fill Status bit (-	-							
bit 7	BUFS: But 1 = ADC is	ffer Fill Status bit (currently filling the	-	-	ne user applicati	on should acce	ss data in th				
bit 7	BUFS: Bur 1 = ADC is first ha	ffer Fill Status bit (currently filling the alf of the buffer	e second half of	the buffer. Th							
bit 7	BUFS: But 1 = ADC is first ha 0 = ADC is	ffer Fill Status bit (currently filling the	e second half of he first half of th	the buffer. Th							
bit 7 bit 6-2	BUFS: Bur 1 = ADC is first ha 0 = ADC is second	ffer Fill Status bit (currently filling the lf of the buffer s currently filling th	e second half of he first half of th	the buffer. Th							
	BUFS: Bur 1 = ADC is first ha 0 = ADC is second SMPI<4:0:	ffer Fill Status bit (currently filling the lf of the buffer s currently filling th d half of the buffer. >: Increment Rate	e second half of he first half of th	the buffer. Th							
	BUFS: Bur 1 = ADC is first ha 0 = ADC is second SMPI<4:0: When ADE	ffer Fill Status bit (currently filling the off of the buffer s currently filling the d half of the buffer.	e second half of he first half of th bits	the buffer. The	e user applicatio	n should acces	ss data in th				
	BUFS: Bur 1 = ADC is first ha 0 = ADC is second SMPI<4:0: <u>When ADE</u> 01111 = C	ffer Fill Status bit (currently filling the of the buffer s currently filling the d half of the buffer. >: Increment Rate DMAEN = 0:	e second half of he first half of th bits after completic	the buffer. The buffer. The buffer. The not every 16	e user applicatio	on should acces ersion operatic	ss data in th				
	BUFS: Bur 1 = ADC is first ha 0 = ADC is second SMPI<4:0: <u>When ADE</u> 01111 = C	ffer Fill Status bit (currently filling the of the buffer s currently filling the d half of the buffer. >: Increment Rate <u>DMAEN = 0:</u> Generates interrupt	e second half of he first half of th bits after completic	the buffer. The buffer. The buffer. The not every 16	e user applicatio	on should acces ersion operatic	ss data in tl				
	BUFS: Bur 1 = ADC is first ha 0 = ADC is second SMPI<4:0: When ADE 01111 = C 01110 = C	ffer Fill Status bit (currently filling the off of the buffer s currently filling the d half of the buffer. >: Increment Rate <u>DMAEN = 0:</u> Generates interrupt Generates interrupt	e second half of he first half of th bits after completic after completic	the buffer. The le buffer. The n of every 16 n of every 18	e user applicatio 6th sample/conv 5th sample/conv	on should acces ersion operatic ersion operatic	ss data in th on on				
	BUFS: Bur 1 = ADC is first ha 0 = ADC is second SMPI<4:0: <u>When ADE</u> 01111 = C 01110 = C 00001 = C	ffer Fill Status bit (currently filling the off of the buffer s currently filling the d half of the buffer. >: Increment Rate <u>DMAEN = 0:</u> Generates interrupt Generates interrupt	e second half of he first half of th bits after completic after completic	the buffer. The buffer. The n of every 16 n of every 15 n of every 21	e user application of h sample/conv of h sample/conv	on should acces ersion operatic ersion operatic	ss data in th on on				
	BUFS: Bur 1 = ADC is first ha 0 = ADC is second SMPI<4:0: <u>When ADE</u> 01111 = C 01110 = C 00001 = C	ffer Fill Status bit (currently filling the off of the buffer s currently filling the d half of the buffer. >: Increment Rate <u>DMAEN = 0:</u> Generates interrupt Generates interrupt	e second half of he first half of th bits after completic after completic	the buffer. The buffer. The n of every 16 n of every 15 n of every 21	e user application of h sample/conv of h sample/conv	on should acces ersion operatic ersion operatic	ss data in th on on				
	BUFS: Bur 1 = ADC is first ha 0 = ADC is second SMPI<4:0: When ADE 01111 = C 01110 = C 00001 = C 00000 = C	ffer Fill Status bit (currently filling the off of the buffer s currently filling the d half of the buffer. >: Increment Rate <u>DMAEN = 0:</u> Generates interrupt Generates interrupt Generates interrupt	e second half of he first half of th bits after completic after completic	the buffer. The buffer. The n of every 16 n of every 15 n of every 21	e user application of h sample/conv of h sample/conv	on should acces ersion operatic ersion operatic	ss data in th on on				
	BUFS: But 1 = ADC is first ha 0 = ADC is second SMPI<4:0: When ADE 01111 = C 01110 = C 00001 = C 00000 = C When ADE	ffer Fill Status bit (currently filling the off of the buffer s currently filling the d half of the buffer. >: Increment Rate <u>DMAEN = 0:</u> Generates interrupt Generates interrupt	e second half of he first half of th bits after completic after completic after completic after completic	the buffer. The le buffer. The n of every 16 n of every 15 n of every 2r n of every 2r	e user application of h sample/conv of h sample/conv ample/conversion	ersion operatic ersion operatic ersion operation n operation	ss data in th on n				
	BUFS: But 1 = ADC is first ha 0 = ADC is second SMPI<4:0: When ADE 01111 = C 01110 = C 00001 = C 00000 = C When ADE 11111 = In	ffer Fill Status bit (currently filling the off of the buffer s currently filling the d half of the buffer. >: Increment Rate <u>DMAEN = 0:</u> Generates interrupt Generates interrupt Generates interrupt DMAEN = 1:	e second half of he first half of th bits after completic after completic after completic after completic	the buffer. The le buffer. The n of every 16 n of every 15 n of every 2r n of every sa completion of	e user application of h sample/conv of sample/conversion of every 32nd sample/conversion	ersion operation ersion operation ersion operation n operation mple/conversion	ss data in th on on on operatior				
	BUFS: But 1 = ADC is first ha 0 = ADC is second SMPI<4:0: When ADE 01111 = C 01110 = C 00001 = C 00000 = C When ADE 11111 = In	ffer Fill Status bit (currently filling the off of the buffer s currently filling the d half of the buffer. >: Increment Rate <u>DMAEN = 0:</u> Generates interrupt Generates interrupt Generates interrupt <u>DMAEN = 1:</u> ncrements the DM.	e second half of he first half of th bits after completic after completic after completic after completic	the buffer. The le buffer. The n of every 16 n of every 15 n of every 2r n of every sa completion of	e user application of h sample/conv of sample/conversion of every 32nd sample/conversion	ersion operation ersion operation ersion operation n operation mple/conversion	ss data in th on on on operation				
	BUFS: But 1 = ADC is first ha 0 = ADC is second SMPI<4:0: When ADE 01111 = C 01110 = C 00001 = C 00000 = C When ADE 11111 = In	ffer Fill Status bit (currently filling the off of the buffer s currently filling the d half of the buffer. >: Increment Rate <u>DMAEN = 0:</u> Generates interrupt Generates interrupt Generates interrupt <u>DMAEN = 1:</u> ncrements the DM.	e second half of he first half of th bits after completic after completic after completic after completic	the buffer. The le buffer. The n of every 16 n of every 15 n of every 2r n of every sa completion of	e user application of h sample/conv of sample/conversion of every 32nd sample/conversion	ersion operation ersion operation ersion operation n operation mple/conversion	ss data in ti on on on operation				
	BUFS: But 1 = ADC is first ha 0 = ADC is second SMPI<4:0: When ADE 01111 = C 01110 = C 00001 = C 00000 = C When ADE 11111 = In 11110 = In	ffer Fill Status bit (currently filling the off of the buffer s currently filling the d half of the buffer. >: Increment Rate <u>DMAEN = 0:</u> Generates interrupt Generates interrupt Generates interrupt <u>DMAEN = 1:</u> ncrements the DM.	e second half of he first half of th bits after completic after completic after completic after completic A address after A address after	the buffer. The buffer. The n of every 16 n of every 15 n of every 2r n of every 2r completion of completion of	e user application of h sample/convolution of sample/conversion of every 32nd sample for the sample sam sample sample sam	ersion operation ersion operation ersion operation n operation mple/conversion	ss data in t on on on operatio n operatior				

REGISTER 23-2: AD1CON2: ADC1 CONTROL REGISTER 2 (CONTINUED)

- bit 1 BUFM: Buffer Fill Mode Select bit
 - 1 = Starts buffer filling the first half of the buffer on the first interrupt and the second half of the buffer on next interrupt
 - 0 = Always starts filling the buffer from the start address.
- bit 0 ALTS: Alternate Input Sample Mode Select bit
 - 1 = Uses channel input selects for Sample A on first sample and Sample B on next sample
 - 0 = Always uses channel input selects for Sample A

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADRC		—			SAMC<4:0>(1))	
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			ADCS<	<7:0> (2)			
bit 7							bit C
Legend:							
R = Readab	le bit	W = Writable b	it	U = Unimpler	nented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 14-13 bit 12-8	0 = Clock De Unimplemer	AD	,				
bit 7-0	11111111 = • • • • • • • • • • • • • • • • • • •	ADC Conversio TP · (ADCS<7:(TP · (ADCS<7:(TP · (ADCS<7:(TP · (ADCS<7:()> + 1) = TP)> + 1) = TP)> + 1) = TP	• 256 = TAD • 3 = TAD • 2 = TAD			

- Note 1: This bit is only used if AD1CON1<7:5> (SSRC<2:0>) = 111 and AD1CON1<4> (SSRCG) = 0.
 - 2: This bit is not used if AD1CON3<15> (ADRC) = 1.

REGISTER	23-4: AD10	CON4: ADC1 C		EGISTER 4					
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0		
_		_	_				ADDMAEN		
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0		
_		_	_	_	DMABL<2:0>				
bit 7							bit 0		
Legend:									
R = Readab	ole bit	W = Writable b	oit	U = Unimplemented bit, read as '0'					
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unl	known		
bit 15-7	Unimpleme	ented: Read as '0)'						
bit 8	ADDMAEN	ADC DMA Enab	ole bit						
	0 = Convers	sion results stored	d in ADC1BU	-		-	not be used		
hit 7_3	Unimplomo	ntod. Dood on 'c	,'						

bit 7-3 Unimplemented: Read as '0'

bit 2-0 DMABL<2:0>: Selects Number of DMA Buffer Locations per Analog Input bits

- 111 = Allocates 128 words of buffer to each analog input
- 110 = Allocates 64 words of buffer to each analog input
- 101 = Allocates 32 words of buffer to each analog input
- 100 = Allocates 16 words of buffer to each analog input
- 011 = Allocates 8 words of buffer to each analog input
- 010 = Allocates 4 words of buffer to each analog input
- 001 = Allocates 2 words of buffer to each analog input
- 000 = Allocates 1 word of buffer to each analog input

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	
_	—	—	_	—	CH123	NB<1:0>	CH123SB	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	
_		—	_	—	CH123	NA<1:0>	CH123SA	
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit		oit	U = Unimple	emented bit, rea	ad as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	known	
bit 10-9 bit 8	When AD12B 11 = CH1 neg 10 = CH1 neg 0x = CH1, CH CH123SB: Ch	0>: Channel 1, = 1, CHxNB is gative input is A gative input is A 12, CH3 negative mannel 1, 2, 3 P	U-0, Unimple N9, CH2 nega N6, CH2 nega re input is VRE ositive Input \$	emented, Read ative input is A ative input is A FL Select for Sam	d as '0' N10, CH3 nega N7, CH3 negat	ative input is A		
	1 = CH1 posit	= 1, CHxSA is: ive input is CM ive input is AN(P1, CH2 posi	tive input is CN	VP2, CH3 posit	•	IP3	
bit 7-3	Unimplement	ted: Read as '0	,					
bit 2-1	When AD12B 11 = CH1 neg 10 = CH1 neg	0>: Channel 1, = 1, CHxNA is gative input is A gative input is A 12, CH3 negativ	U-0, Unimple N9, CH2 nega N6, CH2 nega	emented, Read ative input is A ative input is A	d as '0' N10, CH3 nega	ative input is A		
bit 0	CH123SA: Ch	nannel 1, 2, 3 P	ositive Input S	Select for Sam	ple A bit			

When AD12B = 1, CHxSA is: U-0, Unimplemented, Read as '0' 1 = CH1 positive input is CMP1, CH2 positive input is CMP2, CH3 positive input is CMP3

0 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2

REGISTER 2	3-0: ADIC	HS0: ADC1 I	NPUT CHAN	NEL 0 SELE		IK				
R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
CH0NB	_	_			CH0SB<4:0	>				
bit 15							bit 8			
R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
CH0NA		_			CH0SA<4:03	>				
bit 7							bit			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimple	emented bit, rea	ad as '0'				
-n = Value at F	POR	'1' = Bit is se	t	'0' = Bit is cl	eared	x = Bit is unkr	nown			
bit 15	1 = Channel	annel 0 Negativ 0 negative inpu 0 negative inpu	ut is AN1	for Sample B	bit					
bit 14-13		nted: Read as								
bit 12-8	-	>: Channel 0 P		elect for Samp	le B bits					
		en; use this sel				surement				
						neasurement die	ode			
	•	MU TEMP)								
	11101 = Re s									
	11100 = Res									
	11011 = Res	served annel 0 positive	input is output							
		annel 0 positive								
		annel 0 positive								
	10110 = Re s	•								
	•									
	•									
	•									
	10000 = Reserved									
	01111 = Channel 0 positive input is AN15 ⁽¹⁾									
	01110 = Channel 0 positive input is AN14 ⁽¹⁾									
	01101 = Channel 0 positive input is AN13 ⁽¹⁾									
	•									
	•									
	•									
	00010 = Ch a	annel 0 positive	input is AN2 ⁽¹)						
	00001 = Cha00000 = Cha	annel 0 positive annel 0 positive	input is AN1'' input is AN0 ⁽¹)						
bit 7		annel 0 Negativ			bit					
		0 negative inpu		·						
		0 negative inpu								

REGISTER 23-6: AD1CHS0: ADC1 INPUT CHANNEL 0 SELECT REGISTER

Note 1: See the "Pin Diagrams" section for the available analog channels for each device.

REGISTER 23-6: AD1CHS0: ADC1 INPUT CHANNEL 0 SELECT REGISTER

bit 4-0	CH0SA<4:0>: Channel 0 Positive Input Select for Sample A bits
	11111 = Open; use this selection with CTMU capacitive and time measurement
	11110 = Channel 0 positive input is connected to CTMU temperature measurement diode (CTMU TEMP)
	11101 = Reserved
	11100 = Reserved
	11011 = Reserved
	11010 = Channel 0 positive input is output of CMP3
	11001 = Channel 0 positive input is output of CMP2
	11000 = Channel 0 positive input is output of CMP1
	10110 = Reserved
	•
	•
	•
	10000 = Reserved 01111 = Channel 0 positive input is AN15 ⁽¹⁾ 01110 = Channel 0 positive input is AN14 ⁽¹⁾ 01101 = Channel 0 positive input is AN13 ⁽¹⁾
	•
	•
	•
	00010 = Channel 0 positive input is AN2 ⁽¹⁾ 00001 = Channel 0 positive input is AN1 ⁽¹⁾ 00000 = Channel 0 positive input is AN0 ⁽¹⁾

Note 1: See the "Pin Diagrams" section for the available analog channels for each device.

R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
CSS31	CSS30		_		CSS26	CSS25	CSS24
bit 15	•					•	bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
		_					_
bit 7							bit (
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15 bit 14 bit 13-11 bit 10	 1 = Select CT 0 = Skip CTM CSS30: ADC 1 = Select CT 0 = Skip CTM Unimplement CSS26: ADC 1 = Select CM 	IU capacitive an Input Scan Sel MU on-chip ter	and time mean and time mean lection bits mperature mean perature mean of lection bits can	urement for inp easurement for	nput scan (Ope out scan (Open) input scan (CTI put scan (CTMI	MU TEMP)	
bit 9	1 = Select CM	Input Scan Sel IP2 for input so 22 for input sca	an				
bit 8	1 = Select CM	Input Scan Sel /IP1 for input so	an				
	0 = Skip CMP	1 for input sca	n				

REGISTER 23-7: AD1CSSH: ADC1 INPUT SCAN SELECT REGISTER HIGH⁽¹⁾

Note 1: All ADxCSSH bits can be selected by user software. However, inputs selected for scan without a corresponding input on device convert VREFL.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CSS15	CSS14	CSS13	CSS12	CSS11	CSS10	CSS9	CSS8
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CSS7	CSS6	CSS5	CSS4	CSS3	CSS2	CSS1	CSS0
bit 7							bit (
Legend:							
R = Readable	R = Readable bit W = Writable bit		oit	U = Unimplei	mented bit, rea	d as '0'	
-n = Value at P	= Value at POR '1' = Bit is set '0' = Bit is cleared x :		x = Bit is unki	k = Bit is unknown			

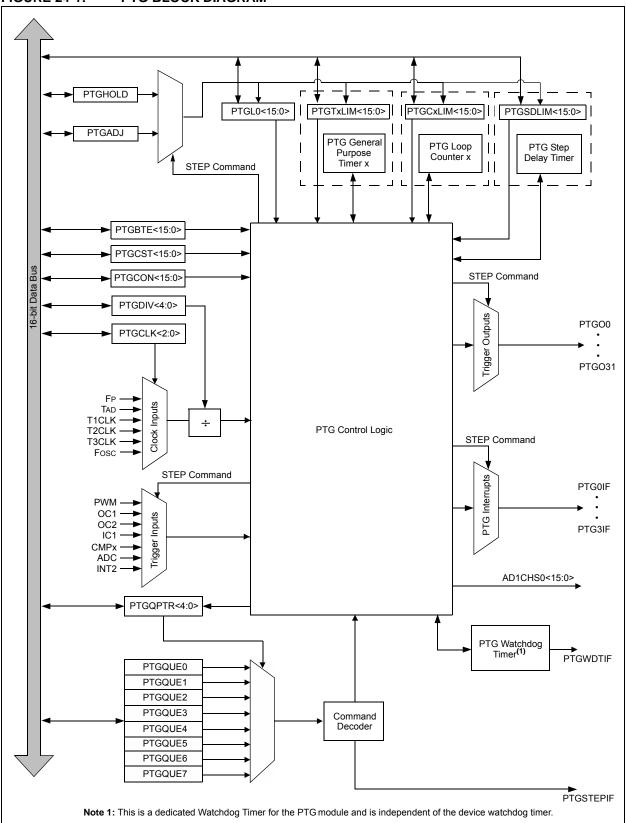
REGISTER 23-8: AD1CSSL: ADC1 INPUT SCAN SELECT REGISTER LOW^(1,2)

bit 15-0 CSS<15:0>: ADC Input Scan Selection bits 1 = Select ANx for input scan 0 = Skip ANx for input scan

Note 1: On devices with less than 16 analog inputs, all AD1CSSL bits can be selected by the user. However, inputs selected for scan without a corresponding input on device convert VREFL.

2: CSSx = ANx, where x = 0-15.

24.0 PERIPHERAL TRIGGER GENERATOR (PTG) MODULE


- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Section 32. Peripheral Trigger Generator (PTG)" of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

24.1 Module Introduction

The Peripheral Trigger Generator (PTG) provides a means to schedule complex high-speed peripheral operations that would be difficult to achieve using software. The PTG module uses 8-bit commands called "steps" that the user writes to the PTG Queue register (PTGQUE0-PTQUE7), which performs operations such as wait for input signal, generate output trigger, and wait for timer.

The PTG module has the following major features:

- Multiple clock sources
- Two 16-bit general purpose timers
- Two 16-bit general limit counters
- Configurable for rising or falling edge triggering
- Generates processor interrupts to include:
 - Four configurable processor interrupts
 - Interrupt on a step event in Single-Step modeInterrupt on a PTG Watchdog Timer time-out
- Able to receive trigger signals from these peripherals:
 - ADC
 - PWM
 - Output Compare
 - Input Capture
 - Op amp/Comparator
 - INT2
- Able to trigger or synchronize to these peripherals:
 - Watchdog Timer
 - Output Compare
 - Input Capture
 - ADC
 - PWM
- Op amp/Comparator

R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
PTGEN		PTGSIDL	PTGTOGL	—	PTGSWT ⁽²⁾	PTGSSEN	PTGIVIS
bit 15							bit 8
R/W-0	HS-0	U-0	U-0	U-0	U-0	R/V	V-0
PTGSTRT	PTGWDTO	_	_	_	_	PTGITM	<1:0> ⁽¹⁾
bit 7							bit (
Legend:				HS = Set by	Hardware		
R = Readable bit W = Writable b			bit		mented bit, read	as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 14 bit 13	Unimplemen	ule is disabled ted: Read as ' op in Idle Mode					
	1 = Discontinu	ue module operat	ration when d		lle mode		
bit 12	PTGTOGL: T 1 = Toggle sta	RIG Output To ate of the PTG cution of PTGT	ggle Mode bit Ox for each ex	ecution of the	PTGTRIG comr		ined by value
bit 11 bit 10	PTGSWT: So	ted: Read as ' ftware Trigger e PTG module	bit ⁽²⁾				

REGISTER 24-1: PTGCST: PTG CONTROL/STATUS REGISTER

 bit 8
 PTGIVIS: Counter/Timer Visibility Control bit

 1 = Reads of the PTGSDLIM, PTGCxLIM or PTGTxLIM registers returns the current values of their corresponding counter/timer registers (PTGSD, PTGCx, PTGTx)

 0 = Reads of the PTGSDLIM, PTGCxLIM or PTGTxLIM registers returns the value previously written to those limit registers

 bit 7
 PTGSTRT: Start PTG Sequencer bit

 1 = Start to sequentially execute commands (Continuous mode)
 0 = Stop executing commands

 bit 6
 PTGWDTO: PTG Watchdog Timer Time-out Status bit

 1 = PTG watchdog timer has timed out
 0 = PTG watchdog timer has not timed out.

PTGSSEN: Enable Single Step 1 = Enable Single Step mode 0 = Disable Single Step mode

- bit 5-2 Unimplemented: Read as '0'
- **Note 1:** These bit apply to the PTGWHI and PTGWLO commands only.
 - 2: This bit is only used with the PTGCTRL step command software trigger option.

bit 9

REGISTER 24-1: PTGCST: PTG CONTROL/STATUS REGISTER (CONTINUED)

- bit 1-0 PTGITM<1:0>: PTG Input Trigger Command Operating Mode bits⁽¹⁾
 - 11 = Single level detect with step delay not executed on exit of command (regardless of PTGCTRL command)
 - 10 = Single level detect with step delay executed on exit of command
 - 01 = Continuous edge detect with step delay not executed on exit of command (regardless of PTGCTRL command)
 - 00 = Continuous edge detect with step delay executed on exit of command
- Note 1: These bit apply to the PTGWHI and PTGWLO commands only.
 - **2:** This bit is only used with the PTGCTRL step command software trigger option.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	PTGCLK<2:0>				PTGDIV<4:0	>			
bit 15							bit		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	PTGPW	′D<3:0>		—		PTGWDT<2:0>			
bit 7							bit		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own		
bit 15-13	PTGCLK<2:()>: Select PTG	Module Cloc	k Source bits					
DIL 13-13	111 = Reserv 110 = Reserv 101 = PTG m 100 = PTG m 011 = PTG m 010 = PTG m 001 = PTG m	ved	urce will be T urce will be T urce will be T urce will be T urce will be F	3CLK 2CLK 1CLK AD OSC					
bit 12-8	PTGDIV<4:0>: PTG Module Clock Prescaler (divider) bits 11111 = Divide by 32 11110 = Divide by 31 •								
	• 00001 = Divi 00000 = Divi	-							
bit 7-4	<pre>00001 = Divide by 2 00000 = Divide by 1 PTGPWD<3:0>: PTG Trigger Output Pulse Width bits 1111 = All trigger outputs are 16 PTG clock cycles wide 1110 = All trigger outputs are 15 PTG clock cycles wide</pre>								
bit 3		gger outputs an i ted: Read as '(k cycle wide					
bit 2-0	PTGWDT<2: 111 = Watch 110 = Watch 101 = Watch 100 = Watch 011 = Watch 010 = Watch	0>: Select PTG dog will time ou dog will time ou	Watchdog T t after 512 P' t after 256 P' t after 128 P' t after 64 PT t after 32 PT t after 16 PT	TG clocks TG clocks TG clocks G clocks G clocks G clocks G clocks	Value bits				

REGISTER 24-2: PTGCON: PTG CONTROL REGISTER

ADCTS4		R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
ADO104	ADCTS3	ADCTS2	ADCTS1	IC4TSS	IC3TSS	IC2TSS	IC1TSS				
bit 15							bit				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
OC4CS	OC3CS	OC2CS	OC1CS	OC4TSS	OC3TSS	OC2TSS	OC1TSS				
bit 7	00000	00200	00100	001100	000100	002100	bit				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'					
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown				
							-				
bit 15	ADCTS4: Sa	mple Trigger P	TGO15 for AD	C bit							
	ADCTS4: Sample Trigger PTGO15 for ADC bit 1 = Generate trigger when the broadcast command is executed										
	0 = Do not ge	enerate trigger	when the broa	dcast commar	nd is executed						
bit 14	ADCTS3: Sa	mple Trigger P	TGO14 for AD	OC bit							
		trigger when t									
	-	enerate trigger			nd is executed						
bit 13	ADCTS2: Sample Trigger PTGO13 for ADC bit 1 = Generate trigger when the broadcast command is executed										
bit 12	-	enerate trigger									
		mple Trigger P			required						
		trigger when t									
bit 11	 0 = Do not generate trigger when the broadcast command is executed IC4TSS: Trigger/Synchronization Source for IC4 bit 										
	1 = Generate trigger/synchronization when the broadcast command is executed										
					oadcast comma						
bit 10	IC3TSS: Trigger/Synchronization Source for IC3 bit										
		00 7			t command is e oadcast comma						
bit 9	-	ger/Synchroniz	-								
	1 = Generate	trigger/synchr	onization wher	n the broadcas	t command is e oadcast comma						
bit 8	-	ger/Synchroniz	-								
					t command is e	executed					
					oadcast comma						
bit 7	OC4CS: Cloc	k Source for C	C4 bit								
		clock pulse wi nerate clock p			is executed nmand is execu	ted					
bit 6		k Source for C									
		clock pulse wi nerate clock p			is executed	ted					
bit 5	•	k Source for C									
		clock pulse wi		cast command	is executed						
					nmand is execu						

REGISTER 24-3: PTGBTE: PTG BROADCAST TRIGGER ENABLE REGISTER^(1,2)

2: This register only used with the PTGCTRL OPTION = 1111 step command.

REGISTER 24-3: PTGBTE: PTG BROADCAST TRIGGER ENABLE REGISTER^(1,2) (CONTINUED)

bit 4	OC1CS: Clock Source for OC1 bit
	 1 = Generate clock pulse when the broadcast command is executed 0 = Do not generate clock pulse when the broadcast command is executed
bit 3	OC4TSS: Trigger/Synchronization Source for OC4 bit
	 1 = Generate trigger/synchronization when the broadcast command is executed 0 = Do not generate trigger/synchronization when the broadcast command is executed
bit 2	OC3TSS: Trigger/Synchronization Source for OC3 bit
	 1 = Generate trigger/synchronization when the broadcast command is executed 0 = Do not generate trigger/synchronization when the broadcast command is executed
bit 1	OC2TSS: Trigger/Synchronization Source for OC2 bit
	 1 = Generate trigger/synchronization when the broadcast command is executed 0 = Do not generate trigger/synchronization when the broadcast command is executed
bit 0	OC1TSS: Trigger/Synchronization Source for OC1 bit
	 1 = Generate trigger/synchronization when the broadcast command is executed 0 = Do not generate trigger/synchronization when the broadcast command is executed

- **Note 1:** This register is read only when the PTG module is executing step commands (PTGEN = 1 and PTGSTRT = 1).
 - 2: This register only used with the PTGCTRL OPTION = 1111 step command.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGT0L	IM<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGT0L	-IM<7:0>			
bit 7							bit 0
legend.							

REGISTER 24-4: PTGT0LIM: PTG TIMER0 LIMIT REGISTER⁽¹⁾

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **PTGT0LIM<15:0>:** PTG Timer0 Limit Register bits

General purpose Timer0 limit register (effective only with a PTGT0 step command).

REGISTER 24-5: PTGT1LIM: PTG TIMER1 LIMIT REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGT1	_IM<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGT1	LIM<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			it	U = Unimplemented bit, read as '0'			
-n = Value at F	POR	'1' = Bit is set '0' = Bit is cleared x = Bit is unknow		nown			

- bit 15-0 **PTGT1LIM<15:0>:** PTG Timer1 Limit Register bits General purpose Timer1 limit register (effective only with a PTGT1 step command).
- **Note 1:** This register is read only when the PTG module is executing step commands (PTGEN = 1 and PTGSTRT = 1).

Note 1: This register is read only when the PTG module is executing step commands (PTGEN = 1 and PTGSTRT = 1).

REGISTER 24-6: PTGSDLIM: PTG STEP DELAY LIMIT REGISTER^(1,2)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGSDL	IM<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGSDL	_IM<7:0>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 PTGSDLIM<15:0>: PTG Step Delay Limit Register bits Holds a PTG Step Delay value representing the number of additional PTG clocks between the start of a step command, and the completion of the step command.

- Note 1: A base step delay of one PTG clock is added to any value written to the PTGSDLIM register (Step Delay = (PTGSDLIM) + 1).
 - 2: This register is read only when the PTG module is executing step commands (PTGEN = 1 and PTGSTRT = 1).

REGISTER 24-7: PTGC0LIM: PTG COUNTER 0 LIMIT REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGC0	LIM<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGC)LIM<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		oit	U = Unimpler	nented bit, rea	ad as '0'		
-n = Value at P	-n = Value at POR '1' = Bit is set			'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 PTGC0LIM<15:0>: PTG Counter 0 Limit Register bits May be used to specify the loop count for the PTGJMPC0 step command, or as a limit register for the general purpose counter 0.

Note 1: This register is read only when the PTG module is executing step commands (PTGEN = 1 and PTGSTRT = 1).

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGC1L	IM<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGC1L	_IM<7:0>			
bit 7							bit 0
Logondi							

REGISTER 24-8: PTGC1LIM: PTG COUNTER 1 LIMIT REGISTER⁽¹⁾

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **PTGC1LIM<15:0>:** PTG Counter 1 Limit Register bits May be used to specify the loop count for the PTGJMPC1 step command, or as a limit register for the general purpose counter 1.

REGISTER 24-9: PTGHOLD: PTG HOLD REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGHC)LD<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGH	OLD<7:0>			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable bit	t	U = Unimpler	nented bit, read	1 as '0'	

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 **PTGHOLD<15:0>:** PTG General Purpose Hold Register bits Holds user supplied data to be copied to the PTGTxLIM, PTGCxLIM, PTGSDLIM, or PTGL0 registers with the PTGCOPY command.

Note 1: This register is read only when the PTG module is executing step commands (PTGEN = 1 and PTGSTRT = 1).

Note 1: This register is read only when the PTG module is executing step commands (PTGEN = 1 and PTGSTRT = 1).

REGISTER 24-10: PTGADJ: PTG ADJUST REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGAD	J<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGAE)J<7:0>			
bit 7							bit 0
Legend:							
D - Doodoblo	hit	M = M/ritable bi	4	II – Unimplor	nonted hit read		

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **PTGADJ<15:0>:** PTG Adjust Register bits This register Holds user supplied data to be added to the PTGTxLIM, PTGCxLIM, PTGSDLIM, or PTGL0 registers with the PTGADD command.

REGISTER 24-11: PTGL0: PTG LITERAL 0 REGISTER⁽¹⁾

				0<7:0>			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15							bit 8
			PTGL0	<15:8>			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **PTGL0<15:0>:** PTG Literal 0 Register bits

This register holds the 16-bit value to be written to the AD1CHS0 register with the ${\tt PTGCTRL}$ step command

Note 1: This register is read only when the PTG module is executing step commands (PTGEN = 1 and PTGSTRT = 1).

Note 1: This register is read only when the PTG module is executing step commands (PTGEN = 1 and PTGSTRT = 1).

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			PTGQPTR<4:0)>	
bit 7	•		•				bit 0
Logondy							

REGISTER 24-12: PTGQPTR: PTG STEP QUEUE POINTER REGISTER⁽¹⁾

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 Unimplemented: Read as '0'

bit 4-0 **PTGQPTR<4:0>:** PTG Step Queue Pointer Register bits This register points to the currently active step command in the step queue.

REGISTER 24-13: PTGQUEX: PTG STEP QUEUE REGISTERS (x = 0-7)^(1,3)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STEP(2x +	+1)<7:0> (2)			
bit 15							bit 8

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ſ				STEP(2x	()<7:0> (2)			
bit 7						bit 0		

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8STEP(2x +1)<7:0>: PTG Step Queue Pointer Register bits⁽²⁾
A queue location for storage of the STEP(2x +1) command byte.bit 7-0STEP(2x)<7:0>: PTG Step Queue Pointer Register bits⁽²⁾

A queue location for storage of the STEP(2x) command byte.

- **Note 1:** This register is read only when the PTG module is executing step commands (PTGEN = 1 and PTGSTRT = 1).
 - 2: Refer to Table 24-1 for the STEP command encoding.
 - 3: The step registers maintain their values on any type of reset.

Note 1: This register is read only when the PTG module is executing step commands (PTGEN = 1 and PTGSTRT = 1).

24.2 STEP Commands and Format

TABLE 24-1: PTG STEP COMMAND FORMAT

STEP Command Byte:

		STEPx<7:0>		
	CMD<3:0>		OPTION<3:0>	
bit 7		bit 4 bit 3		bit 0

bit 7-4	CMD<3:0>	Step Command	Command Description
	0000	PTGCTRL	Execute control command as described by OPTION<3:0>
	0001	PTGADD	Add contents of PTGADJ register to target register as described by OPTION<3:0>
		PTGCOPY	Copy contents of PTGHOLD register to target register as described by OPTION<3:0>
	001x	PTGSTRB	Copy the value contained in CMD<0>:OPTION<3:0> to the CH0SA<4:0> bits (AD1CHS0<4:0>)
	0100	PTGWHI	Wait for a Low to High edge input from selected PTG trigger input as described by OPTION<3:0>
	0101	PTGWLO	Wait for a High to Low edge input from selected PTG trigger input as described by OPTION<3:0>
	0110	Reserved	Reserved
	0111	PTGIRQ	Generate individual interrupt request as described by <option3:0></option3:0>
	100x	PTGTRIG	Generate individual trigger output as described by << <cmd<0>:OPTION<3:0>></cmd<0>
	101x	PTGJMP	Copy the value indicated in < <cmd<0>:OPTION<3:0>> to the Queue Pointer (PTGQPTR) and jump to that step queue</cmd<0>
	110x	PTGJMPC0	PTGC0 = PTGC0LIM: Increment the Queue Pointer (PTGQPTR)
			$PTGC0 \neq PTGC0LIM$: Increment Counter 0 (PTGC0) and copy the value indicated in < <cmd<0>:OPTION<3:0>> to the Queue Pointer (PTGQPTR) and jump to that step queue</cmd<0>
	111x	PTGJMPC1	PTGC1 = PTGC1LIM: Increment the queue pointer (PTGQPTR)
			$PTGC1 \neq PTGC1LIM$: Increment Counter 1 (PTGC1) and copy the value indicated in < <cmd<0>:OPTION<3:0>> to the Queue Pointer (PTGQPTR) and jump to that step queue</cmd<0>

Note 1: All reserved commands or options will execute but have no effect (i.e., execute as a NOP instruction).

2: Refer to Table 24-2 for the trigger output descriptions.

3: This feature is only available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

bit 3-0	Step Command	OPTION<3:0>	Option Description
	PTGCTRL(1)	0000	Reserved
		0001	Reserved
		0010	Disable Step Delay Timer (PTGSD)
		0011	Reserved
		0100	Reserved
		0101	Reserved
		0110	Enable Step Delay Timer (PTGSD)
		0111	Reserved
		1000	Start and wait for the PTG Timer 0 to match Timer 0 Limit Register
		1001	Start and wait for the PTG Timer 1 to match Timer 1 Limit Register
		1010	Reserved
		1011	Wait for software trigger bit transition from low to high before continuing (PTGSWT = 0 to 1)
		1100	Copy contents of the Counter 0 register to the AD1CHS0 register
		1101	Copy contents of the Counter 1 register to the AD1CHS0 register
		1110	Copy contents of the Literal 0 register to the AD1CHS0 register
		1111	Generate triggers indicated in the Broadcast Trigger Enable Register (PTGBTE)
	PTGADD(1)	0000	Add contents of PTGADJ register to the Counter 0 Limit register (PTGC0LIM)
		0001	Add contents of PTGADJ register to the Counter 1 Limit register (PTGC1LIM)
		0010	Add contents of PTGADJ register to the Timer 0 Limit register (PTGT0LIM)
		0011	Add contents of PTGADJ register to the Timer 1 Limit register (PTGT1LIM)
		0100	Add contents of PTGADJ register to the Step Delay Limit register (PTGSDLIM)
		0101	Add contents of PTGADJ register to the Literal 0 register (PTGL0)
		0110	Reserved
		0111	Reserved
	PTGCOPY (1)	1000	Copy contents of PTGHOLD register to the Counter 0 Limit register (PTGC0LIM)
		1001	Copy contents of PTGHOLD register to the Counter 1 Limit register (PTGC1LIM)
		1010	Copy contents of PTGHOLD register to the Timer 0 Limit register (PTGT0LIM)
		1011	Copy contents of PTGHOLD register to the Timer 1 Limit register (PTGT1LIM)
		1100	Copy contents of PTGHOLD register to the Step Delay Limit register (PTGSDLIM)
		1101	Copy contents of PTGHOLD register to the Literal 0 register (PTGL0)
		1110	Reserved
		1111	Reserved

TABLE 24-1: PTG STEP COMMAND FORMAT (CONTINUED)

Note 1: All reserved commands or options will execute but have no effect (i.e., execute as a NOP instruction).

2: Refer to Table 24-2 for the trigger output descriptions.

3: This feature is only available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

Step Command	OPTION<3:0>	Option Description
PTGWHI(1)	0000	PWM Special Event Trigger ⁽³⁾
or (1)	0001	PWM Master Timebase Synchronization Output ⁽³⁾
PTGWLO(1)	0010	PWM1 Interrupt ⁽³⁾
	0011	PWM2 Interrupt ⁽³⁾
	0100	PWM3 Interrupt ⁽³⁾
	0101	Reserved
	0110	Reserved
	0111	OC1 Trigger Event
	1000	OC2 Trigger Event
	1001	IC1 Trigger Event
	1010	CMP1 Trigger Event
	1011	CMP2 Trigger Event
	1100	CMP3 Trigger Event
	1101	CMP4 Trigger Event
	1110	ADC Conversion Done Interrupt
	1111	INT2 External Interrupt
PTGIRQ(1)	0000	Generate PTG interrupt 0
	0001	Generate PTG interrupt 1
	0010	Generate PTG interrupt 2
	0011	Generate PTG interrupt 3
	0100	Reserved
	•	•
	•	•
	•	•
	1111	Reserved
PTGTRIG ⁽²⁾	00000	PTGO0
	00001	PTGO1
	•	•
	•	•
	•	•
	11110	PTGO30
	11111	PTGO31

Note 1: All reserved commands or options will execute but have no effect (i.e., execute as a NOP instruction).

2: Refer to Table 24-2 for the trigger output descriptions.

3: This feature is only available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

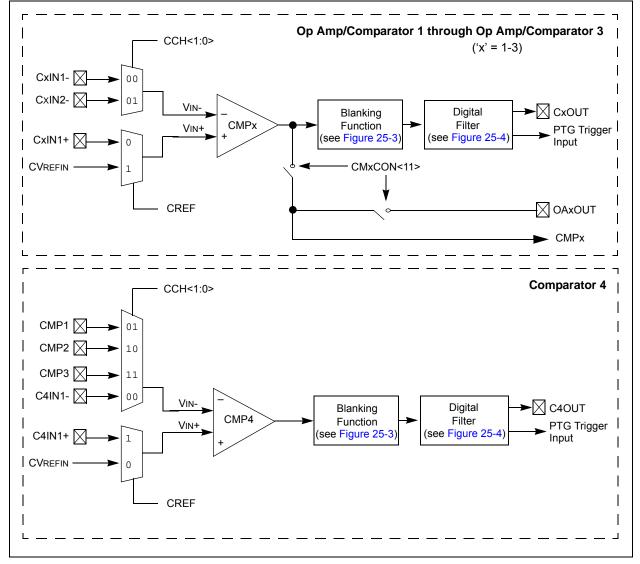
PTG Output Number	PTG Output Description				
PTGO0	Trigger/Synchronization Source for OC1				
PTGO1	Trigger/Synchronization Source for OC2				
PTGO2	Trigger/Synchronization Source for OC3				
PTGO3	Trigger/Synchronization Source for OC4				
PTGO4	Clock Source for OC1				
PTGO5	Clock Source for OC2				
PTGO6	Clock Source for OC3				
PTGO7	Clock Source for OC4				
PTGO8	Trigger/Synchronization Source for IC1				
PTGO9	Trigger/Synchronization Source for IC2				
PTGO10	Trigger/Synchronization Source for IC3				
PTGO11	Trigger/Synchronization Source for IC4				
PTGO12	Sample Trigger for ADC				
PTGO13	Sample Trigger for ADC				
PTGO14	Sample Trigger for ADC				
PTGO15	Sample Trigger for ADC				
PTGO16	PWM Time Base Synchronous Source for PWM ⁽¹⁾				
PTGO17	PWM Time Base Synchronous Source for PWM ⁽¹⁾				
PTGO18	Mask Input Select for Op Amp/Comparator				
PTGO19	Mask Input Select for Op Amp/Comparator				
PTGO20	Reserved				
PTGO21	Reserved				
PTGO22	Reserved				
PTGO23	Reserved				
PTGO24	Reserved				
PTGO25	Reserved				
PTGO26	Reserved				
PTGO27	Reserved				
PTGO28	Reserved				
PTGO29	Reserved				
PTGO30	PTG output to PPS input selection				
PTGO31	PTG output to PPS input selection				

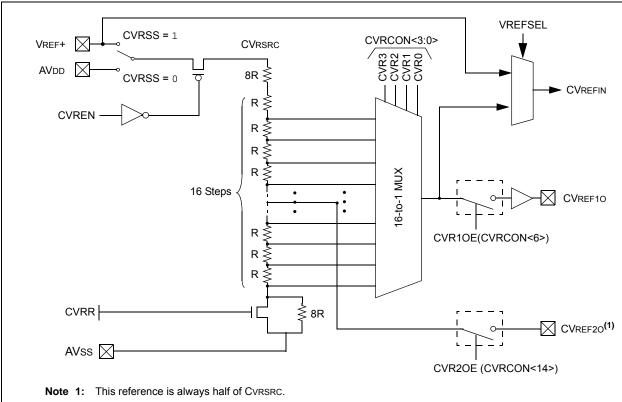
TABLE 24-2: PTG OUTPUT DESCRIPTIONS

Note 1: This feature is only available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

25.0 OP AMP/COMPARATOR MODULE

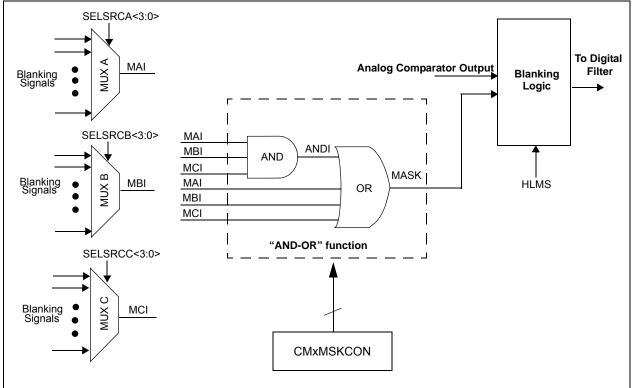
- **Note 1:** This data sheet summarizes the features dsPIC33EPXXXGP50X, of the dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 26. "Comparator" (DS70357) of the "dsPIC33E/ PIC24E Family Reference Manual', which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.


The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X, and PIC24EPXXXGP/MC20X devices contain up to four comparators which can be configured in various ways. Comparators CMP1, CMP2, and CMP3 also have the option to be configured as Op amps, with the output being brought to an external pin for gain/filtering connections. As shown in Figure 25-1, individual comparator options are specified by the Comparator module's Special Function Register (SFR) control bits.


These options allow users to:

- Select the edge for trigger and interrupt generation
- · Configure the comparator voltage reference
- Configure output blanking and masking
- Configure as a Comparator or Op amp (CMP1, CMP2, and CMP3 only)

Note: Not all Op amp/Comparator input/output connections are available on all packages. See the "Pin Diagrams" section for available connections.



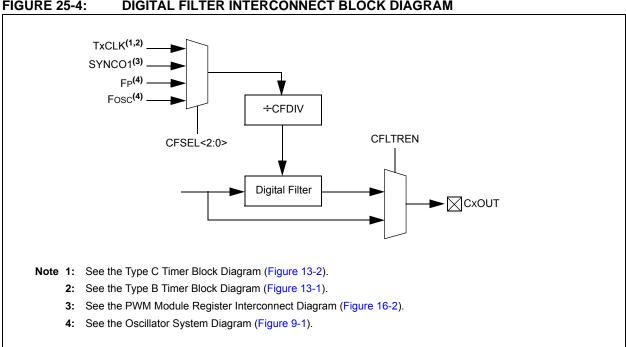


FIGURE 25-2: OP AMP/COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM

FIGURE 25-4: DIGITAL FILTER INTERCONNECT BLOCK DIAGRAM

R/W-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
CMSIDL	_	_	_	C4EVT	C3EVT	C2EVT	C1EVT
bit 15				-		-	bit
U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
_	_	_	_	C4OUT	C3OUT	C2OUT	C10UT
bit 7							bit
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	CMSIDL: Stop						
				tors when devic	e enters Idle m	ode	
1.1.4.4.40	0 = Continue	•	•	s in Idle mode			
bit 14-12							
bit 11	C4EVT: Comp						
	1 = Comparat						
bit 10	0 = Comparat						
	C3EVT: Comp 1 = Comparat						
	0 = Comparat						
bit 9	C2EVT: Comp						
Dit 0	1 = Comparat						
	0 = Comparat						
bit 8	C1EVT: Comp						
	1 = Comparat						
	0 = Comparat						
bit 7-4	Unimplement						
bit 2	C4OUT: Com	parator 4 Out	out Status bit				
	When CPOL =	= 0:					
	1 = VIN+ > VIN	1-					
	0 = VIN + < VIN	1-					
	When CPOL = 1:						
	$1 = V_{IN+} < V_{IN-}$						
	0 = VIN + > VIN	1-					
bit 2	C3OUT: Com	parator 3 Out	out Status bit				
	When CPOL =	= 0:					
	1 = VIN + > VIN	1-					
	0 = VIN + < VIN	1-					
	When CPOL =	= 1:					
	1 = VIN+ < VIN	1-					

REGISTER 25-1: CMSTAT: COMPARATOR STATUS REGISTER

REGISTER 25-1: CMSTAT: COMPARATOR STATUS REGISTER (CONTINUED)

C2OUT: Comparator 2 Output Status bit bit 1 When CPOL = 0: 1 = VIN + > VIN -0 = VIN + < VIN -When CPOL = 1: 1 = VIN + < VIN-0 = VIN + > VIN bit 0 C1OUT: Comparator 1 Output Status bit When CPOL = 0: 1 = VIN + > VIN -0 = VIN + < VIN-When CPOL = 1: 1 = VIN + < VIN-0 = VIN + > VIN -

REGISTER	25-2: CMxC	ON: COMPA	RATOR CO	NTROL REG	ISTER (x = 1 , 2	2, OR 3)	
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
CON	COE	CPOL	_	OAO	OPMODE	CEVT	COUT
bit 15							bit 8
R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0
	OL<1:0>	<u> </u>	CREF		<u> </u>		<1:0>
bit 7	02 11.0		ORE			0011	bit (
Legend:							
R = Readab	le hit	W = Writable	hit	II = I Inimple	mented bit, read	ae 'O'	
-n = Value at		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	own
bit 15	1 = Comparat	arator Enable b tor is enabled tor is disabled	it				
bit 14	1 = Comparat	rator Output Entry tor output is proton output is proton to output is int	esent on the (CxOUT pin			
bit 13		arator Output I	5	t bit			
	1 = Comparat	tor output is inv tor output is no	/erted				
bit 12	Unimplemen	ted: Read as '	0'				
bit 11	OAO: Op Am	p Output Conn	ected to Outs	ide Pin bit			
		output OAxOUT					
bit 10	OPMODE: O	p Amp/Compai	rator Operatio	n Mode Select	t bit		
	•	erates as an C erates as a Co	• •				
bit 9	1 = Comparat interrupts	arator Event bi tor event accor until the bit is tor event did no	ding to EVPC	0L<1:0> setting	js occurred; disa	bles future trig	gers and
bit 8	COUT: Comparator Output bit						
	•	= 0 (non-invert					
	1 = VIN+ > VII	-					
	0 = VIN + < VII		- 1				
	VVNen (CPC)	I unvortod n					
	1 = VIN + < VII	= 1 (inverted p	olanty).				

Note 1: Inputs that are selected and not available will be tied to Vss. See the "Pin Diagrams" section for available inputs for each package.

REGISTER 25-2: CMxCON: COMPARATOR CONTROL REGISTER (x = 1, 2, OR 3) (CONTINUED)

- bit 7-6 EVPOL<1:0>: Trigger/Event/Interrupt Polarity Select bits
 - 11 = Trigger/Event/Interrupt generated on any change of the comparator output (while CEVT = 0)
 - 10 = Trigger/Event/Interrupt generated only on high to low transition of the polarity-selected comparator output (while CEVT = 0)
 - If CPOL = 1 (inverted polarity):
 - Low-to-high transition of the comparator output
 - If CPOL = 0 (non-inverted polarity):
 - High-to-low transition of the comparator output
 - 01 = Trigger/Event/Interrupt generated only on low to high transition of the polarity-selected comparator output (while CEVT = 0)
 <u>If CPOL = 1 (inverted polarity):</u> High-to-low transition of the comparator output

 - <u>If CPOL = 0 (non-inverted polarity):</u> Low-to-high transition of the comparator output
 - 00 = Trigger/Event/Interrupt generation is disabled
- bit 5 **Unimplemented:** Read as '0'
- bit 4 **CREF:** Comparator Reference Select bit (VIN+ input)⁽¹⁾
 - 1 = VIN+ input connects to internal CVREFIN voltage
 - 0 = VIN+ input connects to CxIN1+ pin
- bit 3-2 Unimplemented: Read as '0'
- bit 1-0 CCH<1:0>: Comparator Channel Select bits⁽¹⁾
 - 11 = Unimplemented
 - 10 = Unimplemented
 - 01 = Inverting input of Op amp/Comparator connects to CxIN2- pin
 - 00 = Inverting input of Op amp/Comparator connects to CxIN1- pin
- Note 1: Inputs that are selected and not available will be tied to Vss. See the "Pin Diagrams" section for available inputs for each package.

REGISTER 2	25-3: CM4C	ON: COMPA	RATOR CO	NTROL REGI	STER		
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
CON	COE	CPOL	_		_	CEVT	COUT
bit 15							bit 8
R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0
)L<1:0>	_	CREF		_	-	<1:0>
bit 7			0.1.2.				bit (
Legend:			1.11				
R = Readable		W = Writable		•	nented bit, rea		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	IOWN
bit 15	1 = Comparat		it				
	0 = Comparat	or is disabled					
bit 14	1 = Comparat	rator Output E or output is protor output is int	esent on the C	xOUT pin			
bit 13	CPOL: Comp	arator Output	Polarity Select	t bit			
		or output is inv or output is no					
bit 12-10	Unimplemen	ted: Read as '	0'				
bit 9	CEVT: Compa	arator Event bi	t				
	interrupts	or event accor until the bit is or event did no	cleared	L<1:0> settings	occurred; dis	ables future trig	gers and
bit 8	COUT: Comp	arator Output I	oit				
	$\frac{\text{When CPOL} = 0 \text{ (non-inverted polarity):}}{1 = \text{VIN} + > \text{VIN-}}$ $0 = \text{VIN} + < \text{VIN-}$ $\frac{\text{When CPOL} = 1 \text{ (inverted polarity):}}{1 = \text{VIN} + < \text{VIN-}}$						
	0 = VIN + > VIN	N-					
bit 7-6	EVPOL<1:0>	: Trigger/Even	t/Interrupt Pola	arity Select bits			
	10 = Trigger/E compara <u>If CPOL</u> Low-to-I If CPOL		generated on ile CEVT = 0) polarity): of the compar rted polarity):	ly on high to lov ator output		or output (while the polarity-sele	
	01 = Trigger/E compara <u>If CPOL</u> High-to- <u>If CPOL</u>		generated on ile CEVT = 0) polarity): of the compara rted polarity):	ly on low to hig ator output	h transition of	the polarity-sele	ected

ONDADATOD CON

Note 1: Inputs that are selected and not available will be tied to Vss. See the "Pin Diagrams" section for available inputs for each package.

REGISTER 25-3: CM4CON: COMPARATOR CONTROL REGISTER (CONTINUED)

- bit 5 Unimplemented: Read as '0'
- bit 4 **CREF:** Comparator Reference Select bit (VIN+ input)⁽¹⁾
 - 1 = VIN+ input connects to internal CVREFIN voltage
 - 0 = VIN+ input connects to C4IN1+ pin
- bit 3-2 Unimplemented: Read as '0'
- bit 1-0 CCH<1:0>: Comparator Channel Select bits⁽¹⁾
 - 11 = VIN- input of comparator connects to CMP3
 - 10 = VIN- input of comparator connects to CMP2
 - 01 = VIN- input of comparator connects to CMP1
 - 00 = VIN- input of comparator connects to C4IN1-
- **Note 1:** Inputs that are selected and not available will be tied to Vss. See the "**Pin Diagrams**" section for available inputs for each package.

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	RW-0
_	—	—	_		SELSRO	CC<3:0>	
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	SELSRO	CB<3:0>			SELSRO	CA<3:0>	
bit 7							bit 0
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
-n = Value at	t POR	'1' = Bit is set		ʻ0' = Bit is cle		x = Bit is unkr	nown
bit 15-12	Unimplemen	nted: Read as '	0'				
bit 11-8	-	3:0>: Mask C Ir		s			
bit 7-4	1110 = FLT2 1101 = PTG(1100 = PTG(1011 = Rese 1010 = Rese 1000 = Rese 0111 = Rese 0111 = Rese 0110 = Rese 0101 = PWM 0100 = PWM 0011 = PWM 0010 = PWM 0010 = PWM 0001 = PWM 0000 = PWM	O19 O18 erved erved erved erved erved 13H 13L 12H 12L 11H	inut Select bit	S			
DIL 7-4	SELSKOBAS 1111 = FLT4 1100 = FLT2 1101 = PTG 1000 = PTG 1011 = Rese 1000 = Rese 0101 = Rese 0111 = Rese 0110 = Rese 0110 = Rese 0101 = PWM 0100 = PWM 0011 = PWM 0010 = PWM 0010 = PWM 0001 = PWM	2 O19 O18 erved erved erved erved 13H 13L 12H 12L 11H		5			

REGISTER 25-4: CMxMSKSRC: COMPARATOR MASK SOURCE SELECT CONTROL REGISTER

REGISTER 25-4: CMxMSKSRC: COMPARATOR MASK SOURCE SELECT CONTROL REGISTER

- bit 3-0 SELSRCA<3:0>: Mask A Input Select bits
 - 1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18 1011 = Reserved 1010 = Reserved 1001 = Reserved 1000 = Reserved 0111 = Reserved 0110 = Reserved 0101 = PWM3H 0100 = PWM3L 0011 = PWM2H 0010 = PWM2L 0001 = PWM1H 0000 = PWM1L

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
HLMS		OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN		
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, read	1 as '0'			
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is cle		x = Bit is unk	nown		
			-						
bit 15	1 = The mas	king (blanking)		event any asse	erted ('0') compa erted ('1') compa				
bit 14		nted: Read as	-	-		-			
bit 13	-		verted Enable	bit					
		onnected to OF ot connected to							
bit 12			Inverted Enable	e bit					
		•							
	 1 = Inverted MCI is connected to OR gate 0 = Inverted MCI is not connected to OR gate 								
bit 11	OBEN: OR (Gate B Input In	verted Enable	bit					
		onnected to OF ot connected to	•						
bit 10	OBNEN: OF	R Gate B Input	Inverted Enable	e bit					
			ted to OR gate nected to OR g						
bit 9	OAEN: OR	Gate A Input E	nable bit						
		onnected to OF ot connected to							
bit 8	OANEN: OF	R Gate A Input	Inverted Enable	e bit					
			ted to OR gate						
L:4 7			nected to OR g						
bit 7	1 = Inverted	ANDI is conne	e Output Select cted to OR gat	е					
			nnected to OR	gate					
bit 6	PAGS: Positive AND Gate Output Select 1 = ANDI is connected to OR gate								
	0 = ANDI is not connected to OR gate								
bit 5		-	out Inverted En	able bit					
		onnected to AN ot connected to	•						
bit 4			nput Inverted E						
			ted to AND gat						
	 Inverted MCI is not connected to AND gate ABEN: AND Gate A1 B Input Inverted Enable bit 								
bit 3				•					

REGISTER 25-5: CMxMSKCON: COMPARATOR MASK GATING CONTROL REGISTER

REGISTER 25-5: CMxMSKCON: COMPARATOR MASK GATING CONTROL REGISTER

bit 2	ABNEN: AND Gate A1 B Input Inverted Enable bit				
	1 = Inverted MBI is connected to AND gate0 = Inverted MBI is not connected to AND gate				
bit 1	AAEN: AND Gate A1 A Input Enable bit				
	1 = MAI is connected to AND gate				
	0 = MAI is not connected to AND gate				
bit 0	AANEN: AND Gate A1 A Input Inverted Enable bit				
	1 = Inverted MAI is connected to AND gate				

0 = Inverted MAI is not connected to AND gate

U-0	U-0	U-0	U-0	U-0	U-0	U-0	I-0
_	—	—		—	_	—	_
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
0-0	N/W-0	CFSEL<2:0>	N/ VV-U	CFLTREN	FV/VV-0	CFDIV<2:0>	FX/ V V-0
 bit 7		01 3LL~2.02		GLEIKEN		CI DIV \2.02	bit 0
							bit 0
Legend:							
R = Readab	ole bit	W = Writable b	oit	U = Unimpler	mented bit, rea	ad as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
bit 15-7	Unimplemen	ted: Read as '	י'				
	101 = T3CLK 100 = T2CLK 011 = Reserv 010 = SYNC 001 = Fosc ⁽⁴ 000 = Fp ⁽⁴⁾	(2) ved O1 ⁽³⁾					
bit 3		omparator Filte	r Enable bit				
	1 = Digital filt 0 = Digital filt						
bit 2-0	•	Comparator Fi	Iter Clock Di	vide Select bits			
	111 = Clock 110 = Clock 101 = Clock 100 = Clock 011 = Clock 010 = Clock 001 = Clock	Divide 1:64 Divide 1:32 Divide 1:16 Divide 1:8 Divide 1:4 Divide 1:2					
Note 1: S	See the Type C Ti	mer Block Diag	ram (Figure	13-2).			
	See the Type B Tir	•		,			
	••	0					

REGISTER 25-6: CMxFLTR: COMPARATOR FILTER CONTROL REGISTER

- See the PWM Module Register Interconnect Diagram (Figure 16-2).
 - 4: See the Oscillator System Diagram (Figure 9-1).

U-0	R/W-0	U-0	U-0	U-0	R/W-0	U-0	U-0
	CVR2OE ⁽¹⁾	_	_	_	VREFSEL	_	_
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CVREN	CVR10E ⁽¹⁾	CVRR	CVRSS		CVR	<3:0>	
bit 7							bit 0
Legend:							
R = Readabl		W = Writable I	oit	•	mented bit, read		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	own
bit 15	Unimplement	ted: Read as 'd)'				
bit 14		mparator Voltag		2 Output Ena	ble bit ⁽¹⁾		
		ivided by 2 is c		•			
	0 = CVRSRC d	ivided by 2 is d	isconnected f	from the CVRE	F2O pin		
bit 13-11	Unimplement	ted: Read as 'd)'				
bit 10		oltage Reference	e Select bit				
	1 = CVREFIN =		the resister m	atuarle			
hit 0.9		s generated by		letwork			
bit 9-8	-	ted: Read as '(-nahla hit			
bit 7		parator Voltage					
		or voltage refe					
bit 6	•	mparator Voltag	•				
		vel is output or					
	0 = Voltage le	vel is disconne	cted from CV	REF10 pin			
bit 5	CVRR: Comp	arator Voltage	Reference Ra	ange Selectior	ı bit		
	1 = CVRSRC/24 step size						
	0 = CVRSRC/3	•		.			
bit 4		parator Voltage					
	1 = Comparator voltage reference source, CVRSRC = (VREF+) – (Avss) 0 = Comparator voltage reference source, CVRSRC = AVDD – AVss						
bit 3-0	•	•			ion $0 \leq CVR < 3:0$	> ≤15 bits	
	When CVRR :	•	0				
	CVREFIN = (C	√R<3:0>/24) ●	(CVRSRC)				
	When CVRR						
	$\frac{\text{VIREINCVIRC} = 0}{\text{CVREFIN} = (\text{CVRSRC}/4) + (\text{CVR}<3:0>/32) \bullet (\text{CVRSRC})$						

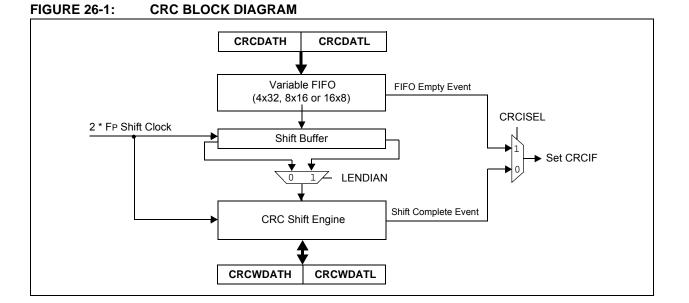
REGISTER 25-7: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER

Note 1: CVRxOE overrides the TRIS bit setting.

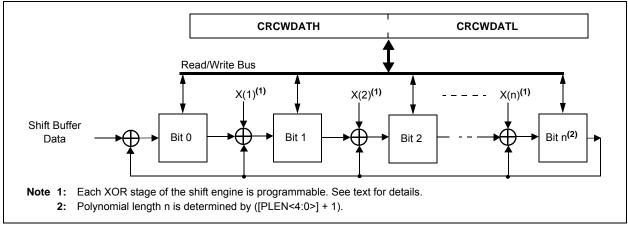
NOTES:

26.0 PROGRAMMABLE CYCLIC REDUNDANCY CHECK (CRC) GENERATOR

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 27. "Programmable Cyclic Redundancy Check (CRC)" (DS70346) of the "dsPIC33E/ PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.


The programmable CRC generator offers the following features:

- User-programmable (up to 32nd order)
 polynomial CRC equation
- Interrupt output
- Data FIFO


The programmable CRC generator provides a hardware-implemented method of quickly generating checksums for various networking and security applications. It offers the following features:

- User-programmable CRC polynomial equation, up to 32 bits
- Programmable shift direction (little or big-endian)
- Independent data and polynomial lengths
- Configurable Interrupt output
- Data FIFO

A simplified block diagram of the CRC generator is shown in Figure 26-1. A simple version of the CRC shift engine is shown in Figure 26-2.

FIGURE 26-2: CRC SHIFT ENGINE DETAIL

26.1 Overview

The CRC module can be programmed for CRC polynomials of up to the 32nd order, using up to 32 bits. Polynomial length, which reflects the highest exponent in the equation, is selected by the PLEN<4:0> bits (CRCCON2<4:0>).

The CRCXORL and CRCXORH registers control which exponent terms are included in the equation. Setting a particular bit includes that exponent term in the equation; functionally, this includes an XOR operation on the corresponding bit in the CRC engine. Clearing the bit disables the XOR. For example, consider two CRC polynomials, one a 16bit equation and the other a 32-bit equation:

$$x16 + x12 + x5 + 1$$

and
$$x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7$$

$$+ x5 + x4 + x2 + x + 1$$

To program these polynomials into the CRC generator, set the register bits as shown in Table 26-1.

Note that the appropriate positions are set to '1' to indicate that they are used in the equation (for example, X26 and X23). The 0 bit required by the equation is always XORed; thus, X0 is a don't care. For a polynomial of length N, it is assumed that the *N*th bit will always be used, regardless of the bit setting. Therefore, for a polynomial length of 32, there is no 32nd bit in the CRCxOR register.

TABLE 26-1: CRC SETUP EXAMPLES FOR 16 AND 32-BIT POLYNOMIAL

CRC Control	Bit Values				
Bits	16-bit Polynomial	32-bit Polynomial			
PLEN<4:0>	01111	11111			
X<31:16>	0000 0000 0000 000x	0000 0100 1100 0001			
X<15:0>	0001 0000 0010 000x	0001 1101 1011 011x			

R/W-0	U-0	R/W-0	R-0	R-0	R-0	R-0	R-0				
CRCEN	—	CSIDL			VWORD<4:0	>					
bit 15							bit 8				
r											
R-0	R-1	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0				
CRCFUL	CRCMPT	CRCISEL	CRCGO	LENDIAN							
bit 7							bit 0				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'					
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15	CRCEN: CR	C Enable bit									
		dule is enabled									
		dule is disabled e not reset.	. All state ma	chines, pointer	s, and CRCWE	DAT/CRCDAT ar	e reset. Other				
bit 14		e not reset. nted: Read as '(۰ ۲								
bit 13	CSIDL: CRC Stop in Idle Mode bit										
	 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode 										
bit 12-8		>: Pointer Value									
	Indicates the	dicates the number of valid words in the FIFO. Has a maximum value of 8 when PLEN<4:0> > 7,									
	or 16 when P	PLEN<4:0> ≤7.									
bit 7	CRCFUL: FIF	FO Full bit									
	1 = FIFO is f										
	0 = FIFO is r	not full									
bit 6		FO Empty Bit									
	1 = FIFO is empty 0 = FIFO is not empty										
6.4. C			la ati a m la it								
bit 5		CRCISEL: CRC Interrupt Selection bit									
	 1 = Interrupt on FIFO empty; final word of data is still shifting through CRC 0 = Interrupt on shift complete and CRCWDAT results ready 										
bit 4	CRCGO: Sta	•									
		C serial shifter									
		ial shifter is turr	ned off								
bit 3	LENDIAN: D	ata Word Little-	Endian Confi	guration bit							
	1 = Data woi	rd is shifted into	the CRC sta	rting with the L	Sb (little endiar	ר)					
	0 = Data woi	rd is shifted into	the CRC sta	rting with the M	1Sb (big endiar	ו)					
bit 2-0	Unimplemen	nted: Read as ')'								

REGISTER 26-1: CRCCON1: CRC CONTROL REGISTER 1

Legend: R = Readable bit W = Writable b		bit	U = Unimpler	nented bit, rea	ad as '0'		
bit 7						bit 0	
	_				PLEN<4:0>	>	
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15							bit 8
—	—	—			DWIDTH<4:)>	
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

REGISTER 26-2: CRCCON2: CRC CONTROL REGISTER 2

DWIDTH<4:0>: Data Width Select bits bit 12-8

These bits set the width of the data word (DWIDTH<4:0> + 1)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 PLEN<4:0>: Polynomial Length Select bits These bits set the length of the polynomial (Polynomial Length = PLEN<4:0> + 1)

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
R/W-0	R/W-U	R/W-U	R/W-U	R/W-U	R/W-U	R/W-U	R/W-0
			X<32	1:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			X<23	3:16>			
bit 7							bit (

REGISTER 26-3: CRCXORH: CRC XOR POLYNOMIAL HIGH REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 X<31:16>: XOR of Polynomial Term Xⁿ Enable bits

REGISTER 26-4: CRCXORL: CRC XOR POLYNOMIAL LOW REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			Х<	15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
			X<7:1>				—
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplen	nented bit, rea	d as '0'		
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

bit 15-1X<15:1>: XOR of Polynomial Term Xⁿ Enable bitsbit 0Unimplemented: Read as '0'

© 2011 Microchip Technology Inc.

NOTES:

27.0 SPECIAL FEATURES

Note:	This data sheet summarizes the features of
	the dsPIC33EPXXXGP50X,
	dsPIC33EPXXXMC20X/50X, and
	PIC24EPXXXGP/MC20X families of
	devices. It is not intended to be a
	comprehensive reference source. To
	complement the information in this data
	sheet, refer to the related section of the
	"dsPIC33E/PIC24E Family Reference
	Manual', which is available from the
	Microchip web site (www.microchip.com).

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are:

- · Flexible configuration
- Watchdog Timer (WDT)
- Code Protection and CodeGuard[™] Security
- JTAG Boundary Scan Interface
- In-Circuit Serial Programming[™] (ICSP[™])
- In-Circuit Emulation

27.1 Configuration Bits

In dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X, and PIC24EPXXXGP/MC20X devices, the configuration bytes are implemented as volatile memory. This means that configuration data must be programmed each time the device is powered up. Configuration data is stored in at the top of the on-chip program memory space, known as the Flash Configuration Bytes. Their specific locations are shown in Table 27-1. The configuration data is automatically loaded from the Flash Configuration Bytes to the proper Configuration shadow registers during device Resets.

Note:	Configuration data is reloaded on all types
	of device Resets.

When creating applications for these devices, users should always specifically allocate the location of the Flash Configuration Bytes for configuration data in their code for the compiler. This is to make certain that program code is not stored in this address when the code is compiled.

The upper 2 bytes of all Flash Configuration Words in program memory should always be '1111 1111 1111 1111 1111 1111'. This makes them appear to be NOP instructions in the remote event that their locations are ever executed by accident. Since Configuration bits are not implemented in the corresponding locations, writing '1's to these locations has no effect on device operation.

Note: Performing a page erase operation on the last page of program memory clears the Flash Configuration Bytes, enabling code protection as a result. Therefore, users should avoid performing page erase operations on the last page of program memory.

The Configuration Flash Bytes map is shown in Table 27-1.

TABLE 27-1: C	ONFIGURATION BYTE REGISTER MAP
---------------	--------------------------------

File Name	Addr.	Bit 23-16	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Reserved	00AFEC	_	_	_		—				
Reserved	00AFEE	_	_	—	_			—	_	—
FICD	00AFF0	_		_	JTAGEN	Reserved ⁽²⁾			ICS<	<1:0>
FPOR	00AFF2		WDT\	WIN<1:0>	ALTI2C2	ALTI2C1		_	_	_
FWDT	00AFF4	_	FWDTEN	WINDIS	PLLKEN	WDTPRE		WDTPOST	[<3:0>	
FOSC	00AFF6		FCK	SM<1:0>	IOL1WAY	—		OSCIOFNC	POSCN	1D<1:0>
FOSCSEL	00AFF8		IESO	PWMLOCK ⁽¹⁾	—	_		FNO	SC<2:0>	>
FGS	00AFFA		—	—	—	_		_	GCP	GWRP
Reserved	00AFFC		—	_	—	_	_	—	_	—
Reserved	00AFFE		_	_		—	_		_	_

Legend: — = unimplemented, read as '1'.

Note 1: These bits are only available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

2: This bit is reserved; program as '0'.

Bit Field	Description
GCP	General Segment Code-Protect bit
	1 = User program memory is not code-protected
	0 = Code protection is enabled for the entire program memory space
GWRP	General Segment Write-Protect bit
	1 = User program memory is not write-protected
	0 = User program memory is write-protected
IESO	Two-speed Oscillator Start-up Enable bit
	1 = Start-up device with FRC, then automatically switch to the
	user-selected oscillator source when ready
	0 = Start-up device with user-selected oscillator source
PWMLOCK ⁽¹⁾	PWM Lock Enable bit
	 Certain PWM registers may only be written after key sequence
	0 = PWM registers may be written without key
FNOSC<2:0>	Oscillator Selection bits
	111 = Fast RC Oscillator with divide-by-N (FRCDIVN)
	110 = Reserved; do not use
	101 = Low-Power RC Oscillator (LPRC)
	100 = Reserved; do not use
	011 = Primary Oscillator with PLL module (XT + PLL, HS + PLL, EC + PLL)
	010 = Primary Oscillator (XT, HS, EC)
	001 = Fast RC Oscillator with divide-by-N with PLL module (FRCPLL)
	000 = Fast RC Oscillator (FRC)
FCKSM<1:0>	Clock Switching Mode bits
	1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled
	01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled
	00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
IOL1WAY	Peripheral pin select configuration
	1 = Allow only one reconfiguration
000105110	0 = Allow multiple reconfigurations
OSCIOFNC	OSC2 Pin Function bit (except in XT and HS modes)
	1 = OSC2 is clock output
	0 = OSC2 is general purpose digital I/O pin
POSCMD<1:0>	Primary Oscillator Mode Select bits
	11 = Primary oscillator disabled 10 = HS Crystal Oscillator mode (10 MHz - 32 MHz)
	01 = XT Crystal Oscillator mode (3 MHz - 10 MHz)
	01 = C(External Clock) mode (DC - 32 MHz)
FWDTEN	Watchdog Timer Enable bit
FWDIEN	1 = Watchdog Timer always enabled (LPRC oscillator cannot be disabled. Clearing the
	SWDTEN bit in the RCON register will have no effect.)
	0 = Watchdog Timer enabled/disabled by user software (LPRC can be disabled by clearing
	the SWDTEN bit in the RCON register)
WINDIS	Watchdog Timer Window Enable bit
	1 = Watchdog Timer in Non-Window mode
	0 = Watchdog Timer in Window mode
PLLKEN	PLL Lock Enable bit
	1 = PLL lock enabled
	0 = PLL lock disabled
WDTPRE	
WDIFNE	Watchdog Timer Prescaler bit 1 = 1:128
	0 = 1.32
	0 = 1.52

TABLE 27-2: CONFIGURATION BITS DESCRIPTION

Note 1: This bit is only available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

Bit Field	Description
WDTPOST<3:0>	Watchdog Timer Postscaler bits 1111 = 1:32,768 1110 = 1:16,384 0001 = 1:2 0000 = 1:1
WDTWIN<1:0>	Watchdog Window Select bits 11 = WDT Window is 25% of WDT period 10 = WDT Window is 37.5% of WDT period 01 = WDT Window is 50% of WDT period 00 = WDT Window is 75% of WDT period
ALTI2C1	Alternate I ² C1 pins 1 = I ² C1 mapped to SDA1/SCL1 pins 0 = I ² C1 mapped to ASDA1/ASCL1 pins
ALTI2C2	Alternate I^2C2 pins 1 = I^2C2 mapped to SDA2/SCL2 pins 0 = I^2C2 mapped to ASDA2/ASCL2 pins
JTAGEN	JTAG Enable bit 1 = JTAG enabled 0 = JTAG disabled
ICS<1:0>	ICD Communication Channel Select bits 11 = Communicate on PGEC1 and PGED1 10 = Communicate on PGEC2 and PGED2 01 = Communicate on PGEC3 and PGED3 00 = Reserved, do not use

TABLE 27-2:	CONFIGURATION BITS DESCRIPTION ((CONTINUED)	•
			/

Note 1: This bit is only available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

R	R	R	R	R	R	R	R
			DEVID<	<23:16>			
bit 23							bit 16
R	R	R	R	R	R	R	R
			DEVID	<15:8>			
bit 15							bit 8
R	R	R	R	R	R	R	R
			DEVID)<7:0>			
bit 7							bit 0
r							
Legend:	R = Read-Only bit	Only bit U = Unimplemented bit					

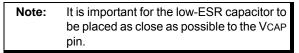
REGISTER 27-1: DEVID: DEVICE ID REGISTER

bit 23-0 **DEVID<23:0>:** Device Identifier bits⁽¹⁾

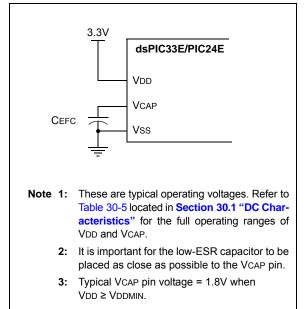
Note 1: Refer to the "dsPIC33E/PIC24E Flash Programming Specification" (DS70619) for the list of device ID values.

REGISTER 27-2: DEVREV: DEVICE REVISION REGISTER

R	R	R	R	R	R	R	R
			DEVREV	/<23:16>			
bit 23							bit 16
R	R	R	R	R	R	R	R
			DEVRE	V<15:8>			
bit 15							bit 8
R	R	R	R	R	R	R	R
ĸ	ĸ	К			ĸ	К	К
			DEVRE	:V<7:0>			
bit 7							bit 0
Legend:	R = Read-only bit			U = Unimpler	nented bit		


bit 23-0 **DEVREV<23:0>:** Device Revision bits⁽¹⁾

Note 1: Refer to the "dsPIC33E/PIC24E Flash Programming Specification" (DS70619) for the list of device revision values.


27.2 On-Chip Voltage Regulator

All of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/ MC20X devices power their core digital logic at a nominal 1.8V. This can create a conflict for designs that are required to operate at a higher typical voltage, such as 3.3V. To simplify system design, all devices in the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X family incorporate an onchip regulator that allows the device to run its core logic from VDD.

The regulator provides power to the core from the other VDD pins. A low-ESR (less than 1 Ohm) capacitor (such as tantalum or ceramic) must be connected to the VCAP pin (Figure 27-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is provided in Table 30-5 located in Section 30.0 "Electrical Characteristics".

FIGURE 27-1: CONNECTIONS FOR THE ON-CHIP VOLTAGE REGULATOR^(1,2,3)

27.3 Brown-out Reset (BOR)

The Brown-out Reset (BOR) module is based on an internal voltage reference circuit that monitors the regulated supply voltage VCAP. The main purpose of the BOR module is to generate a device Reset when a brown-out condition occurs. Brown-out conditions are generally caused by glitches on the AC mains (for example, missing portions of the AC cycle waveform due to bad power transmission lines, or voltage sags due to excessive current draw when a large inductive load is turned on).

A BOR generates a Reset pulse, which resets the device. The BOR selects the clock source, based on the device Configuration bit values (FNOSC<2:0> and POSCMD<1:0>).

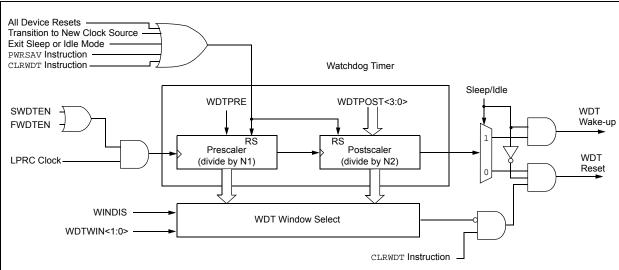
If an oscillator mode is selected, the BOR activates the Oscillator Start-up Timer (OST). The system clock is held until OST expires. If the PLL is used, the clock is held until the LOCK bit (OSCCON<5>) is '1'.

Concurrently, the PWRT time-out (TPWRT) is applied before the internal Reset is released. If TPWRT = 0 and a crystal oscillator is being used, then a nominal delay of TFSCM is applied. The total delay in this case is TFSCM. Refer to parameter SY35 in Table 30-24 of **Section 30.0 "Electrical Characteristics**" for specific TFSCM values.

The BOR Status bit (RCON<1>) is set to indicate that a BOR has occurred. The BOR circuit, continues to operate while in Sleep or Idle modes and resets the device should VDD fall below the BOR threshold voltage.

27.4 Watchdog Timer (WDT)

For dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X, and PIC24EPXXXGP/MC20X devices, the WDT is driven by the LPRC oscillator. When the WDT is enabled, the clock source is also enabled.


27.4.1 PRESCALER/POSTSCALER

The nominal WDT clock source from LPRC is 32 kHz. This feeds a prescaler that can be configured for either 5-bit (divide-by-32) or 7-bit (divide-by-128) operation. The prescaler is set by the WDTPRE Configuration bit. With a 32 kHz input, the prescaler yields a WDT timeout period (TwDT), as shown in parameter SY12 in Table 30-24.

A variable postscaler divides down the WDT prescaler output and allows for a wide range of time-out periods. The postscaler is controlled by the WDTPOST<3:0> Configuration bits (FWDT<3:0>), which allow the selection of 16 settings, from 1:1 to 1:32,768. Using the prescaler and postscaler, time-out periods ranging from 1 ms to 131 seconds can be achieved.

The WDT, prescaler and postscaler are reset:

- · On any device Reset
- On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSC bits) or by hardware (i.e., Fail-Safe Clock Monitor)
- When a PWRSAV instruction is executed (i.e., Sleep or Idle mode is entered)
- When the device exits Sleep or Idle mode to resume normal operation
- By a CLRWDT instruction during normal execution
- Note: The CLRWDT and PWRSAV instructions clear the prescaler and postscaler counts when executed.

FIGURE 27-2: WDT BLOCK DIAGRAM

27.4.2 SLEEP AND IDLE MODES

If the WDT is enabled, it continues to run during Sleep or Idle modes. When the WDT time-out occurs, the device wakes the device and code execution continues from where the PWRSAV instruction was executed. The corresponding SLEEP or IDLE bits (RCON<3,2>) needs to be cleared in software after the device wakes up.

27.4.3 ENABLING WDT

The WDT is enabled or disabled by the FWDTEN Configuration bit in the FWDT Configuration register. When the FWDTEN Configuration bit is set, the WDT is always enabled.

The WDT can be optionally controlled in software when the FWDTEN Configuration bit has been programmed to '0'. The WDT is enabled in software by setting the SWDTEN control bit (RCON<5>). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user application to enable the WDT for critical code segments and disable the WDT during non-critical segments for maximum power savings.

The WDT flag bit, WDTO (RCON<4>), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flag must be cleared in software.

27.4.4 WDT WINDOW

The Watchdog Timer has an optional Windowed mode enabled by programming the WINDIS bit in the WDT configuration register (FWDT<6>). In the Windowed mode (WINDIS = 0), the WDT should be cleared based on the settings in the programmable watchdog window select bits (WDTWIN<1:0>).

27.5 JTAG Interface

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X devices implement a JTAG interface, which supports boundary scan device testing. Detailed information on this interface is provided in future revisions of the document.

Note: Refer to Section 24. "Programming and Diagnostics" (DS70608) of the "dsPIC33E/PIC24E Family Reference Manual" for further information on usage, configuration and operation of the JTAG interface.

27.6 In-Circuit Serial Programming

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X, and PIC24EPXXXGP/MC20X devices can be serially programmed while in the end application circuit. This is done with two lines for clock and data and three other lines for power, ground and the programming sequence. Serial programming allows customers to manufacture boards with unprogrammed devices and then program the device just before shipping the product. Serial programming also allows the most recent firmware or a custom firmware to be programmed. Refer to the *"dsPIC33E/PIC24E Flash Programming Specification"* (DS70619) for details about In-Circuit Serial Programming (ICSP).

Any of the three pairs of programming clock/data pins can be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

27.7 In-Circuit Debugger

When MPLAB[®] ICD 3 or REAL ICE[™] is selected as a debugger, the in-circuit debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB IDE. Debugging functionality is controlled through the PGECx (Emulation/ Debug Clock) and PGEDx (Emulation/Debug Data) pin functions.

Any of the three pairs of debugging clock/data pins can be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

To use the in-circuit debugger function of the device, the design must implement ICSP connections to MCLR, VDD, VSS, and the PGECx/PGEDx pin pair. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins (PGECx and PGEDx).

27.8 Code Protection and CodeGuard™ Security

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X, and PIC24EPXXXGP/MC20X devices offer basic implementation of CodeGuard Security that supports only General Segment (GS) security. This feature helps protect individual Intellectual Property.

Note: Refer to Section 23. "CodeGuard™ Security" (DS70634) of the "dsPIC33E/ PIC24E Family Reference Manual" for further information on usage, configuration and operation of CodeGuard Security. NOTES:

28.0 INSTRUCTION SET SUMMARY

Note: This data sheet summarizes the features of the dsPIC33EPXXXGP50X. dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. То complement the information in this data sheet, refer to the related section of the "dsPIC33E/PIC24E Family Reference Manual', which is available from the Microchip web site (www.microchip.com).

The dsPIC33EP instruction set is almost identical to that of the dsPIC30F and dsPIC33F. The PIC24EP instruction set is almost identical to that of the PIC24F and PIC24H.

Most instructions are a single program memory word (24 bits). Only three instructions require two program memory locations.

Each single-word instruction is a 24-bit word, divided into an 8-bit opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into five basic categories:

- Word or byte-oriented operations
- · Bit-oriented operations
- · Literal operations
- DSP operations
- · Control operations

Table 28-1 lists the general symbols used in describing the instructions.

The dsPIC33E instruction set summary in Table 28-2 lists all the instructions, along with the status flags affected by each instruction.

Most word or byte-oriented W register instructions (including barrel shift instructions) have three operands:

- The first source operand, which is typically a register 'Wb' without any address modifier
- The second source operand, which is typically a register 'Ws' with or without an address modifier
- The destination of the result, which is typically a register 'Wd' with or without an address modifier

However, word or byte-oriented file register instructions have two operands:

- · The file register specified by the value 'f'
- The destination, which could be either the file register 'f' or the W0 register, which is denoted as 'WREG'

Most bit-oriented instructions (including simple rotate/ shift instructions) have two operands:

- The W register (with or without an address modifier) or file register (specified by the value of 'Ws' or 'f')
- The bit in the W register or file register (specified by a literal value or indirectly by the contents of register 'Wb')

The literal instructions that involve data movement can use some of the following operands:

- A literal value to be loaded into a W register or file register (specified by 'k')
- The W register or file register where the literal value is to be loaded (specified by 'Wb' or 'f')

However, literal instructions that involve arithmetic or logical operations use some of the following operands:

- The first source operand, which is a register 'Wb' without any address modifier
- The second source operand, which is a literal value
- The destination of the result (only if not the same as the first source operand), which is typically a register 'Wd' with or without an address modifier

The ${\tt MAC}$ class of DSP instructions can use some of the following operands:

- The accumulator (A or B) to be used (required operand)
- The W registers to be used as the two operands
- · The X and Y address space prefetch operations
- · The X and Y address space prefetch destinations
- · The accumulator write back destination

The other DSP instructions do not involve any multiplication and can include:

- The accumulator to be used (required)
- The source or destination operand (designated as Wso or Wdo, respectively) with or without an address modifier
- The amount of shift specified by a W register 'Wn' or a literal value

The control instructions can use some of the following operands:

- A program memory address
- The mode of the table read and table write instructions

Most instructions are a single word. Certain doubleword instructions are designed to provide all the required information in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it executes as a NOP.

The double-word instructions execute in two instruction cycles.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true, or the program counter is changed as a result of the instruction, or a PSV or table read is performed. In these cases, the execution takes multiple instruction cycles with the additional instruction cycle(s) executed as a NOP. Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or two-word instruction. Moreover, double-word moves require two cycles.

Note: For more details on the instruction set, refer to the *"16-bit MCU and DSC Programmer's Reference Manual"* (DS70157).

Field	Description				
#text	Means literal defined by "text"				
(text)	Means "content of text"				
[text]	Means "the location addressed by text"				
{}	Optional field or operation				
a ∈ {b, c, d}	a is selected from the set of values b, c, d				
<n:m></n:m>	Register bit field				
.b	Byte mode selection				
.d	Double-Word mode selection				
.S	Shadow register select				
.w	Word mode selection (default)				
Acc	One of two accumulators {A, B}				
AWB	Accumulator write back destination address register ∈ {W13, [W13]+ = 2}				
bit4	4-bit bit selection field (used in word addressed instructions) ∈ {015}				
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero				
Expr	Absolute address, label or expression (resolved by the linker)				
f	File register address ∈ {0x00000x1FFF}				
lit1	1-bit unsigned literal ∈ {0,1}				
lit4	4-bit unsigned literal ∈ {015}				
lit5	5-bit unsigned literal ∈ {031}				
lit8	8-bit unsigned literal ∈ {0255}				
lit10	10-bit unsigned literal ∈ {0255} for Byte mode, {0:1023} for Word mode				
lit14	14-bit unsigned literal ∈ {016384}				
lit16	16-bit unsigned literal ∈ {065535}				
lit23	23-bit unsigned literal ∈ {08388608}; LSb must be '0'				
None	Field does not require an entry, can be blank				
OA, OB, SA, SB	DSP Status bits: ACCA Overflow, ACCB Overflow, ACCA Saturate, ACCB Saturate				
PC	Program Counter				
Slit10	10-bit signed literal ∈ {-512511}				
Slit16	16-bit signed literal ∈ {-3276832767}				
Slit6	6-bit signed literal ∈ {-1616}				
Wb	Base W register ∈ {W0W15}				
Wd	Destination W register ∈ { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }				
Wdo	Destination W register ∈ { Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] }				
Wm,Wn	Dividend, Divisor working register pair (direct addressing)				

TABLE 28-1: SYMBOLS USED IN OPCODE DESCRIPTIONS

Field	Description			
Wm*Wm	Multiplicand and Multiplier working register pair for Square instructions ∈ {W4 * W4,W5 * W5,W6 * W6,W7 * W7}			
Wm*Wn	Multiplicand and Multiplier working register pair for DSP instructions ∈ {W4 * W5,W4 * W6,W4 * W7,W5 * W6,W5 * W7,W6 * W7}			
Wn	One of 16 working registers ∈ {W0W15}			
Wnd	One of 16 destination working registers ∈ {W0W15}			
Wns	One of 16 source working registers ∈ {W0W15}			
WREG	W0 (working register used in file register instructions)			
Ws	Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }			
Wso	Source W register ∈ { Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }			
Wx	X data space prefetch address register for DSP instructions ∈ {[W8] + = 6, [W8] + = 4, [W8] + = 2, [W8], [W8] - = 6, [W8] - = 4, [W8] - = 2, [W9] + = 6, [W9] + = 4, [W9] + = 2, [W9], [W9] - = 6, [W9] - = 4, [W9] - = 2, [W9 + W12], none}			
Wxd	X data space prefetch destination register for DSP instructions ∈ {W4W7}			
Wy	Y data space prefetch address register for DSP instructions ∈ {[W10] + = 6, [W10] + = 4, [W10] + = 2, [W10], [W10] - = 6, [W10] - = 4, [W10] - = 2, [W11] + = 6, [W11] + = 4, [W11] + = 2, [W11], [W11] - = 6, [W11] - = 4, [W11] - = 2, [W11 + W12], none}			
Wyd	Y data space prefetch destination register for DSP instructions ∈ {W4W7}			

TABLE 28-1:	SYMBOLS USED IN OPCODE DESCRIPTIONS (CONTINUED)

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
1	ADD	ADD	Acc ⁽¹⁾	Add Accumulators	1	1	OA,OB,SA,S B
		ADD	f	f = f + WREG	1	1	C,DC,N,OV,Z
		ADD	f,WREG	WREG = f + WREG	1	1	C,DC,N,OV,Z
		ADD	#lit10,Wn	Wd = lit10 + Wd	1	1	C,DC,N,OV,Z
		ADD	Wb,Ws,Wd	Wd = Wb + Ws	1	1	C,DC,N,OV,Z
		ADD	Wb,#lit5,Wd	Wd = Wb + lit5	1	1	C,DC,N,OV,Z
		ADD	Wso,#Slit4,Acc	16-bit Signed Add to Accumulator	1	1	OA,OB,SA,S B
2	ADDC	ADDC	f	f = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC	f,WREG	WREG = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC	#lit10,Wn	Wd = lit10 + Wd + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,Ws,Wd	Wd = Wb + Ws + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,#lit5,Wd	Wd = Wb + lit5 + (C)	1	1	C,DC,N,OV,Z
3	AND	AND	f	f = f .AND. WREG	1	1	N,Z
		AND	f,WREG	WREG = f .AND. WREG	1	1	N,Z
		AND	#lit10,Wn	Wd = lit10 .AND. Wd	1	1	N,Z
		AND	Wb,Ws,Wd	Wd = Wb .AND. Ws	1	1	N,Z
		AND	Wb,#lit5,Wd	Wd = Wb .AND. lit5	1	1	N,Z
4	ASR	ASR	f	f = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	f,WREG	WREG = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	Ws,Wd	Wd = Arithmetic Right Shift Ws	1	1	C,N,OV,Z
		ASR	Wb,Wns,Wnd	Wnd = Arithmetic Right Shift Wb by Wns	1	1	N,Z
		ASR	Wb,#lit5,Wnd	Wnd = Arithmetic Right Shift Wb by lit5	1	1	N,Z
5	BCLR	BCLR	f,#bit4	Bit Clear f	1	1	None
-		BCLR	Ws,#bit4	Bit Clear Ws	1	1	None
6	BRA	BRA	C,Expr	Branch if Carry	1	1 (4)	None
-		BRA	GE,Expr	Branch if greater than or equal	1	1 (4)	None
		BRA	GEU, Expr	Branch if unsigned greater than or equal	1	1 (4)	None
		BRA	GT,Expr	Branch if greater than	1	1 (4)	None
		BRA	GTU, Expr	Branch if unsigned greater than	1	1 (4)	None
		BRA	LE, Expr	Branch if less than or equal	1	1 (4)	None
		BRA	LEU, Expr	Branch if unsigned less than or equal	1	1 (4)	None
		BRA	LT,Expr	Branch if less than	1	1 (4)	None
		BRA	LTU, Expr	Branch if unsigned less than	1	1 (4)	None
		BRA	N,Expr	Branch if Negative	1	1 (4)	None
		BRA	NC,Expr	Branch if Not Carry	1	1 (4)	None
		BRA	NN, Expr	Branch if Not Negative	1	1 (4)	None
		BRA	NOV, Expr	Branch if Not Overflow	1	1 (4)	None
		BRA	NZ,Expr	Branch if Not Zero	1	1 (4)	None
		BRA	OA, Expr(1)	Branch if Accumulator A overflow	1	1 (4)	None
		BRA	OB, Expr(1)	Branch if Accumulator B overflow	1		None
7			OV, Expr(1)	Branch if Overflow	1	1 (4)	
		BRA	SA, Expr(1)	Branch if Accumulator A saturated	1	1 (4)	None
		BRA	SA, Expr() SB, Expr(1)			1 (4)	None
		BRA		Branch if Accumulator B saturated	1	1 (4)	None
		BRA	Expr	Branch Unconditionally	1	4	None
		BRA	Z,Expr	Branch if Zero	1	1 (4)	None
	D.070	BRA	Wn	Computed Branch	1	4	None
7	BSET	BSET	f,#bit4	Bit Set Me	1	1	None
	BSW	BSET	Ws,#bit4	Bit Set Ws	1	1	None
8		BSW.C	Ws,Wb	Write C bit to Ws <wb></wb>	1	1	None

TABLE 28-2: INSTRUCTION SET OVERVIEW

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
9	BTG	BTG f,#bit4		Bit Toggle f	1	1	None
		BTG	Ws,#bit4	Bit Toggle Ws	1	1	None
10	BTSC	BTSC	f,#bit4	Bit Test f, Skip if Clear	1	1 (2 or 3)	None
		BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	1 (2 or 3)	None
11	BTSS	BTSS f, #bit4 Bit Test f, Skip if Set		1	1 (2 or 3)	None	
		BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None
12	BTST	BTST	f,#bit4	Bit Test f	1	1	Z
		BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С
		BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z
		BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С
		BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z
13	BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z
		BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С
		BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
14	CALL	CALL	lit23	Call subroutine	2	4	SFA
		CALL	Wn	Call indirect subroutine	1	4	SFA
		CALL.L	Wn	Call indirect subroutine (long address)	1	4	SFA
15	CLR	CLR	f	f = 0x0000	1	1	None
		CLR	WREG	WREG = 0x0000	1	1	None
		CLR	Ws	Ws = 0x0000	1	1	None
		CLR	Acc,Wx,Wxd,Wy,Wyd,AWB(1)	Clear Accumulator	1	1	OA,OB,SA,S B
16	CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO,Sleep
17	COM	COM	f	f = f	1	1	N,Z
		COM	f,WREG	WREG = Ī	1	1	N,Z
		COM	Ws,Wd	$Wd = \overline{Ws}$	1	1	N,Z
18	CP	CP	f	Compare f with WREG	1	1	C,DC,N,OV,Z
10	Cr	CP	Wb,#lit8	Compare Wb with lit8	1	1	C,DC,N,OV,Z
		CP	Wb,Ws	Compare Wb with Ws (Wb – Ws)	1	1	C,DC,N,OV,Z
19	CP0	CP0	f	Compare f with 0x0000	1	1	C,DC,N,OV,Z
10	CFU	CP0	Ws	Compare Ws with 0x0000	1	1	C,DC,N,OV,Z
20	CPB	CPB	f	Compare f with WREG, with Borrow	1	1	C,DC,N,OV,Z
20	CID	CPB	Wb,#lit8	Compare Wb with lit8, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,Ws	Compare Wb with Ws, with Borrow $(Wb - Ws - \overline{C})$	1	1	C,DC,N,OV,Z
21	CPSEQ	CPSEQ	Wb,Wn	Compare Wb with Wn, skip if =	1	1 (2 or 3)	None
	CPBEQ	CPBEQ	Wb,Wn,Expr	Compare Wb with Wn, branch if =	1	1 (5)	None
22	CPSGT	CPSGT	Wb,Wn	Compare Wb with Wn, skip if >	1	1 (2 or 3)	None
	CPBGT	CPBGT	Wb,Wn,Expr	Compare Wb with Wn, branch if >	1	1 (5)	None
23	CPSLT	CPSLT	Wb,Wn	Compare Wb with Wn, skip if <	1	1 (2 or 3)	None
	CPBLT	CPBLT	Wb,Wn,Expr	Compare Wb with Wn, branch if <	1	1 (5)	None
24	CPSNE	CPSNE	Wb,Wn	Compare Wb with Wn, skip if ≠	1	1 (2 or 3)	None
	CPBNE	CPBNE	Wb,Wn,Expr	Compare Wb with Wn, branch if ≠	1	1 (5)	None

Note 1: This instruction is available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

Base Instr #	Assembly Mnemonic	Assembly Syntax		Description	# of Words	# of Cycles	Status Flags Affected
25	DAW	DAW Wn		Wn = decimal adjust Wn	1	1	С
26	DEC	DEC	f	f = f - 1	1	1	C,DC,N,OV,Z
		DEC	f,WREG	WREG = f – 1		1	C,DC,N,OV,Z
		DEC	Ws,Wd	Wd = Ws - 1	1	1	C,DC,N,OV,Z
27	DEC2	DEC2	f	f = f - 2	1	1	C,DC,N,OV,Z
		DEC2	f,WREG	WREG = f – 2	1	1	C,DC,N,OV,Z
		DEC2	Ws,Wd	Wd = Ws - 2	1	1	C,DC,N,OV,Z
28	DISI	DISI	#lit14	Disable Interrupts for k instruction cycles	1	1	None
29	DIV	DIV.S	Wm,Wn	Signed 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.SD	Wm,Wn	Signed 32/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.U	Wm,Wn	Unsigned 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.UD	Wm,Wn	Unsigned 32/16-bit Integer Divide	1	18	N,Z,C,OV
30	DIVF	DIVF	Wm, Wn ⁽¹⁾	Signed 16/16-bit Fractional Divide	1	18	N,Z,C,OV
31	DO	DO	<pre>#lit15,Expr(1)</pre>	Do code to PC + Expr, lit15 + 1 times	2	2	None
		DO	Wn,Expr(1)	Do code to PC + Expr, (Wn) + 1 times	2	2	None
32	ED	ED	Wm*Wm,Acc,Wx,Wy,Wxd ⁽¹⁾	Euclidean Distance (no accumulate)	1	1	OA,OB,OAB, SA,SB,SAB
33	EDAC	EDAC	Wm*Wm,Acc,Wx,Wy,Wxd ⁽¹⁾	Euclidean Distance	1	1	OA,OB,OAB, SA,SB,SAB
34	EXCH	EXCH	Wns,Wnd	Swap Wns with Wnd	1	1	None
35	FBCL	FBCL	Ws,Wnd	Find Bit Change from Left (MSb) Side	1	1	С
36	FF1L	FF1L	Ws,Wnd	Find First One from Left (MSb) Side	1	1	С
37	FF1R	FF1R	Ws,Wnd	Find First One from Right (LSb) Side	1	1	С
38	GOTO	GOTO	Expr	Go to address	2	4	None
		GOTO	Wn	Go to indirect	1	4	None
		GOTO.L	Wn	Go to indirect (long address)	1	4	None
39	INC	INC	f	f = f + 1	1	1	C,DC,N,OV,Z
		INC	f,WREG	WREG = f + 1	1	1	C,DC,N,OV,Z
		INC	Ws,Wd	Wd = Ws + 1	1	1	C,DC,N,OV,Z
40	INC2	INC2	f	f = f + 2	1	1	C,DC,N,OV,Z
		INC2	f,WREG	WREG = f + 2	1	1	C,DC,N,OV,Z
		INC2	Ws,Wd	Wd = Ws + 2	1	1	C,DC,N,OV,Z
41	IOR	IOR	f	f = f .IOR. WREG	1	1	N,Z
		IOR	f,WREG	WREG = f .IOR. WREG	1	1	N,Z
		IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N,Z
		IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N,Z
		IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N,Z
42	LAC	LAC	Wso,#Slit4,Acc	Load Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
43	LNK	LNK	#lit14	Link Frame Pointer	1	1	SFA
44	LSR	LSR	f	f = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	f,WREG	WREG = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C,N,OV,Z
		LSR	Wb,Wns,Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N,Z
		LSR	Wb,#lit5,Wnd	Wnd = Logical Right Shift Wb by lit5	1	1	N,Z
45	MAC	MAC	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd,AWB ⁽¹⁾	Multiply and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB
		MAC	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd(1)	Square and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB

TABLE 28-2:	INSTRUCTION SET OVERVIEW ((CONTINUED))
-------------	-----------------------------------	-------------	---

Note 1: This instruction is available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
46	MOV	MOV	f,Wn	Move f to Wn	1	1	None
		MOV	f	Move f to f	1	1	None
		MOV	f,WREG	Move f to WREG	1	1	None
		MOV	#litl6,Wn	Move 16-bit literal to Wn	1	1	None
		MOV.b	#lit8,Wn	Move 8-bit literal to Wn	1	1	None
		MOV	Wn,f	Move Wn to f	1	1	None
		MOV	Wso,Wdo	Move Ws to Wd	1	1	None
		MOV	WREG, f	Move WREG to f	1	1	None
		MOV.D	Wns,Wd	Move Double from W(ns):W(ns + 1) to Wd	1	2	None
		MOV.D	Ws,Wnd	Move Double from Ws to W(nd + 1):W(nd)	1	2	None
47	MOVPAG	MOVPAG	#lit10,DSRPAG	Move 10-bit literal to DSRPAG	1	1	None
		MOVPAG	#lit9,DSWPAG	Move 9-bit literal to DSWPAG	1	1	None
		MOVPAG	#lit8,TBLPAG	Move 8-bit literal to TBLPAG	1	1	None
		MOVPAGW	Ws, DSRPAG	Move Ws<9:0> to DSRPAG	1	1	None
		MOVPAGW	Ws, DSWPAG	Move Ws<8:0> to DSWPAG	1	1	None
		MOVPAGW	Ws, TBLPAG	Move Ws<7:0> to TBLPAG	1	1	None
48	MOVSAC	MOVSAC	Acc,Wx,Wxd,Wy,Wyd,AWB ⁽¹⁾	Prefetch and store accumulator	1	1	None
49	MPY	MPY	Wm*Wn, Acc, Wx, Wxd, Wy, Wyd ⁽¹⁾	Multiply Wm by Wn to Accumulator	1	1	OA,OB,OAE SA,SB,SAE
		MPY	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd ⁽¹⁾	Square Wm to Accumulator	1	1	OA,OB,OA SA,SB,SA
50	MPY.N	MPY.N	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd ⁽¹⁾	-(Multiply Wm by Wn) to Accumulator	1	1	None
51	MSC	MSC	Wm*Wm, Acc, Wx, Wxd, Wy, Wyd, AWB(1)	Multiply and Subtract from Accumulator	1	1	OA,OB,OA SA,SB,SA
52	MUL	MUL.SS	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * signed(Ws)	1	1	None
		MUL.SS	Wb,Ws,Acc(1)	Accumulator = signed(Wb) * signed(Ws)	1	1	None
		MUL.SU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,Ws,Acc(1)	Accumulator = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Acc ⁽¹⁾	Accumulator = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.US	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.US	Wb,Ws,Acc ⁽¹⁾	Accumulator = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.UU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.UU	Wb,#lit5,Acc ⁽¹⁾	Accumulator = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,Ws,Acc(1)	Accumulator = unsigned(Wb) * unsigned(Ws)	1	1	None
		MULW.SS	Wb,Ws,Wnd	Wnd = signed(Wb) * signed(Ws)	1	1	None
		MULW.SU	Wb,Ws,Wnd	Wnd = signed(Wb) * unsigned(Ws)	1	1	None
		MULW.US	Wb,Ws,Wnd	Wnd = unsigned(Wb) * signed(Ws)	1	1	None
		MULW.UU	Wb,Ws,Wnd	Wnd = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	Wnd = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	Wnd = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL	f	W3:W2 = f * WREG	1	1	None

Note 1: 7

This instruction is available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
53	NEG	NEG	_{Acc} (1)	Negate Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		NEG	f	$f = \overline{f} + 1$	1	1	C,DC,N,OV,Z
		NEG	f,WREG	WREG = \overline{f} + 1	1	1	C,DC,N,OV,Z
		NEG	Ws,Wd	$Wd = \overline{Ws} + 1$	1	1	C,DC,N,OV,Z
54	NOP	NOP		No Operation	1	1	None
		NOPR		No Operation	1	1	None
55	POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
		POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
		POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd + 1)	1	2	None
		POP.S		Pop Shadow Registers	1	1	All
56	PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
		PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
		PUSH.D	Wns	Push W(ns):W(ns + 1) to Top-of-Stack (TOS)	1	2	None
		PUSH.S		Push Shadow Registers	1	1	None
57	PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO,Sleep
58	RCALL	RCALL	Expr	Relative Call	1	4	SFA
		RCALL	Wn	Computed Call	1	4	SFA
59	REPEAT	REPEAT	#lit15	Repeat Next Instruction lit15 + 1 times	1	1	None
		REPEAT	Wn	Repeat Next Instruction (Wn) + 1 times	1	1	None
60	RESET	RESET		Software device Reset	1	1	None
61	RETFIE	RETFIE		Return from interrupt	1	6 (5)	SFA
62	RETLW	RETLW	#lit10,Wn	Return with literal in Wn	1	6 (5)	SFA
63	RETURN	RETURN		Return from Subroutine	1	6 (5)	SFA
64	RLC	RLC	f	f = Rotate Left through Carry f	1	1	C,N,Z
		RLC	f,WREG	WREG = Rotate Left through Carry f	1	1	C,N,Z
65	DING	RLC	Ws,Wd	Wd = Rotate Left through Carry Ws f = Rotate Left (No Carry) f	1	1	C,N,Z
05	RLNC	RLNC		WREG = Rotate Left (No Carry) f	1	1	N,Z N,Z
		RLNC	f,WREG Ws,Wd	Will B = Rotate Left (No Carry) Ws	1	1	N,Z
66	RRC	RRC	f	f = Rotate Right through Carry f	1	1	C,N,Z
00	luce	RRC	f,WREG	WREG = Rotate Right through Carry f	1	1	C,N,Z
		RRC	Ws,Wd	Wd = Rotate Right through Carry Ws	1	1	C,N,Z
67	RRNC	RRNC	f	f = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	f,WREG	WREG = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	Ws,Wd	Wd = Rotate Right (No Carry) Ws	1	1	N,Z
68	SAC	SAC	Acc,#Slit4,Wdo ⁽¹⁾	Store Accumulator	1	1	None
		SAC.R	Acc,#Slit4,Wdo ⁽¹⁾	Store Rounded Accumulator	1	1	None
69	SE	SE	Ws,Wnd	Wnd = sign-extended Ws	1	1	C,N,Z
70	SETM	SETM	f	f = 0xFFFF	1	1	None
		SETM	WREG	WREG = 0xFFFF	1	1	None
		SETM	Ws	Ws = 0xFFFF	1	1	None
71	SFTAC	SFTAC	Acc, Wn ⁽¹⁾	Arithmetic Shift Accumulator by (Wn)	1	1	OA,OB,OAB, SA,SB,SAB
		SFTAC	Acc,#Slit6 ⁽¹⁾	Arithmetic Shift Accumulator by Slit6	1	1	OA,OB,OAB, SA,SB,SAB

Note 1: This instruction is available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

Base Instr #	Assembly Mnemonic			Description	# of Words	# of Cycles	Status Flags Affected
72	SL	SL	f	f = Left Shift f		1	C,N,OV,Z
		SL	f,WREG	WREG = Left Shift f	1	1	C,N,OV,Z
		SL	Ws,Wd	Wd = Left Shift Ws	1	1	C,N,OV,Z
		SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N,Z
		SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N,Z
73	SUB	SUB	Acc ⁽¹⁾	Subtract Accumulators	1	1	OA,OB,OAB, SA,SB,SAB
		SUB	f	f = f – WREG	1	1	C,DC,N,OV,Z
		SUB	f,WREG	WREG = f – WREG	1	1	C,DC,N,OV,Z
		SUB	#lit10,Wn	Wn = Wn – lit10	1	1	C,DC,N,OV,Z
		SUB	Wb,Ws,Wd	Wd = Wb – Ws	1	1	C,DC,N,OV,Z
		SUB	Wb,#lit5,Wd	Wd = Wb – lit5	1	1	C,DC,N,OV,Z
74	SUBB	SUBB	f	$f = f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	f,WREG	WREG = $f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	#lit10,Wn	Wn = Wn - lit10 - (\overline{C})	1	1	C,DC,N,OV,Z
		SUBB	Wb,Ws,Wd	$Wd = Wb - Ws - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	Wb,#lit5,Wd	$Wd = Wb - lit5 - (\overline{C})$	1	1	C,DC,N,OV,Z
75	SUBR	SUBR	f	f = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	f,WREG	WREG = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	Wb,Ws,Wd	Wd = Ws – Wb	1	1	C,DC,N,OV,Z
		SUBR	Wb,#lit5,Wd	Wd = lit5 – Wb	1	1	C,DC,N,OV,Z
76	SUBBR	SUBBR	f	$f = WREG - f - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	f,WREG	WREG = WREG – f – (\overline{C})	1	1	C,DC,N,OV,Z
		SUBBR	Wb,Ws,Wd	$Wd = Ws - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	Wb,#lit5,Wd	$Wd = lit5 - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
77	SWAP	SWAP.b	Wn	Wn = nibble swap Wn	1	1	None
		SWAP	Wn	Wn = byte swap Wn	1	1	None
78	TBLRDH	TBLRDH	Ws,Wd	Read Prog<23:16> to Wd<7:0>	1	5	None
79	TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	5	None
80	TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None
81	TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None
82	ULNK	ULNK		Unlink Frame Pointer	1	1	SFA
83	XOR	XOR	f	f = f .XOR. WREG	1	1	N,Z
		XOR	f,WREG	WREG = f .XOR. WREG	1	1	N,Z
		XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N,Z
		XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N,Z
		XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N,Z
84	ZE	ZE	Ws,Wnd	Wnd = Zero-extend Ws	1	1	C,Z,N

Note 1: This instruction is available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

NOTES:

29.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers and dsPIC[®] digital signal controllers are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB C Compiler for Various Device Families
 - HI-TECH C for Various Device Families
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- · Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers
 - MPLAB ICD 3
 - PICkit™ 3 Debug Express
- Device Programmers
 - PICkit[™] 2 Programmer
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits, and Starter Kits

29.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16/32-bit microcontroller market. The MPLAB IDE is a Windows[®] operating system-based application that contains:

- · A single graphical interface to all debugging tools
 - Simulator
 - Programmer (sold separately)
 - In-Circuit Emulator (sold separately)
 - In-Circuit Debugger (sold separately)
- · A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- · High-level source code debugging
- · Mouse over variable inspection
- Drag and drop variables from source to watch windows
- · Extensive on-line help
- Integration of select third party tools, such as IAR C Compilers

The MPLAB IDE allows you to:

- · Edit your source files (either C or assembly)
- One-touch compile or assemble, and download to emulator and simulator tools (automatically updates all project information)
- · Debug using:
 - Source files (C or assembly)
 - Mixed C and assembly
 - Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

29.2 MPLAB C Compilers for Various Device Families

The MPLAB C Compiler code development systems are complete ANSI C compilers for Microchip's PIC18, PIC24 and PIC32 families of microcontrollers and the dsPIC30 and dsPIC33 families of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

29.3 HI-TECH C for Various Device Families

The HI-TECH C Compiler code development systems are complete ANSI C compilers for Microchip's PIC family of microcontrollers and the dsPIC family of digital signal controllers. These compilers provide powerful integration capabilities, omniscient code generation and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

The compilers include a macro assembler, linker, preprocessor, and one-step driver, and can run on multiple platforms.

29.4 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM Assembler features include:

- · Integration into MPLAB IDE projects
- User-defined macros to streamline
 assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

29.5 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

29.6 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC devices. MPLAB C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command line interface
- · Rich directive set
- · Flexible macro language
- · MPLAB IDE compatibility

29.7 MPLAB SIM Software Simulator

The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC[®] DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

29.8 MPLAB REAL ICE In-Circuit Emulator System

MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs PIC[®] Flash MCUs and dsPIC[®] Flash DSCs with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with incircuit debugger systems (RJ11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables.

29.9 MPLAB ICD 3 In-Circuit Debugger System

MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost effective high-speed hardware debugger/programmer for Microchip Flash Digital Signal Controller (DSC) and microcontroller (MCU) devices. It debugs and programs PIC[®] Flash microcontrollers and dsPIC[®] DSCs with the powerful, yet easyto-use graphical user interface of MPLAB Integrated Development Environment (IDE).

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

29.10 PICkit 3 In-Circuit Debugger/ Programmer and PICkit 3 Debug Express

The MPLAB PICkit 3 allows debugging and programming of PIC[®] and dsPIC[®] Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB Integrated Development Environment (IDE). The MPLAB PICkit 3 is connected to the design engineer's PC using a full speed USB interface and can be connected to the target via an Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the reset line to implement in-circuit debugging and In-Circuit Serial Programming[™].

The PICkit 3 Debug Express include the PICkit 3, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

29.11 PICkit 2 Development Programmer/Debugger and PICkit 2 Debug Express

The PICkit[™] 2 Development Programmer/Debugger is a low-cost development tool with an easy to use interface for programming and debugging Microchip's Flash families of microcontrollers. The full featured Windows[®] programming interface supports baseline (PIC10F, PIC12F5xx, PIC16F5xx), midrange (PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30, dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit microcontrollers, and many Microchip Serial EEPROM products. With Microchip's powerful MPLAB Integrated Development Environment (IDE) the PICkit[™] 2 enables in-circuit debugging on most PIC[®] microcontrollers. In-Circuit-Debugging runs, halts and single steps the program while the PIC microcontroller is embedded in the application. When halted at a breakpoint, the file registers can be examined and modified.

The PICkit 2 Debug Express include the PICkit 2, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

29.12 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an MMC card for file storage and data applications.

29.13 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

30.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/ MC20X electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings⁽¹⁾

Storage temperature $-65^{\circ}C$ to $+150^{\circ}C$ Voltage on VDD with respect to Vss $-0.3V$ to $+4.0V$ Voltage on any pin that is not 5V tolerant, with respect to Vss ⁽³⁾ $-0.3V$ to $(VDD + 0.3V)$ Voltage on any 5V tolerant pin with respect to Vss when VDD $\geq 3.0V^{(3)}$ $-0.3V$ to $+5.5V$ Voltage on any 5V tolerant pin with respect to Vss when VDD $< 3.0V^{(3)}$ $-0.3V$ to $3.6V$
Voltage on any pin that is not 5V tolerant, with respect to $Vss^{(3)}$
Voltage on any 5V tolerant pin with respect to Vss when $VDD \ge 3.0V^{(3)}$
Voltage on any 5V tolerant pin with respect to Vss when $VDD < 3.0V^{(3)}$
Maximum current out of Vss pin
Maximum current into VDD pin ⁽²⁾
Maximum current sunk by any I/O pin ⁽⁴⁾
Maximum current sourced by any I/O ⁽⁴⁾
Maximum current sunk by all ports ^(2,5)
Maximum current sourced by all ports ^(2,5)

- **Note 1:** Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
 - 2: Maximum allowable current is a function of device maximum power dissipation (see Table 30-2).
 - 3: See the "Pin Diagrams" section for the 5V tolerant pins.
 - 4: Exceptions are: RA4, RA9, RB7-RB15, and RC3, which are able to sink/source 30/20 mA.
 - **5:** Exceptions are: dsPIC33EPXXXGP502, dsPIC33EPXXXMC202/502, and PIC24EPXXXGP/MC202 devices, which have a maximum sink/source capability of 130 mA when operating at +125°C.

30.1 DC Characteristics

TABLE 30-1: OPERATING MIPS VS. VOLTAGE

			Max MIPS
Characteristic	VDD Range (in Volts)	Temp Range (in °C)	dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X
	VBOR-3.6V	-40°C to +85°C	60
	VBOR-3.6V	-40°C to +125°C	60

TABLE 30-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Max	Unit
Industrial Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+125	°C
Operating Ambient Temperature Range	TA	-40	—	+85	°C
Extended Temperature Devices					
Operating Junction Temperature Range	TJ	-40	_	+140	°C
Operating Ambient Temperature Range	TA	-40	_	+125	°C
Power Dissipation: Internal chip power dissipation: $PINT = VDD x (IDD - \Sigma IOH)$	PD PINT + PI/O			W	
I/O Pin Power Dissipation: I/O = Σ ({VDD - VOH} x IOH) + Σ (VOL x IOL)					
Maximum Allowed Power Dissipation	PDMAX	(TJ — TA)/θJ	IA	W

TABLE 30-3: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Тур	Max	Unit	Notes
Package Thermal Resistance, 64-Pin QFN	θја	28.0	—	°C/W	1
Package Thermal Resistance, 64-Pin TQFP 10x10 mm	θја	48.3	—	°C/W	1
Package Thermal Resistance, 44-Pin QFN	θја	29.0	_	°C/W	1
Package Thermal Resistance, 44-Pin TQFP 10x10 mm	θја	49.8	_	°C/W	1
Package Thermal Resistance, 44-Pin TLA 6x6 mm	θја	25.2	—	°C/W	1
Package Thermal Resistance, 36-Pin TLA 5x5 mm	θја	28.5	_	°C/W	1
Package Thermal Resistance, 28-Pin QFN-S	θја	30.0	_	°C/W	1
Package Thermal Resistance, 28-Pin SSOP	θја	71.0	—	°C/W	1
Package Thermal Resistance, 28-Pin SOIC	θја	69.7	_	°C/W	1
Package Thermal Resistance, 28-Pin SPDIP	θja	60.0	—	°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

TABLE 30-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CHA	RACTER	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No. Symbol Characteristic			Min	Тур ⁽¹⁾	Max	Units	Conditions
Operati	ng Voltag	6					
DC10	Vdd	Supply Voltage ⁽³⁾	VBOR	_	3.6	V	—
DC12	Vdr	RAM Data Retention Voltage ⁽²⁾	1.8	_	_	V	—
DC16	VPOR	VDD Start Voltage to ensure internal Power-on Reset signal	_	_	Vss	V	_
DC17	SVDD	V DD Rise Rate to ensure internal Power-on Reset signal	1.0	—	_	V/ms	0V-3.0V in 3 ms

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: This is the limit to which VDD may be lowered without losing RAM data.

3: VDD voltage must remain at Vss for a minimum of 200 µs to ensure POR.

TABLE 30-5: FILTER CAPACITOR (CEFC) SPECIFICATIONS

	Standard Operating Conditions (unless otherwise stated): Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended								
Param No.	Symbol	Characteristics	Min	Тур	Max	Units	Comments		
	Cefc	External Filter Capacitor Value ⁽¹⁾	4.7	10	—	μF	Capacitor must have a low series resistance (< 1 ohm)		

Note 1: Typical VCAP voltage = 1.8 volts when VDD \ge VDDMIN.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, AND PIC24EPXXXGP/MC20X

DC CHARACT	ERISTICS		(unless oth	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le + 85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Parameter No.	Тур	Мах	Units	Conditions						
Operating Cur	rent (IDD) ⁽¹⁾									
DC20d	5	_	mA	-40°C						
DC20a	5	_	mA	+25°C	3.3V	10 MIPS				
DC20b	5	_	mA	+85°C	3.3V	TO MIPS				
DC20c	5	_	mA	+125°C						
DC22d	10	_	mA	-40°C		20 MIPS				
DC22a	10	_	mA	+25°C	3.3V					
DC22b	10	_	mA	+85°C	3.3V					
DC22c	10	_	mA	+125°C						
DC24d	20	_	mA	-40°C						
DC24a	20	_	mA	+25°C	3.3V	40 MIPS				
DC24b	20	_	mA	+85°C	3.3V	40 MIPS				
DC24c	20		mA	+125°C						
DC25d	30	_	mA	-40°C						
DC25a	30	—	mA	+25°C	3.3V	60 MIPS				
DC25b	30		mA	+85°C	3.3V	00 MIPS				
DC25c	30	_	mA	+125°C						

TABLE 30-6: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

Note 1: IDD is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows:

- Oscillator is configured in EC mode, OSC1 is driven with external square wave from rail-to-rail
- · CLKO is configured as an I/O input pin in the Configuration word
- · All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating; however, every peripheral is being clocked (PMDx bits are all zeroed)
- CPU executing while(1) statement

DC CHARACTI	ERISTICS		(unless othe	tandard Operating Conditions: 3.0V to 3.6V Inless otherwise stated) perating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Parameter No.	Тур	Мах	Units	Conditions						
Idle Current (III	dle) ⁽¹⁾									
DC40d	2	_	mA	-40°C						
DC40a	2	—	mA	+25°C		10 MIPS				
DC40b	2	_	mA	+85°C	3.3V	10 MIPS				
DC40c	2	_	mA	+125°C						
DC42d	4	_	mA	-40°C						
DC42a	4	_	mA	+25°C	3.3V	20 MIPS				
DC42b	4	_	mA	+85°C	5.50	20 101175				
DC42c	4	_	mA	+125°C						
DC44d	10		mA	-40°C						
DC44a	10	-	mA	+25°C	3.3V	40 MIPS				
DC44b	10	_	mA	+85°C	3.3V	40 101153				
DC44c	10	_	mA	+125°C						
DC45d	15	—	mA	-40°C						
DC45a	15	_	mA	+25°C	3.3V	60 MIPS				
DC45b	15	_	mA	+85°C	3.3V					
DC45c	15	_	mA	+125°C						

TABLE 30-7: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

Note 1: Base Idle current (IIDLE) is measured as follows:

- CPU core is off, oscillator is configured in EC mode, OSC1 is driven with external square wave from rail-to-rail
- · CLKO is configured as an I/O input pin in the Configuration word
- All I/O pins are configured as inputs and pulled to Vss
- $\overline{\text{MCLR}}$ = VDD, WDT and FSCM are disabled
- No peripheral modules are operating; however, every peripheral is being clocked (PMDx bits are all zeroed)
- The NVMSIDL bit (NVMCON<12>) = 1 (i.e., Flash regulator is set to stand-by while the device is in Idle mode)
- The VREGSF bit (RCON<11>) = 0 (i.e., Flash regulator is set to stand-by while the device is in Sleep mode)

TABLE 30-8: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

DC CHARACTERISTICS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤+ 85°C for Industrial -40°C ≤ TA ≤+ 125°C for Extended						
Parameter No.	Тур	Max	Units			Conditions
Power-Down	Current (IPD) ⁽	1,3)				
DC60d	25	100	μA	-40°C		
DC60a	30	200	μA	+25°C	2 2)/	Base Power-Down Current
DC60b	65	500	μA	+85°C	3.3V	Base Power-Down Current
DC60c	195	1000	μA	+125°C		
DC61d	8	10	μA	-40°C		
DC61a	10	15	μA	+25°C	2 2)/	Watchdog Timer Current: ΔIwDT ⁽²⁾
DC61b	12	20	μA	+85°C	3.3V	
DC61c	13	25	μA	+125°C		

Note 1: IPD (Sleep) current is measured as follows:

- CPU core is off, oscillator is configured in EC mode, OSC1 is driven with external square wave from rail-to-rail
- CLKO is configured as an I/O input pin in the Configuration word
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled
- All peripheral modules are disabled (PMDx bits are all ones)
- The VREGS bit (RCON<8>) = 0 (i.e., core regulator is set to stand-by while the device is in Sleep mode)
- The VREGSF bit (RCON<11>) = 0 (i.e., Flash regulator is set to stand-by while the device is in Sleep mode)
- 2: The Δ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.
- 3: These currents are measured on the device containing the most memory in this family.

DC CHARACTER	ISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Parameter No.	Тур	Doze Ratio	Units		Cond	litions	
Doze Current (IDC	DZE) ⁽¹⁾	·			•		
DC73a	20	110	1:2	mA	-40°C	3.3V	Fosc = 120 MHz
DC73g	15	100	1:128	mA	-40 C	3.3V	
DC70a	20	110	1:2	mA	+25°C	3.3V	Fosc = 120 MHz
DC70g	15	100	1:128	mA	+25 C	3.3V	
DC71a	20	110	1:2	mA	105%0	2.21/	Fosc = 120 MHz
DC71g	15	100	1:128	mA	+85°C	3.3V	FOSC = 120 MHZ
DC72a	20	110	1:2	mA	+125°C	2 21/	Fosc = 120 MHz
DC72g	15	100	1:128	mA	+125 C	3.3V	

TABLE 30-9: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)

Note 1: IDOZE is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDOZE measurements are as follows:

- Oscillator is configured in EC mode, OSC1 is driven with external square wave from rail-to-rail
- · CLKO is configured as an I/O input pin in the Configuration word
- · All I/O pins are configured as inputs and pulled to Vss
- $\overline{\text{MCLR}}$ = VDD, WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating; however, every peripheral is being clocked (PMDx bits are all zeroed)
- CPU executing while(1) statement

DC CH	ARACTER	RISTICS	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Param No.	Symbol	Characteristic	Min	Тур ⁽¹⁾	Max	Units	Conditions		
	VIL	Input Low Voltage							
DI10		I/O pins	Vss		0.2 Vdd	V			
DI15		MCLR	Vss		0.2 VDD	V			
DI16		I/O Pins with OSC1	Vss		0.2 Vdd	V			
DI18		I/O Pins with SDAx, SCLx	Vss		0.3 Vdd	V	SMBus disabled		
DI19		I/O Pins with SDAx, SCLx	Vss		0.8	V	SMBus enabled		
	Vih	Input High Voltage							
DI20		I/O Pins Not 5V Tolerant ⁽⁴⁾ I/O Pins 5V Tolerant ⁽⁴⁾	0.7 VDD 0.7 VDD	—	Vdd 5.3	V V			
		I/O Pins with SDAx, SCLx	0.7 VDD 0.7 VDD	_	5.3	V	SMBus disabled		
		I/O Pins with SDAx, SCLx	2.1	—	5.3	V	SMBus enabled		
	ICNPU	Change Notification Pull-up Current							
DI30			50	250	400	μA	VDD = 3.3V, VPIN = VSS		
	ICNPD	Change Notification Pull- down Current ⁽⁵⁾							
DI31			—	50	—	μA	VDD = 3.3V, VPIN = VDD		

TABLE 30-10: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.

- **3:** Negative current is defined as current sourced by the pin.
- 4: See "Pin Diagrams" for the 5V tolerant I/O pins.
- 5: VIL source < (Vss 0.3). Characterized but not tested.

6: Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not tested.

7: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.

8: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

9: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

DC CH	ARACTER	RISTICS	(unless otherv	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industria						
							5°C for Extended			
Param No.	Symbol	Characteristic	Min Typ ⁽¹⁾ Max U				Conditions			
DI50	lı.	Input Leakage Current ^(2,3) I/O pins 5V Tolerant ⁽⁴⁾	_	±1	_	μΑ	Vss ⊴VPIN ⊴VDD, Pin at high-impedance			
DI51		I/O Pins Not 5V Tolerant ⁽⁴⁾	_	±1	—	μA	Vss ≤VPIN ≤VDD, Pin at high-impedance, -40°C ≤ Ta ≤+85°C			
DI51a		I/O Pins Not 5V Tolerant ⁽⁴⁾	—	±1	_	μΑ	Analog pins shared with external reference pins, $-40^{\circ}C \le TA \le +85^{\circ}C$			
DI51b		I/O Pins Not 5V Tolerant ⁽⁴⁾	—	±1	_	μA	Vss ≤VPIN ≤VDD, Pin at high-impedance, -40°C ≤TA ≤+125°C			
DI51c		I/O Pins Not 5V Tolerant ⁽⁴⁾	_	±1	_	μA	Analog pins shared with external reference pins, -40°C ≤TA ≤+125°C			
DI55		MCLR	—	±1	_	μA	Vss ⊴Vpin ⊴Vdd			
DI56		OSC1	—	±1	—	μA	Vss ⊴VPIN ⊴VDD, XT and HS modes			

TABLE 30-10: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.

- **3:** Negative current is defined as current sourced by the pin.
- 4: See "Pin Diagrams" for the 5V tolerant I/O pins.
- 5: VIL source < (Vss 0.3). Characterized but not tested.
- **6:** Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not tested.
- 7: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.

8: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

9: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

DC CH	ARACTER	RISTICS	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Units	Conditions			
DI60a	licl	Input Low Injection Current	0		₋₅ (5,8)	mA	All pins except VDD, Vss, AVDD, AVss, MCLR, VCAP, and RB7		
DI60b	Іісн	Input High Injection Current	0	_	+5(6,7,8)	mA	All pins exce <u>pt VDD,</u> Vss, AVDD, AVss, MCLR, VCAP, RB7, and all 5V tolerant pins ⁽⁷⁾		
DI60c	∑ист	Total Input Injection Current (sum of all I/O and control pins)	₋₂₀ (9)		+20 ⁽⁹⁾	mA	Absolute instantaneous sum of all ± input injection currents from all I/O pins (IICL + IICH) ≤∄ICT		

TABLE 30-10: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.

- **3:** Negative current is defined as current sourced by the pin.
- 4: See "Pin Diagrams" for the 5V tolerant I/O pins.
- **5:** VIL source < (Vss 0.3). Characterized but not tested.
- **6:** Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not tested.
- 7: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.
- 8: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.
- **9:** Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions		
	Vol	Output Low Voltage							
DO10		I/O pins RA4, RA9, RB7- RB15, and RC3	—	_	0.4	V	IOL = 10.8 mA, VDD = 3.3V		
DO16		All other I/O pins	—		0.4	V	IOL = 8.8 mA, VDD = 3.3V		
	Voh	Output High Voltage							
DO20		I/O pins RA4, RA9, RB7- RB15, and RC3	2.40	-	_	V	Іон = -12.3 mA, Vdd = 3.3V		
DO26		All other I/O pins	2.40	—	—	V	Iон = -8.3 mA, Vdd = 3.3V		

TABLE 30-11: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

TABLE 30-12: ELECTRICAL CHARACTERISTICS: BOR

DC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Param No.	Symbol	Characteristic		Min ⁽¹⁾	Тур	Max	Units	Conditions
BO10	VBOR	BOR Event on VDD transition high-to-low		2.7	_	2.95	V	See Note 2

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

2: Device will operate as normal until the BOR threshold is reached.

DC CHA	RACTER	ISTICS	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for Extended				
Param No.	Symbol	Characteristic	Min	Тур ⁽¹⁾	Max	Units	Conditions
		Program Flash Memory					
D130	Eр	Cell Endurance	10,000	_	_	E/W	-40° C to +125° C
D131	Vpr	VDD for Read	3.0	—	3.6	V	
D132b	VPEW	VDD for Self-Timed Write	3.0	_	3.6	V	
D134	TRETD	Characteristic Retention	20	_	_	Year	Provided no other specifications are violated, -40° C to +125° C
D135	IDDP	Supply Current during Programming	_	10	—	mA	
D137a	TPE	Page Erase Time	19.6	_	20.4	ms	TPE = 168517 FRC cycles, TA = +85°C, See Note 2
D137b	TPE	Page Erase Time	19.5	_	21.0	ms	TPE = 168517 FRC cycles, Ta = +125°C, See Note 2
D138a	Tww	Word Write Cycle Time	46	—	47.9	μs	Tww = 355 FRC cycles, TA = +85°C, See Note 2
D138b	Tww	Word Write Cycle Time	45.8	—	48.0	μs	Tww = 355 FRC cycles, Ta = +125°C, See Note 2

TABLE 30-13: DC CHARACTERISTICS: PROGRAM MEMORY

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: Other conditions: FRC = 7.37 MHz, TUN<5:0> = b'011111 (for Min), TUN<5:0> = b'100000 (for Max). This parameter depends on the FRC accuracy (see Table 30-22) and the value of the FRC Oscillator Tuning register (see Register 9-4). For complete details on calculating the Minimum and Maximum time see Section 5.3 "Programming Operations".

AC/DC	CHARAC	FERISTICS	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions		
AC Con	nparator								
CM10	TRESP	Large signal response time	—	50	80	ns	V+ input step of 100 mV V- input held at VDD/2		
CM11	Тмс2оv	Comparator mode change to output valid	—	—	10	μs	_		
AC Op a	amp				•				
CM20	Sr	Slew rate	_	7		V/µs	—		
CM21	Рм	Phase margin	—	65	—	Degree	G = 4V/V		
CM22	Gм	Gain margin	—	20	—	db	G = 4V/V		
CM23	GBW	Gain bandwidth	—	10	—	MHz	—		
CM24	THD+N	Total harmonic distortion plus noise	—	0.1	-	%	Vout = 0.25V to VDD - 0.5V BW - 20 kHz		
DC Con	parator								
CM30	VOFFSET	Comparator offset voltage	—	±10	—	mV	—		
CM31	VHYST	Input hysteresis voltage	—	30	—	mV	—		
CM32	TRISE/ TFALL	Comparator output rise/fall time	—	20	-	ns	1 pF load capacitance on input		
CM33	VGAIN	Open loop voltage gain	—	90	_	db	—		
DC Op a	amp								
CM40	VCMR	Common mode input range	Vss - 0.3	_	VDD + 0.3	V	—		
CM41	CMRR	Common mode rejection ratio	70	80	—	db	—		
CM42	VOFFSET	Op amp offset voltage	—	±5	—	mV	—		
CM43	VGAIN	Open loop voltage gain	—	90	—	db	—		
CM44	los	Input offset current	—	—	—	nA	—		
CM45	lв	Input bias current	—	±20	—	nA	—		

TABLE 30-14: AC/DC CHARACTERISTICS: OP AMP/COMPARATOR

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, AND PIC24EPXXXGP/MC20X

AC CHA	RACTERIS	TICS	Standard Operating Conditions: 3.0V to 3.6'(unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for			35°C for Industrial	
Param.	Param. Symbol Characteristic ⁽¹⁾ Min. Typ. Max. Units Con					Conditions	
VR310	TSET	Settling Time	—	_	10	μs	

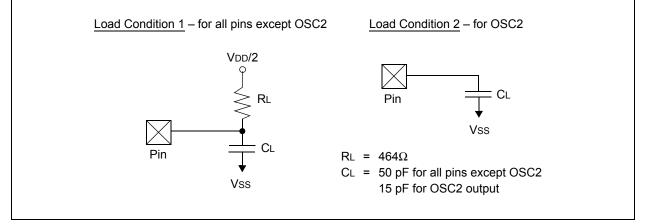
TABLE 30-15: OP AMP/COMPARATOR REFERENCE VOLTAGE SETTLING TIME SPECIFICATIONS

Note 1: Setting time measured while CVRR = 1 and CVR<3:0> bits transition from '0000' to '1111'.

2: These parameters are characterized, but not tested in manufacturing.

TABLE 30-16: OP AMP/COMPARATOR VOLTAGE REFERENCE DC SPECIFICATIONS

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Param No.	Symbol	Characteristics	Min Typ Max Units Conditions						
VRD310	CVRES	Resolution	CVRSRC/24		CVRSRC/32	LSb	—		
VRD311	CVRAA	Absolute Accuracy	—	±25	—	mV	CVRSRC = 3.3V		
VRD312	CVRur	Unit Resistor Value (R)	_	2k	_	Ω	_		
VRD313	CVRSRC	Input Reference Voltage	0 — AVDD + 0.3 V —						


30.2 AC Characteristics and Timing Parameters

This section defines dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/ MC20X AC characteristics and timing parameters.

TABLE 30-17: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

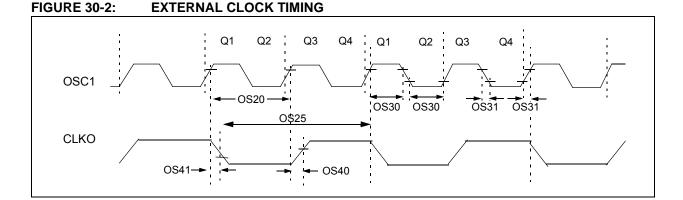

	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)
AC CHARACTERISTICS	Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended Operating voltage VDD range as described in Section 30.1 "DC Characteristics".

FIGURE 30-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 30-18: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
DO50	Cosco	OSC2 pin	_	—	15		In XT and HS modes when external clock is used to drive OSC1
DO56	Сю	All I/O pins and OSC2	—	—	50	pF	EC mode
DO58	Св	SCLx, SDAx	—	_	400	pF	In l ² C™ mode

AC CHA	RACTER	RISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$							
Param No.	Symb	Characteristic	Min	Conditions						
OS10	Fin	External CLKI Frequency (External clocks allowed only in EC and ECPLL modes)	DC		60	MHz	EC			
		Oscillator Crystal Frequency	3.5 10		10 25	MHz MHz	XT HS			
OS20	Tosc	Tosc = 1/Fosc	8.33	_	DC	ns	—			
OS25	Тсү	Instruction Cycle Time ⁽²⁾	16.67		DC	ns	—			
OS30	TosL, TosH	External Clock in (OSC1) High or Low Time	0.375 x Tosc	_	0.625 x Tosc	ns	EC			
OS31	TosR, TosF	External Clock in (OSC1) Rise or Fall Time	_		20	ns	EC			
OS40	TckR	CLKO Rise Time ⁽³⁾	—	5.2	_	ns	—			
OS41	TckF	CLKO Fall Time ⁽³⁾	_	5.2	_	ns	_			
OS42	Gм	External Oscillator Transconductance ⁽⁴⁾	_	12	_	mA/V	HS, VDD = 3.3V TA = +25°C			
				6	—	mA/V	XT, VDD = 3.3V TA = +25°C			

TABLE 30-19: EXTERNAL CLOCK TIMING REQUIREMENTS

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: Instruction cycle period (TcY) equals two times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Min" values with an external clock applied to the OSC1 pin. When an external clock input is used, the "Max" cycle time limit is "DC" (no clock) for all devices.

- 3: Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin.
- **4:** This parameter is characterized, but not tested in manufacturing.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, AND PIC24EPXXXGP/MC20X

AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteris	Min	Typ ⁽¹⁾	Max	Units	Conditions	
OS50	Fplli	PLL Voltage Controlled Oscillator (VCO) Input Frequency Range		0.8	_	8.0	MHz	ECPLL, XTPLL modes
OS51	Fsys	On-Chip VCO System Frequency		120	_	340	MHz	_
OS52	TLOCK	PLL Start-up Time (L	ock Time)	0.9	1.5	3.1	mS	—
OS53	DCLK	CLKO Stability (Jitter	.) (2)	-3	0.5	3	%	—

TABLE 30-20: PLL CLOCK TIMING SPECIFICATIONS

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: This jitter specification is based on clock cycle-by-clock cycle measurements. To get the effective jitter for individual time bases or communication clocks used by the application, use the following formula:

Effective Jitter = -	DCLK
	Fosc
٨	Time Base or Communication Clock

For example, if FOSC = 120 MHz and the SPI bit rate = 10 MHz, the effective jitter is as follows:

Effective Jitter =
$$\frac{DCLK}{\sqrt{\frac{120}{10}}} = \frac{DCLK}{\sqrt{12}} = \frac{DCLK}{3.464}$$

TABLE 30-21: INTERNAL FRC ACCURACY

АС СНА	RACTERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Param No.	Characteristic	Min	Тур	Max	Units	Condi	tions	
	Internal FRC Accuracy @	FRC Fr	equency	= 7.37 N	IHz ⁽¹⁾			
F20a	FRC	-0.9	0.5	+0.9	%	-40°C ≤TA ≤+85°C	VDD = 3.0-3.6V	
F20b	FRC	-2	1	+2	%	$-40^\circ C \le T A \le +125^\circ C$	VDD = 3.0-3.6V	

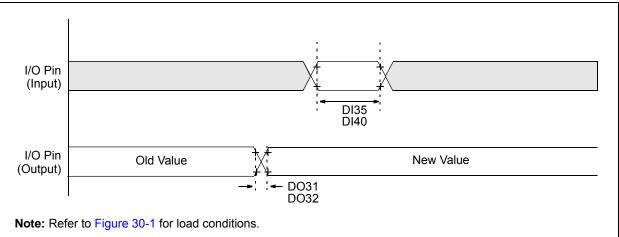

Note 1: Frequency calibrated at 25°C and 3.3V. TUN bits can be used to compensate for temperature drift.

TABLE 30-22: INTERNAL LPRC ACCURACY

AC CH	ARACTERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Param No.	Characteristic	Min	Тур	Max	Units	Conditions		
	LPRC @ 32.768 kHz ⁽¹⁾							
F21a	LPRC	-20	15	+20	%	$-40^\circ C \le TA \le +85^\circ C$	VDD = 3.0-3.6V	
F21b	LPRC	-70	_	+70	%	$-40^\circ C \le T_A \le +125^\circ C$	VDD = 3.0-3.6V	

Note 1: Change of LPRC frequency as VDD changes.

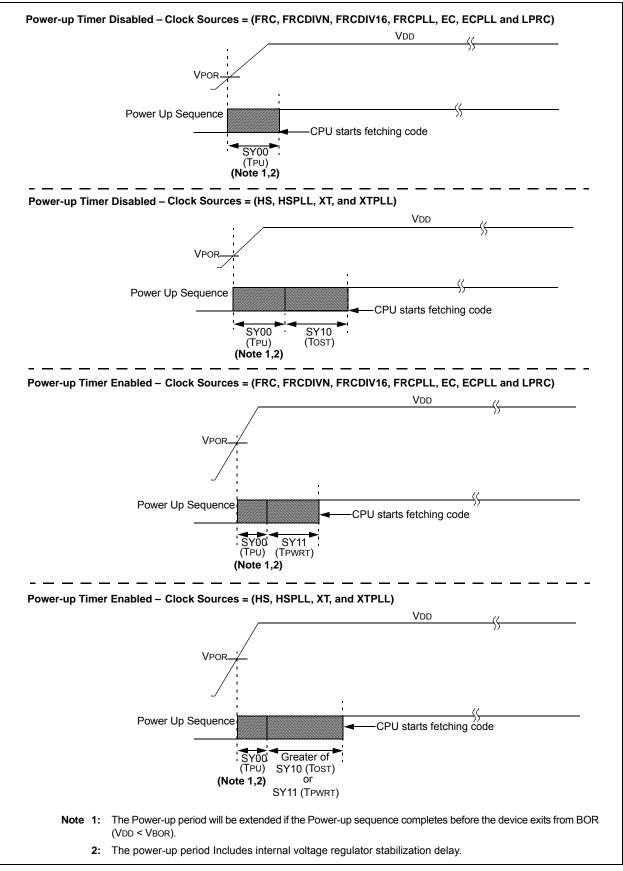
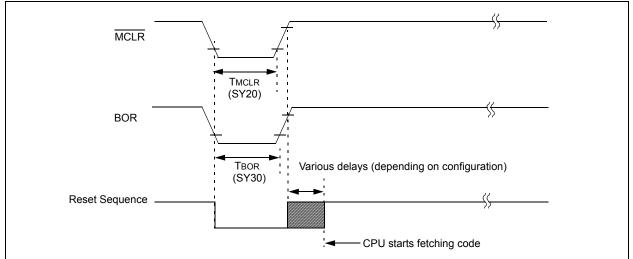
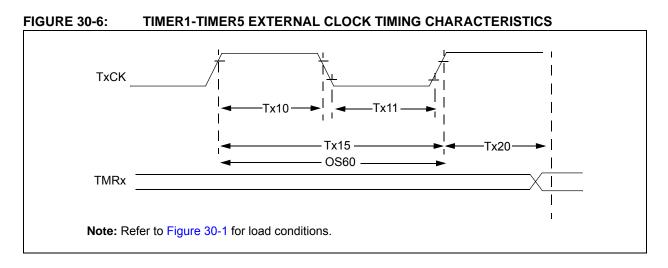


TABLE 30-23: I/O TIMING REQUIREMENTS								
AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Symbol	Character	Min	Typ ⁽¹⁾	Max	Units	Conditions	
DO31	TioR	Port Output Rise Tim	е		5	10	ns	_
DO32	TIOF	Port Output Fall Time	9	_	5	10	ns	_
DI35	TINP	INTx Pin High or Low Time (input)		20			ns	
DI40	Trbp	CNx High or Low Tim	ne (input)	2		_	TCY	_


TABLE 30-23: I/O TIMING REQUIREMENTS

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.


TABLE 30-24: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER TIMING REQUIREMENTS

AC CHARACTERISTICS				$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max Units		Conditions		
SY00	Τρυ	Power-up Period	_	400	600	μs	—		
SY10	Tost	Oscillator Start-up Time	_	1024 Tosc	—	—	Tosc = OSC1 period		
SY11	TPWRT	Power-up Timer Period		_	_	—	See Section 27.1 "Configuration Bits" and LPRC specification F21 (Table 30-22)		
SY12	Twdt	Watchdog Timer Time-out Period	0.8	_	1.2	ms	WDTPRE = 0, WDTPOST = 0000, using LPRC tolerances indicated in F21 (see Table 30-22)		
			3.2	_	4.8	ms	WDTPRE = 1, WDTPOST = 0000, using LPRC tolerances indicated in F21 (see Table 30-22)		
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	0.68	0.72	1.2	μs	_		
SY20	TMCLR	MCLR Pulse Width (low)	2	_	_	μs	—		
SY30	TBOR	BOR Pulse Width (low)	1	_		μs	—		
SY35	TFSCM	Fail-Safe Clock Monitor Delay	_	500	900	μs	-40°C to +85°C		
SY36	TVREG	Voltage regulator standby-to-active mode transition time	_	_	30	μs	_		
SY37	Toscdfrc	FRC Oscillator start-up delay	—	_	29	μs	—		
SY38	TOSCDLPRC	LPRC Oscillator start-up delay	—	—	70	μs	—		

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

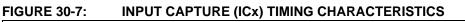
dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, AND PIC24EPXXXGP/MC20X

TABLE 30-25: TIMER1 EXTERNAL CLOCK TIMING REQUIREMEN	TS ⁽¹⁾
--	-------------------

АС СН	ARACTERIS	TICS	(unles	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended						
Param No.	Symbol	Charac	teristic ⁽²⁾	Min	Тур	Мах	Units	Conditions		
TA10	ТтхН	TxCK High Time	Synchronous mode	Greater of: 20 or (Tcy + 20)/N		_	ns	Must also meet parameter TA15 N = prescaler value (1, 8, 64, 256)		
			Asynchronous	35	_	—	ns	—		
TA11	ΤτxL	TxCK Low Time	Synchronous mode	Greater of: 20 or (Tcy + 20)/N	_	_	ns	Must also meet parameter TA15 N = prescaler value (1, 8, 64, 256)		
			Asynchronous	10		—	ns	—		
TA15	ΤτχΡ	TxCK Input Period	Synchronous mode	Greater of: 40 or (2 Tcy + 40)/N	_		ns	N = prescale value (1, 8, 64, 256)		
OS60	Ft1	T1CK Oscillator Input frequency Range (oscillator enabled by setting bit TCS (T1CON<1>))		DC		50	kHz	—		
TA20	TCKEXTMRL	Delay from External TxCK Clock Edge to Timer Incre- ment		0.75 Tcy + 40	_	1.75 Tcy + 40	ns	—		

Note 1: Timer1 is a Type A.

AC CHARACTERISTICS				Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended							
Param No.	Symbol	Characteristic ⁽		(1)	Min	Тур	Мах	Units	Conditions		
TB10	TtxH	TxCK High Time	Synchronous mode		Greater of: 20 or (Tcy + 20)/N		_	ns	Must also meet parameter TB15 N = prescale value (1, 8, 64, 256)		
TB11	TtxL	TxCK Low Time	Synchronous mode		Greater of: 20 or (Tcy + 20)/N		_	ns	Must also meet parameter TB15 N = prescale value (1, 8, 64, 256)		
TB15	TtxP	TxCK Input Period	Synchro mode	onous	Greater of: 40 or (2 Tcy + 40)/N	_	_	ns	N = prescale value (1, 8, 64, 256)		
TB20	TCKEXTMRL	Delay from External Tx Clock Edge to Timer Increment			0.75 Tcy + 40		1.75 Tcy + 40	ns	_		


TABLE 30-26: TIMER2 AND TIMER4 (TYPE B TIMER) EXTERNAL CLOCK TIMING REQUIREMENTS

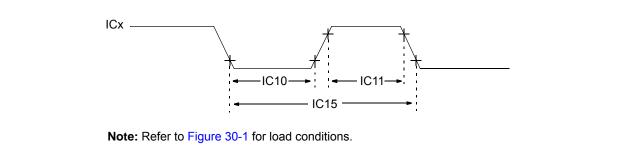

Note 1: These parameters are characterized, but are not tested in manufacturing.

TABLE 30-27: TIMER3 AND TIMER5 (TYPE C TIMER) EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHARACTERISTICS				Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for Extended						
Param No.	Symbol	Charac	teristic ⁽¹⁾	Min	Мах	Units	Conditions			
TC10	TtxH	TxCK High Time	Synchronou	s Tcy + 20	—	—	ns	Must also meet parameter TC15		
TC11	TtxL	TxCK Low Time	Synchronou	5 TCY + 20	—	—	ns	Must also meet parameter TC15		
TC15	TtxP	TxCK Input Period	Synchronous with prescale		_	—	ns	N = prescale value (1, 8, 64, 256)		
TC20	TCKEXTMRL		xternal TxCK o Timer Incre			1.75 Tcy + 40	ns	_		

Note 1: These parameters are characterized, but are not tested in manufacturing.

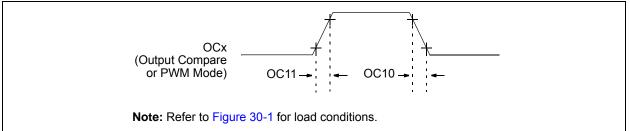


TABLE 30-28: INPUT CAPTURE MODULE TIMING REQUIREMENTS

AC CHA	RACTERI	STICS	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Param. No.	Symbol	Charac	teristics ⁽¹⁾	eristics ⁽¹⁾ Min Max		Units	Conditions		
IC10	TccL	ICx Input Low Time		Low Time Greater of [(12.5 or 0.5 Tcy)/N] + 25		ns	Must also meet parameter IC15.	N = prescale value (1, 4, 16)	
IC11	ТссН	ICx Input High Time		Greater of [(12.5 or 0.5 Tcy)/N] + 25	-	ns	Must also meet parameter IC15.		
IC15	TccP	ICx Input	Period	Greater of [(25 or 1 Tcʏ)/N] + 50		ns	_		

Note 1: These parameters are characterized, but not tested in manufacturing.

FIGURE 30-8: OUTPUT COMPARE MODULE (OCx) TIMING CHARACTERISTICS

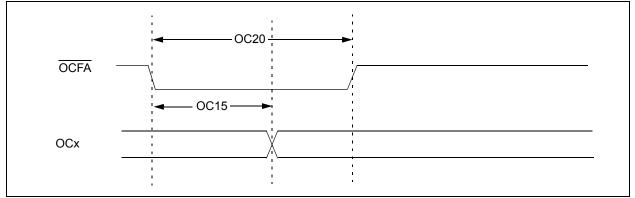
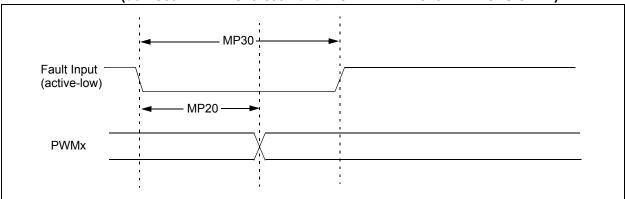
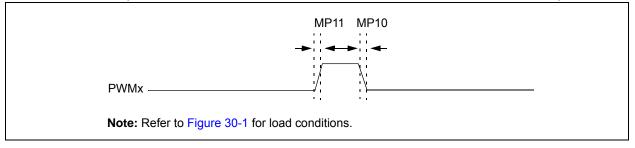


TABLE 30-29: OUTPUT COMPARE MODULE TIMING REQUIREMENTS

			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Мах	Units	Conditions		
OC10	TccF	OCx Output Fall Time	_	_	—	ns	See parameter DO32		
OC11	TccR	OCx Output Rise Time	— — ns See parameter DO31						

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, AND PIC24EPXXXGP/MC20X


FIGURE 30-9: OC/PWM MODULE TIMING CHARACTERISTICS


TABLE 30-30: OC/PWM MODE TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions	
OC15	Tfd	Fault Input to PWM I/O Change		_	Tcy + 20	ns	_	
OC20	TFLT	Fault Input Pulse Width	Tcy + 20	_	—	ns	—	

FIGURE 30-10: HIGH-SPEED PWM MODULE FAULT TIMING CHARACTERISTICS (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

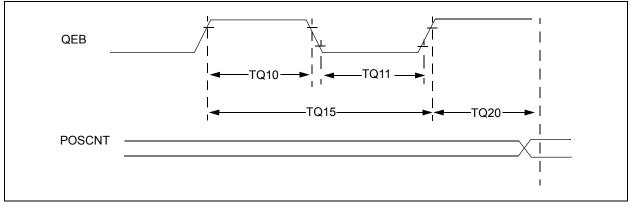

FIGURE 30-11: HIGH-SPEED PWM MODULE TIMING CHARACTERISTICS (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

TABLE 30-31: HIGH-SPEED PWM MODULE TIMING REQUIREMENTS (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

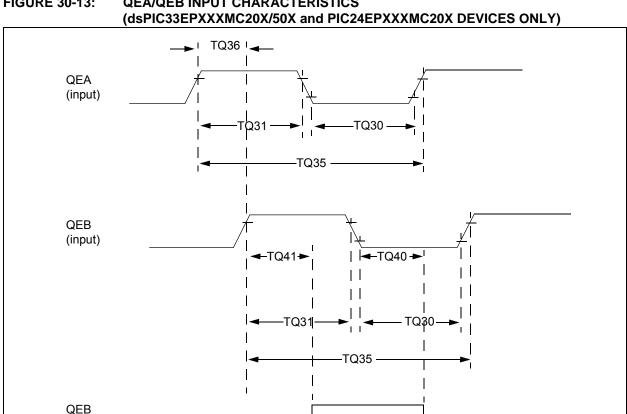

				Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Param No.	Symbol Characteristic ⁽¹⁾		Min	Тур	Max	Units	Conditions			
MP10	TFPWM	PWM Output Fall Time	—	—	_	ns	See parameter DO32			
MP11	TRPWM	PWM Output Rise Time	_	_	_	ns	See parameter DO31			
MP20	Tfd	Fault Input ↓to PWM I/O Change	-	—	15	ns	_			
MP30	TFH	Fault Input Pulse Width	15	—	—	ns	—			

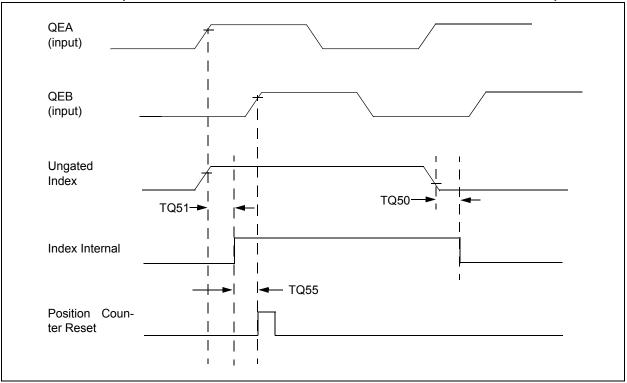
FIGURE 30-12: TIMERQ (QEI MODULE) EXTERNAL CLOCK TIMING CHARACTERISTICS (dsPIC33EPXXXMC20X/50X AND PIC24EPXXXMC20X DEVICES ONLY)

TABLE 30-32: QEI MODULE EXTERNAL CLOCK TIMING REQUIREMENTS (dsPIC33EPXXXMC20X/50X AND PIC24EPXXXMC20X DEVICES ONLY)

АС СНА	AC CHARACTERISTICS				$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	ol Characteristic ⁽¹⁾			Min	Тур	Max	Units	Conditions	
TQ10	TtQH	TQCK High Time	Synchronous, with prescaler		Greater of [(12.5 or 0.5 Tcy)/N] + 25		_	ns	Must also meet parameter TQ15.	
TQ11	TtQL	TQCK Low Time	Synchronous, with prescaler		Greater of [(12.5 or 0.5 Tcy)/N] + 25	_	—	ns	Must also meet parameter TQ15.	
TQ15	TtQP	TQCP Input Period	Synchronous, with prescaler		Greater of [(25 or Tcy)/ N] + 50	—	_	ns	—	
TQ20	TCKEXTMRL	Delay from Extern Edge to Timer Inc		ock		1	Тсү	_	—	

FIGURE 30-13: QEA/QEB INPUT CHARACTERISTICS

TABLE 30-33: QUADRATURE DECODER TIMING REQUIREMENTS (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)


			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾		Тур ⁽²⁾	Max	Units	Conditions	
TQ30	TQUL	Quadrature Input Low Time		6 Tcy	—	ns	—	
TQ31	TQUH	Quadrature Input High Time		6 Tcy	_	ns	—	
TQ35	TQUIN	Quadrature Input Period		12 TCY	_	ns	—	
TQ36	TQUP	Quadrature Phase Period		3 TCY	_	ns	—	
TQ40	TQUFL	Filter Time to Recognize Lov with Digital Filter	V,	3 * N * Tcy	—	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 3)	
TQ41	TQUFH	Filter Time to Recognize Hig with Digital Filter	h,	3 * N * Tcy	_	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 3)	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

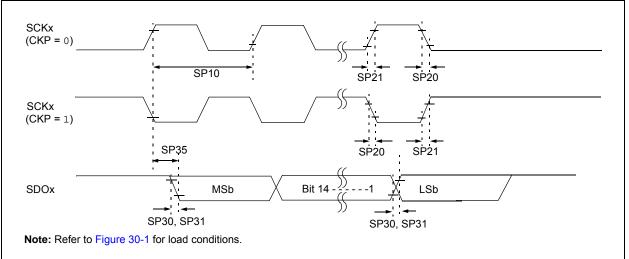
3: N = Index Channel Digital Filter Clock Divide Select bits. Refer to Section 15. "Quadrature Encoder Interface (QEI)" (DS70601) in the "dsPIC33E/PIC24E Family Reference Manual". Please see the Microchip web site for the latest family reference manual sections.

Internal

FIGURE 30-14: QEI MODULE INDEX PULSE TIMING CHARACTERISTICS (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

TABLE 30-34: QEI INDEX PULSE TIMING REQUIREMENTS (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol Characteristic ¹			Min	Max	Units	Conditions	
TQ50	TqIL	Filter Time to Recognize with Digital Filter	Low,	3 * N * Tcy		ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 2)	
TQ51	TqiH	Filter Time to Recognize High, with Digital Filter		3 * N * Tcy	_	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 2)	
TQ55	Tqidxr	Index Pulse Recognized Counter Reset (ungated		3 TCY		ns	_	


Note 1: These parameters are characterized but not tested in manufacturing.

2: Alignment of index pulses to QEA and QEB is shown for position counter Reset timing only. Shown for forward direction only (QEA leads QEB). Same timing applies for reverse direction (QEA lags QEB) but index pulse recognition occurs on falling edge.

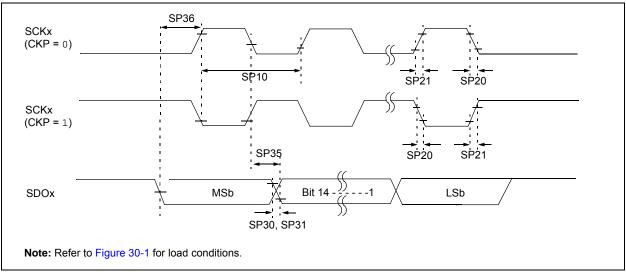

AC CHARACTERISTICS (unless				ndard Operating Conditions: 3.0V to 3.6V ess otherwise stated) erating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended					
Maximum Data Rate	Master Transmit Only (Half-Duplex)	Master Transmit/Receive (Full-Duplex)	Slave Transmit/Receive (Full-Duplex)	CKE	СКР	SMP			
10 MHz	Table 30-44	—	—	0,1	0,1	0,1			
10 MHz	_	Table 30-45	—	1	0,1	1			
10 MHz	—	Table 30-46	—	0	0,1	1			
15 MHz	_	—	Table 30-47	1	0	0			
15 MHz	_	—	Table 30-48	1	1	0			
15 MHz	_	—	Table 30-49	0	1	0			
15 MHz	—	—	Table 30-50	0	0	0			

TABLE 30-35: SPI2 MAXIMUM DATA/CLOCK RATE SUMMARY

FIGURE 30-15: SPI2 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY CKE = 0) TIMING CHARACTERISTICS

FIGURE 30-16: SPI2 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY CKE = 1) TIMING CHARACTERISTICS

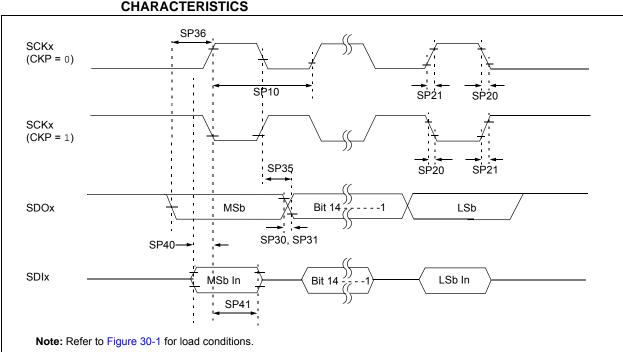

AC CHA	RACTERIST	TICS	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature-40°C ≤TA ≤+85°C for-40°C ≤TA ≤+125°C for					
Param No.	Symbol	Characteristic ⁽¹⁾	Min Typ ⁽²⁾ Max Units Conditions					
SP10	TscP	Maximum SCK Frequency	—	_	10	MHz	See Note 3	
SP20	TscF	SCKx Output Fall Time	-	—	_	ns	See parameter DO32 and Note 4	
SP21	TscR	SCKx Output Rise Time	—	—		ns	See parameter DO31 and Note 4	
SP30	TdoF	SDOx Data Output Fall Time	—	-	_	ns	See parameter DO32 and Note 4	
SP31	TdoR	SDOx Data Output Rise Time	_	—	_	ns	See parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—	
SP36	TdiV2scH, TdiV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	—	ns	—	

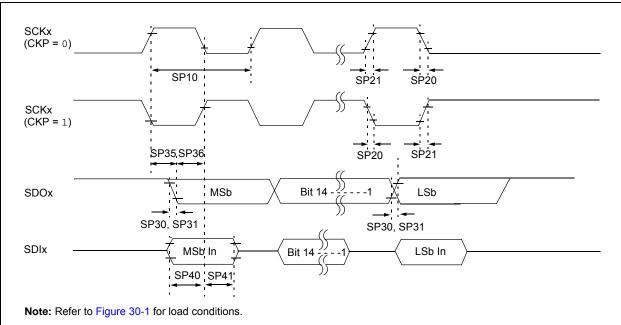
TABLE 30-36: SPI2 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY) TIMING REQUIREMENTS

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 20 ns and SCK2 is 100 ns. Therefore, the clock generated in Master mode must not violate this specification.

FIGURE 30-17: SPI2 MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING CHARACTERISTICS


TABLE 30-37:SPI2 MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING
REQUIREMENTS

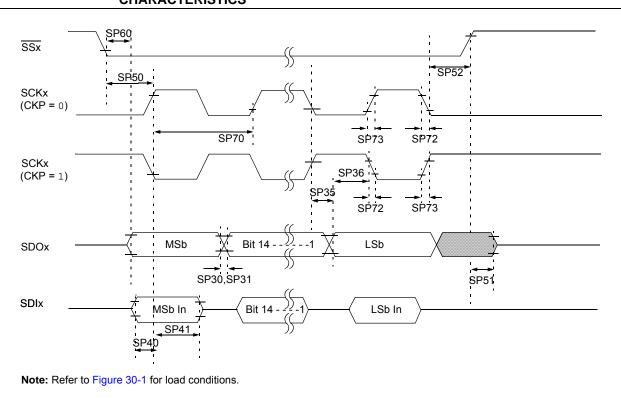
АС СНА	RACTERIST	ICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions	
SP10	TscP	Maximum SCK Frequency	—	—	10	MHz	See Note 3	
SP20	TscF	SCKx Output Fall Time	—	—	_	ns	See parameter DO32 and Note 4	
SP21	TscR	SCKx Output Rise Time	—	—	_	ns	See parameter DO31 and Note 4	
SP30	TdoF	SDOx Data Output Fall Time	—	—	_	ns	See parameter DO32 and Note 4	
SP31	TdoR	SDOx Data Output Rise Time	—	—	_	ns	See parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—	
SP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	_	ns	_	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	—	_	ns	—	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	—	_	ns	—	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 100 ns. The clock generated in Master mode must not violate this specification.

FIGURE 30-18: SPI2 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING CHARACTERISTICS


TABLE 30-38:SPI2 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING
REQUIREMENTS

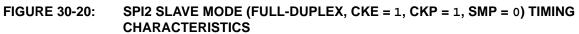
АС СНА	RACTERIST	ICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended						
Param No.	Symbol	Characteristic ⁽¹⁾	Min Typ ⁽²⁾ Max Units Conditions						
SP10	TscP	Maximum SCK Frequency			10	MHz	-40°C to +125°C and see Note 3		
SP20	TscF	SCKx Output Fall Time	—	—	_	ns	See parameter DO32 and Note 4		
SP21	TscR	SCKx Output Rise Time	—	—	_	ns	See parameter DO31 and Note 4		
SP30	TdoF	SDOx Data Output Fall Time	—	_	_	ns	See parameter DO32 and Note 4		
SP31	TdoR	SDOx Data Output Rise Time	—	_	_	ns	See parameter DO31 and Note 4		
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—		
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	_	ns	—		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	—		ns			
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30			ns	—		

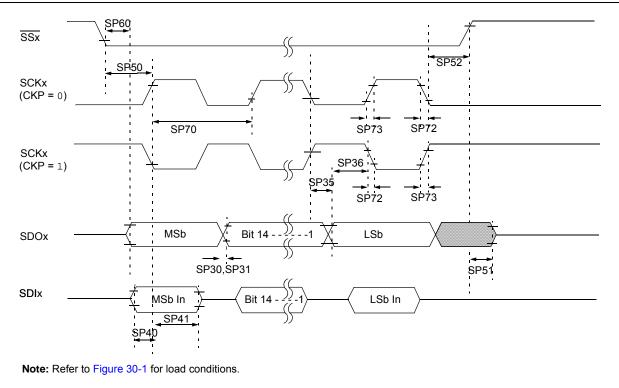
Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

- **3:** The minimum clock period for SCKx is 100 ns. The clock generated in Master mode must not violate this specification.
- **4:** Assumes 50 pF load on all SPIx pins.

FIGURE 30-19: SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING CHARACTERISTICS


TABLE 30-39:SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING
REQUIREMENTS


АС СНА	ARACTERIS	TICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
SP70	TscP	Maximum SCK Input Frequency	—	_	15	MHz	See Note 3
SP72	TscF	SCKx Input Fall Time	—	—	_	ns	See parameter DO32 and Note 4
SP73	TscR	SCKx Input Rise Time	—	—	_	ns	See parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	—	_	—	ns	See parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	—	—	—	ns	See parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_	_	ns	—
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	—	_	ns	—
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	—	_	ns	—
SP50	TssL2scH, TssL2scL	SSx ↓to SCKx ↑ or SCKx ↓ Input	120	_	—	ns	_
SP51	TssH2doZ	SSx	10	—	50	ns	-
SP52	TscH2ssH TscL2ssH	SSx	1.5 Tcy + 40	—	_	ns	See Note 4
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	—	—	50	ns	—

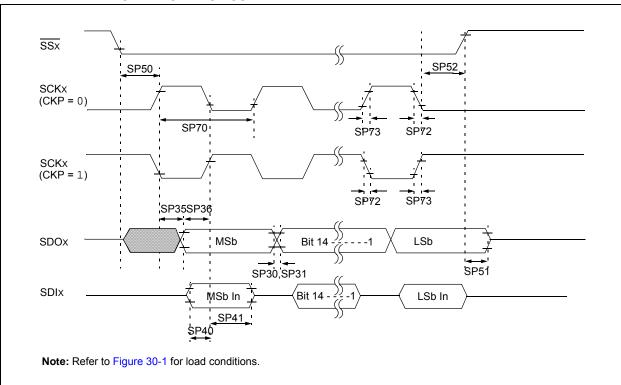
Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCK clock generated by the Master must not violate this specification.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, AND PIC24EPXXXGP/MC20X

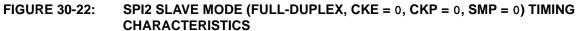
TABLE 30-40: SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING REQUIREMENTS

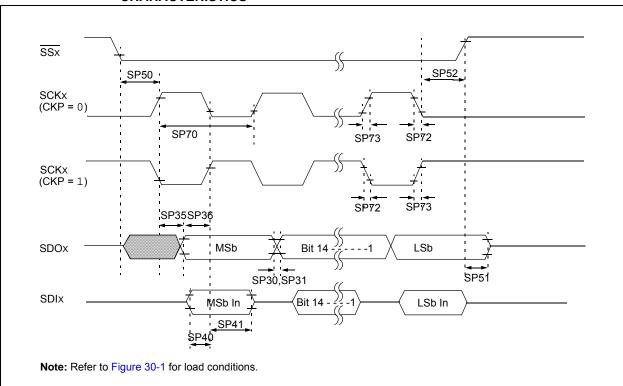

АС СНА		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature-40°C ≤TA ≤+85°C for Industrial-40°C ≤TA ≤+125°C for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
SP70	TscP	Maximum SCK Input Frequency	_		15	MHz	See Note 3
SP72	TscF	SCKx Input Fall Time	—			ns	See parameter DO32 and Note 4
SP73	TscR	SCKx Input Rise Time	—			ns	See parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	_	_		ns	See parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	—	_	_	ns	See parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_	_	ns	—
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_		ns	—
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30			ns	—
SP50	TssL2scH, TssL2scL	SSx ↓to SCKx ↑ or SCKx ↓ Input	120	_	_	ns	—
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance ⁽⁴⁾	10	_	50	ns	—
SP52	TscH2ssH TscL2ssH	SSx ↑ after SCKx Edge	1.5 Tcy + 40	—	_	ns	See Note 4
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	_	_	50	ns	—

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 66.67 ns. Therefore, the SCK clock generated by the Master must not violate this specification.


TABLE 30-41:SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING
REQUIREMENTS


АС СНА	ARACTERIS	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature-40°C ≤TA ≤+85°C for Industrial-40°C ≤TA ≤+125°C for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
SP70	TscP	Maximum SCK Input Frequency	—	_	15	MHz	See Note 3
SP72	TscF	SCKx Input Fall Time	—			ns	See parameter DO32 and Note 4
SP73	TscR	SCKx Input Rise Time	—	_	_	ns	See parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	—	_	_	ns	See parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	—	_	_	ns	See parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30			ns	_
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30			ns	_
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30			ns	—
SP50	TssL2scH, TssL2scL	SSx ↓to SCKx ↑ or SCKx ↓ Input	120	—	_	ns	_
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance ⁽⁴⁾	10		50	ns	—
SP52	TscH2ssH TscL2ssH	SSx ↑ after SCKx Edge	1.5 TCY + 40			ns	See Note 4

Note 1: These parameters are characterized, but are not tested in manufacturing.

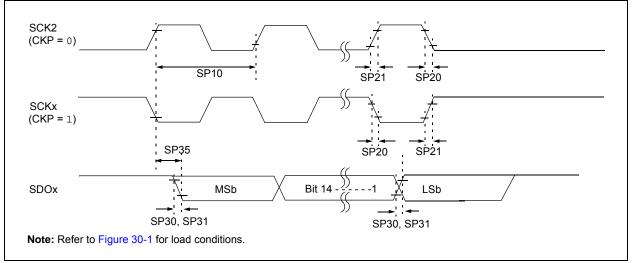
2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCK clock generated by the Master must not violate this specification.

TABLE 30-42:SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING
REQUIREMENTS

АС СНА	ARACTERIS	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature-40°C ≤TA ≤+85°C for Industrial-40°C ≤TA ≤+125°C for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
SP70	TscP	Maximum SCK Input Frequency	—	_	15	MHz	See Note 3
SP72	TscF	SCKx Input Fall Time	—			ns	See parameter DO32 and Note 4
SP73	TscR	SCKx Input Rise Time	—	_	_	ns	See parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	—	_	_	ns	See parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	—	_	_	ns	See parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30			ns	_
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30			ns	_
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30			ns	—
SP50	TssL2scH, TssL2scL	SSx ↓to SCKx ↑ or SCKx ↓ Input	120	—	_	ns	_
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance ⁽⁴⁾	10		50	ns	—
SP52	TscH2ssH TscL2ssH	SSx ↑ after SCKx Edge	1.5 TCY + 40			ns	See Note 4

Note 1: These parameters are characterized, but are not tested in manufacturing.


2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

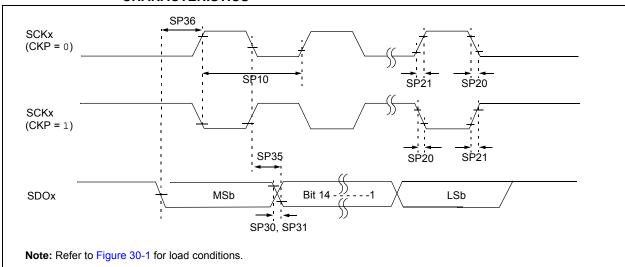
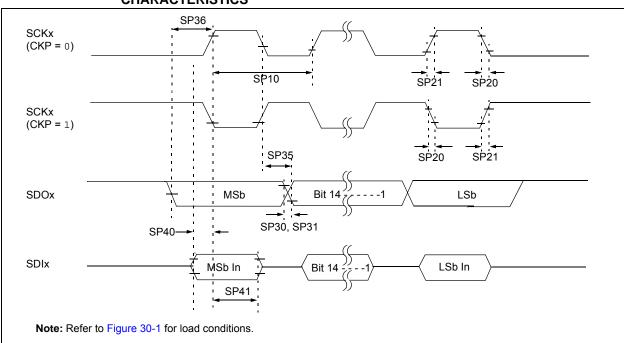

3: The minimum clock period for SCKx is 66.67 ns. Therefore, the SCK clock generated by the Master must not violate this specification.

TABLE 30-43. SPTT MAXIMUM DATA/CLOCK RATE SUMMART										
AC CHARAG	CTERISTICS		Standard Operating (unless otherwise s Operating temperate	,						
Maximum Data Rate	Master Transmit Only (Half-Duplex)	Master Transmit/Receive (Full-Duplex)	Slave Transmit/Receive (Full-Duplex)	CKE	СКР	SMP				
25 MHz	Table 30-44	—	—	0,1	0,1	0,1				
25 MHz	_	Table 30-45	—	1	0,1	1				
25 MHz	—	Table 30-46	—	0	0,1	1				
25 MHz	—	—	Table 30-47	1	0	0				
25 MHz	_	_	Table 30-48	1	1	0				
25 MHz	_	_	Table 30-49	0	1	0				
25 MHz	_	_	Table 30-50	0	0	0				

TABLE 30-43: SPI1 MAXIMUM DATA/CLOCK RATE SUMMARY

FIGURE 30-23: SPI1 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY CKE = 0) TIMING CHARACTERISTICS

FIGURE 30-24: SPI1 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY CKE = 1) TIMING CHARACTERISTICS


TABLE 30-44: SPI1 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY) TIMING REQUIREMENTS

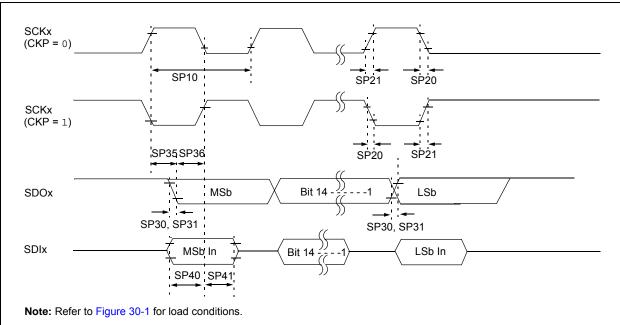
AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾	Min Typ ⁽²⁾ Max Units Conditions					
SP10	TscP	Maximum SCK Frequency	_	_	25	MHz	See Note 3	
SP20	TscF	SCKx Output Fall Time	—	_		ns	See parameter DO32 and Note 4	
SP21	TscR	SCKx Output Rise Time	—	_		ns	See parameter DO31 and Note 4	
SP30	TdoF	SDOx Data Output Fall Time	—	—	_	ns	See parameter DO32 and Note 4	
SP31	TdoR	SDOx Data Output Rise Time	—	_		ns	See parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—	
SP36	TdiV2scH, TdiV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	_	ns	—	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 66.7 ns. Therefore, the clock generated in Master mode must not violate this specification.

FIGURE 30-25: SPI1 MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING CHARACTERISTICS


TABLE 30-45:SPI1 MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING
REQUIREMENTS

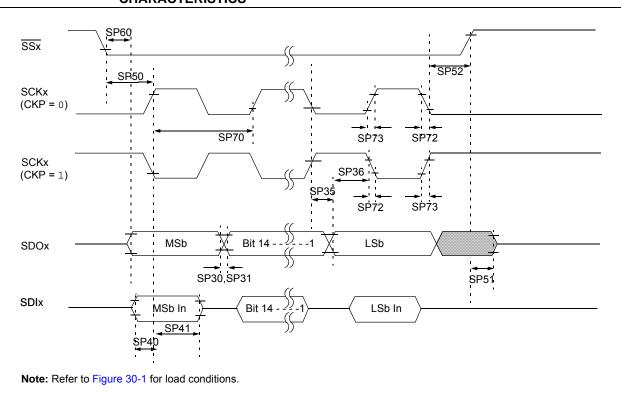
AC CHA	RACTERIST	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
SP10	TscP	Maximum SCK Frequency	_	_	25	MHz	See Note 3
SP20	TscF	SCKx Output Fall Time	_	—	_	ns	See parameter DO32 and Note 4
SP21	TscR	SCKx Output Rise Time	_	—	—	ns	See parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	_	—	—	ns	See parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	_	—	_	ns	See parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_	6	20	ns	—
SP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	_	ns	—
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	—	_	ns	_
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	—	_	ns	—

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

- **3:** The minimum clock period for SCKx is 100 ns. The clock generated in Master mode must not violate this specification.
- 4: Assumes 50 pF load on all SPIx pins.

FIGURE 30-26: SPI1 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING CHARACTERISTICS


TABLE 30-46:SPI1 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING
REQUIREMENTS

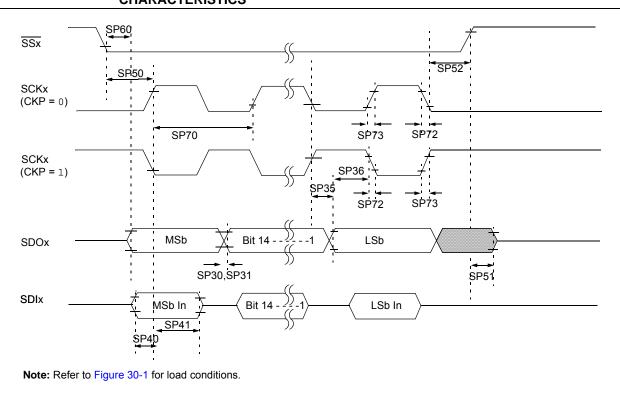
АС СНА	RACTERIST	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Conditions			
SP10	TscP	Maximum SCK Frequency			25	MHz	-40°C to +125°C and see Note 3
SP20	TscF	SCKx Output Fall Time	_	—	_	ns	See parameter DO32 and Note 4
SP21	TscR	SCKx Output Rise Time	_	—	_	ns	See parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	_	—	_	ns	See parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	_	—	_	ns	See parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_	6	20	ns	—
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	_	ns	—
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	—		ns	_
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_		ns	—

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

- **3:** The minimum clock period for SCKx is 100 ns. The clock generated in Master mode must not violate this specification.
- **4:** Assumes 50 pF load on all SPIx pins.

FIGURE 30-27: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING CHARACTERISTICS


TABLE 30-47:SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING
REQUIREMENTS

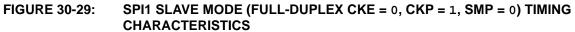
АС СНА	AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature-40°C ≤TA ≤+85°C for Industrial-40°C ≤TA ≤+125°C for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions		
SP70	TscP	Maximum SCK Input Frequency			25	MHz	See Note 3		
SP72	TscF	SCKx Input Fall Time		_		ns	See parameter DO32 and Note 4		
SP73	TscR	SCKx Input Rise Time	_		—	ns	See parameter DO31 and Note 4		
SP30	TdoF	SDOx Data Output Fall Time	_		—	ns	See parameter DO32 and Note 4		
SP31	TdoR	SDOx Data Output Rise Time	_		—	ns	See parameter DO31 and Note 4		
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_	6	20	ns	—		
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_	_	ns	—		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_	_	ns	—		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_	_	ns	—		
SP50	TssL2scH, TssL2scL	SSx ↓to SCKx ↑ or SCKx ↓ Input	120		—	ns	—		
SP51	TssH2doZ	SSx	10	_	50	ns	—		
SP52	TscH2ssH TscL2ssH	SSx	1.5 Tcy + 40	—	_	ns	See Note 4		
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	—	_	50	ns	—		

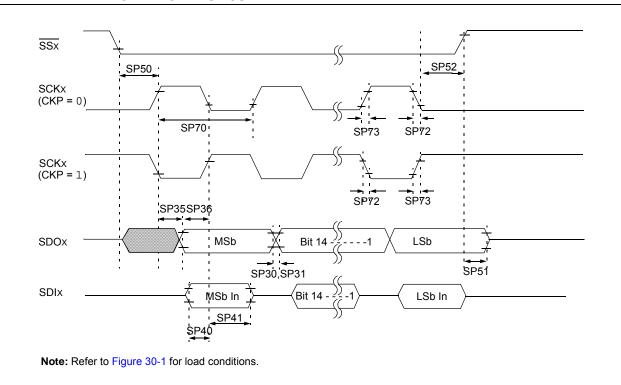
Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCK clock generated by the Master must not violate this specification.

FIGURE 30-28: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

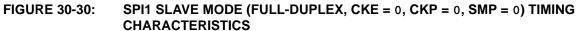

TABLE 30-48:SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING
REQUIREMENTS

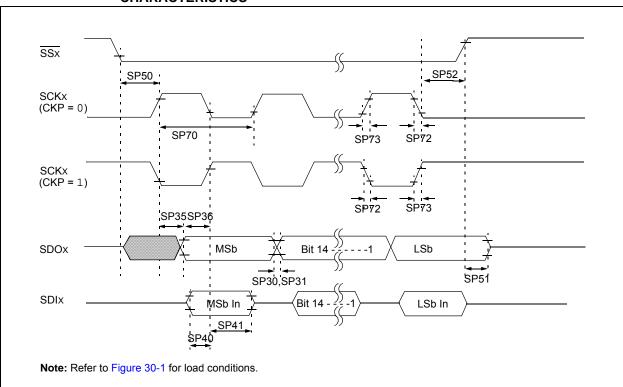

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature-40°C ≤TA ≤+85°C for Industrial-40°C ≤TA ≤+125°C for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	n Typ ⁽²⁾ Max		Units	Conditions	
SP70	TscP	Maximum SCK Input Frequency	_	_	25	MHz	See Note 3	
SP72	TscF	SCKx Input Fall Time	—	_	_	ns	See parameter DO32 and Note 4	
SP73	TscR	SCKx Input Rise Time	—	_		ns	See parameter DO31 and Note 4	
SP30	TdoF	SDOx Data Output Fall Time	_	_	_	ns	See parameter DO32 and Note 4	
SP31	TdoR	SDOx Data Output Rise Time	_	_	_	ns	See parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_	6	20	ns	—	
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_	_	ns	_	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_	_	ns	—	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	—	_	ns	—	
SP50	TssL2scH, TssL2scL	SSx ↓to SCKx ↑ or SCKx ↓ Input	120	_	—	ns	_	
SP51	TssH2doZ	SSx	10	_	50	ns	—	
SP52	TscH2ssH TscL2ssH	SSx ↑ after SCKx Edge	1.5 TCY + 40	_		ns	See Note 4	
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	—	—	50	ns	_	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 91 ns. Therefore, the SCK clock generated by the Master must not violate this specification.


TABLE 30-49:SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING
REQUIREMENTS

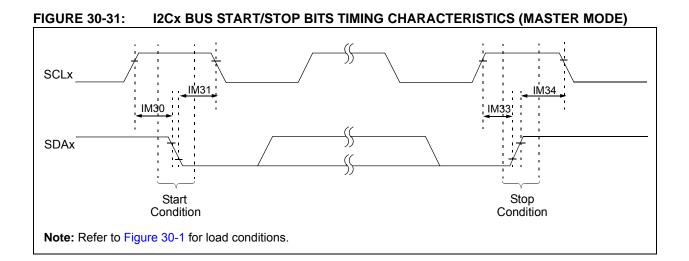

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
SP70	TscP	Maximum SCK Input Frequency	—	_	25	MHz	See Note 3
SP72	TscF	SCKx Input Fall Time	_			ns	See parameter DO32 and Note 4
SP73	TscR	SCKx Input Rise Time	—	_	_	ns	See parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	—	_	_	ns	See parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	—	_	_	ns	See parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30			ns	_
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30			ns	_
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30			ns	—
SP50	TssL2scH, TssL2scL	SSx ↓to SCKx ↑ or SCKx ↓ Input	120	—	_	ns	_
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance ⁽⁴⁾	10		50	ns	—
SP52	TscH2ssH TscL2ssH	SSx ↑ after SCKx Edge	1.5 TCY + 40			ns	See Note 4

Note 1: These parameters are characterized, but are not tested in manufacturing.

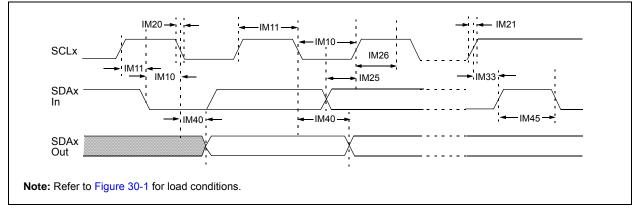
2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCK clock generated by the Master must not violate this specification.

TABLE 30-50:SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING
REQUIREMENTS


AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
SP70	TscP	Maximum SCK Input Frequency	—	_	25	MHz	See Note 3
SP72	TscF	SCKx Input Fall Time	_			ns	See parameter DO32 and Note 4
SP73	TscR	SCKx Input Rise Time	—	_	_	ns	See parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	—	_	_	ns	See parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	—	_	_	ns	See parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30			ns	_
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30			ns	_
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30			ns	—
SP50	TssL2scH, TssL2scL	SSx ↓to SCKx ↑ or SCKx ↓ Input	120	—	_	ns	_
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance ⁽⁴⁾	10		50	ns	—
SP52	TscH2ssH TscL2ssH	SSx ↑ after SCKx Edge	1.5 TCY + 40			ns	See Note 4

Note 1: These parameters are characterized, but are not tested in manufacturing.

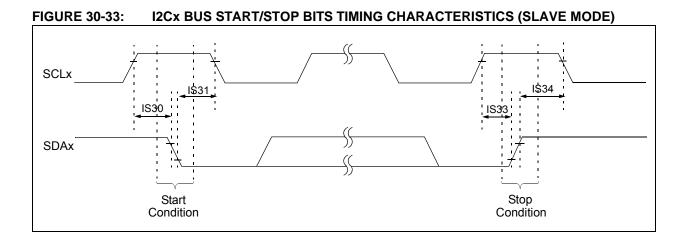

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 91 ns. Therefore, the SCK clock generated by the Master must not violate this specification.

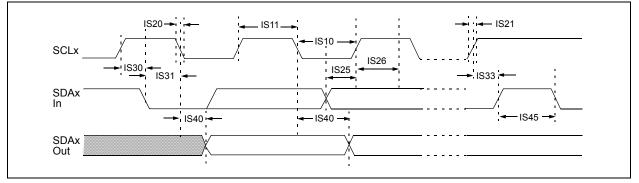
dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, AND PIC24EPXXXGP/MC20X

	RACTER	ISTICS		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Symbol	Charact	cteristic Min ⁽¹⁾		Max	Units	Conditions		
IM10	TLO:SCL	Clock Low Time	100 kHz mode	Tcy/2 (BRG + 2)	_	μs	—		
			400 kHz mode	Tcy/2 (BRG + 2)		μs	—		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 2)	_	μs	—		
IM11	THI:SCL	Clock High Time	100 kHz mode	Tcy/2 (BRG + 2)	_	μs	—		
			400 kHz mode	Tcy/2 (BRG + 2)		μs	—		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 2)	_	μs	—		
IM20	TF:SCL	SDAx and SCLx	100 kHz mode	_	300	ns	CB is specified to be		
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF		
			1 MHz mode ⁽²⁾	_	100	ns			
IM21	TR:SCL	SDAx and SCLx	100 kHz mode	_	1000	ns	CB is specified to be		
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF		
			1 MHz mode ⁽²⁾		300	ns	-		
IM25	TSU:DAT	Data Input	100 kHz mode	250	_	ns	_		
		Setup Time	400 kHz mode	100	_	ns	-		
			1 MHz mode ⁽²⁾	40	_	ns			
IM26	THD:DAT	Data Input	100 kHz mode	0	_	μs	_		
		Hold Time	400 kHz mode	0	0.9	μs	-		
			1 MHz mode ⁽²⁾	0.2		μs			
IM30	TSU:STA	Start Condition	100 kHz mode	Tcy/2 (BRG + 2)	_	μs	Only relevant for		
		Setup Time	400 kHz mode	Tcy/2 (BRG + 2)	_	μs	Repeated Start		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 2)		μs	condition		
IM31	THD:STA	Start Condition	100 kHz mode	Tcy/2 (BRG + 2)	_	μs	After this period the		
-		Hold Time	400 kHz mode	Tcy/2 (BRG +2)		μs	first clock pulse is		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 2)	_	μs	generated		
IM33	Tsu:sto	Stop Condition	100 kHz mode	Tcy/2 (BRG + 2)		μs	_		
		Setup Time	400 kHz mode	Tcy/2 (BRG + 2)	_	μs	-		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 2)		μs			
IM34	THD:STO	Stop Condition	100 kHz mode	Tcy/2 (BRG + 2)		μs	_		
		Hold Time	400 kHz mode	Tcy/2 (BRG + 2)		μs	1		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 2)		μs	1		
IM40	TAA:SCL	Output Valid	100 kHz mode		3500	ns	_		
		From Clock	400 kHz mode		1000	ns	_		
			1 MHz mode ⁽²⁾		400	ns	_		
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7		μs	Time the bus must be		
-			400 kHz mode	1.3	_	μs	free before a new		
			1 MHz mode ⁽²⁾	0.5			transmission can start		
IM50	Св	Bus Capacitive L			400	μs pF	_		
		•		65			See Note 3		
IM51	TPGD	Pulse Gobbler De		65 erator. Refer to Sec	390	ns	See Note 3		

TABLE 30-51: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)


Note 1: BRG is the value of the I²C Baud Rate Generator. Refer to Section 19. "Inter-Integrated Circuit (I²C[™])" (DS70330) in the "dsPIC33E/PIC24E Family Reference Manual". Please see the Microchip web site for the latest family reference manual sections.

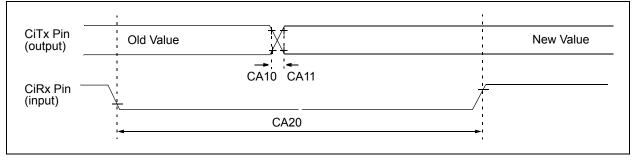
2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).


3: Typical value for this parameter is 130 ns.

4: These parameters are characterized, but not tested in manufacturing.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, AND PIC24EPXXXGP/MC20X

AC CHA	RACTERI	STICS		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for Extende				
Param. No.	Symbol	Charac	teristic	Min	Max	Units	Conditions	
IS10	TLO:SCL	Clock Low Time	100 kHz mode	4.7		μs	—	
			400 kHz mode	1.3		μs	—	
			1 MHz mode ⁽¹⁾	0.5		μs	—	
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	—	μs	Device must operate at a minimum of 1.5 MHz	
			400 kHz mode	0.6	_	μs	Device must operate at a minimum of 10 MHz	
			1 MHz mode ⁽¹⁾	0.5	—	μs	_	
IS20	TF:SCL	SDAx and SCLx	100 kHz mode	—	300	ns	CB is specified to be from	
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF	
			1 MHz mode ⁽¹⁾	—	100	ns		
IS21	TR:SCL	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be from	
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF	
			1 MHz mode ⁽¹⁾	—	300	ns		
IS25	TSU:DAT	Data Input	100 kHz mode	250		ns	—	
		Setup Time	400 kHz mode	100	—	ns		
			1 MHz mode ⁽¹⁾	100		ns		
IS26	THD:DAT	Data Input	100 kHz mode	0		μs	—	
		Hold Time	400 kHz mode	0	0.9	μs		
			1 MHz mode ⁽¹⁾	0	0.3	μs		
IS30	TSU:STA	Start Condition	100 kHz mode	4.7	—	μs	Only relevant for Repeated	
		Setup Time	400 kHz mode	0.6	—	μs	Start condition	
			1 MHz mode ⁽¹⁾	0.25	—	μs		
IS31	THD:STA	Start Condition	100 kHz mode	4.0	—	μs	After this period, the first	
		Hold Time	400 kHz mode	0.6	—	μs	clock pulse is generated	
			1 MHz mode ⁽¹⁾	0.25	—	μs		
IS33	TSU:STO	Stop Condition	100 kHz mode	4.7	—	μs	—	
		Setup Time	400 kHz mode	0.6		μs		
			1 MHz mode ⁽¹⁾	0.6		μs		
IS34	THD:STO	Stop Condition	100 kHz mode	4		μs	_	
		Hold Time	400 kHz mode	0.6	—	μs		
			1 MHz mode ⁽¹⁾	0.25		μs		
IS40	TAA:SCL	Output Valid	100 kHz mode	0	3500	ns	—	
		From Clock	400 kHz mode	0	1000	ns		
			1 MHz mode ⁽¹⁾	0	350	ns		
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μs	Time the bus must be free	
			400 kHz mode	1.3	—	μs	before a new transmission	
			1 MHz mode ⁽¹⁾	0.5	—	μs	can start	
S50	Св	Bus Capacitive Lo	0		400	pF		
S51	TPGD	Pulse Gobbler De	lay	65	390	ns	See Note 2	

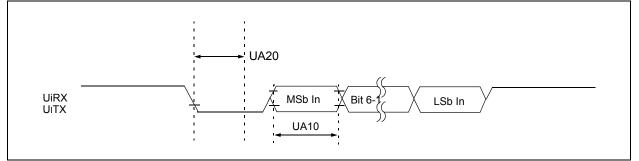

TABLE 30-52: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

2: The Typical value for this parameter is 130 ns.

3: These parameters are characterized, but not tested in manufacturing.

FIGURE 30-35: ECAN MODULE I/O TIMING CHARACTERISTICS


TABLE 30-53: ECAN MODULE I/O TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature-40°C ≤TA ≤+85°C for Industrial-40°C ≤TA ≤+125°C for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾	Min Typ ⁽²⁾ Max Units Conditions					
CA10	TioF	Port Output Fall Time	—	_		ns	See parameter DO32	
CA11	TioR	Port Output Rise Time	—	—	_	ns	See parameter DO31	
CA20	120	_	_	ns	_			

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

FIGURE 30-36: UART MODULE I/O TIMING CHARACTERISTICS

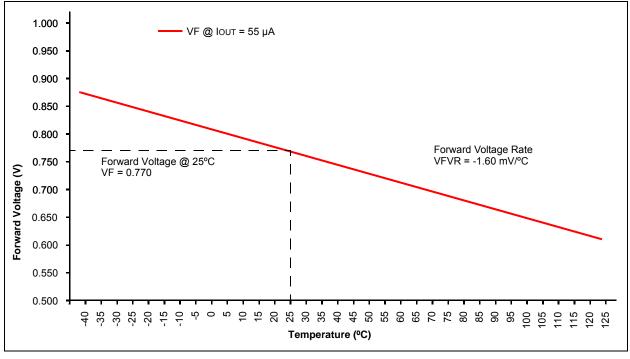
TABLE 30-54: UART MODULE I/O TIMING REQUIREMENTS

AC CHARA	C CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+125°C					
Param No. Symbol Characteristic ⁽¹⁾			Min	Conditions					
UA10	Tuabaud	UART Baud Time	66.67	—	_	ns	_		
UA11	Fbaud	UART Baud Frequency	_		15	mbps	—		
UA20	Tcwf	Start Bit Pulse Width to Trigger UART Wake-up	500	_	_	ns	_		

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

	DC CHAF	RACTERISTICS	Standard Operating Conditions:3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for Extended					
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions	
CTMU CUR	RENT SOUR	CE						
CTMUI1	Ιουτ1	Base Range ⁽¹⁾	_	0.55		μA	CTMUICON<9:8> = 01	
CTMUI2	IOUT2	10x Range ⁽¹⁾	_	5.5	_	μA	CTMUICON<9:8> = 10	
CTMUI3	IOUT3	100x Range ⁽¹⁾	_	55	_	μA	CTMUICON<9:8> = 11	
CTMUI4	IOUT4	1000x Range ⁽¹⁾	_	550	_	μA	CTMUICON<9:8> = 00	
CTMUFV1	VF	Temperature Diode Forward Voltage ^(1,2)		0.65	_	V	TA = +25°C, CTMUICON<9:8> = 01	
				0.71	_	V	TA = +25°C, CTMUICON<9:8> = 10	
			—	0.77	—	V	TA = +25°C, CTMUICON<9:8> = 11	
CTMUFV2	VFVR	Temperature Diode Rate of	_	-1.84	_	mV/⁰C	CTMUICON<9:8> = 01	
		Change ^(1,2)	_	-1.71	_	mV/⁰C	CTMUICON<9:8> = 10	
			_	-1.60	_	mV/ºC	CTMUICON<9:8> = 11	


TABLE 30-55: CTMU CURRENT SOURCE SPECIFICATIONS

Note 1: Nominal value at center point of current trim range (CTMUICON<15:10> = 000000).

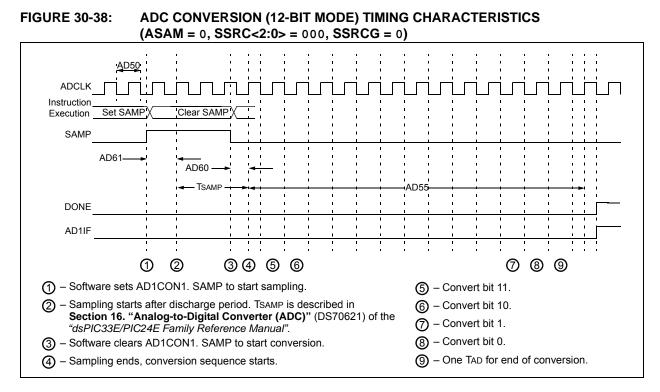
2: Parameters are characterized but not tested in manufacturing. Measurements taken with the following conditions:

- VREF+ = AVDD = 3.3V
- ADC configured for 10-bit mode
- · ADC module configured for conversion speed of 500 ksps
- All PMD bits are cleared (PMDx = 0)
- Executing a while(1) statement
- Device operating from the FRC with no PLL

FIGURE 30-37: FORWARD VOLTAGE VERSUS TEMPERATURE

AC CHA	ARACTER	RISTICS	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for Extended						
Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions		
			Device	Supply	1				
AD01	AVDD	Module VDD Supply	Greater of VDD – 0.3 or 3.0	-	Lesser of VDD + 0.3 or 3.6	V	_		
AD02	AVss	Module Vss Supply	Vss – 0.3		Vss + 0.3	V	—		
			Reference	ce Inpu	ts				
AD05	VREFH	Reference Voltage High	AVss + 2.5		AVDD	V	See Note 1 VREFH = VREF+ VREFL = VREF-		
AD05a			3.0		3.6	V	VREFH = AVDD VREFL = AVSS = 0		
AD06	VREFL	Reference Voltage Low	AVss	_	AVDD - 2.7	V	See Note 1		
AD06a			0		0	V	VREFH = AVDD VREFL = AVSS = 0		
AD07	Vref	Absolute Reference Voltage	2.7		3.6	V	VREF = VREFH - VREFL		
AD08	IREF	Current Drain			10 600	μΑ μΑ	ADC off ADC on		
AD09	IAD	Operating Current	_	9.0 3.2	_	mA mA	ADC operating in 10-bit mode, see Note 1 ADC operating in 12-bit mode, see Note 1		
			Analo	g Input					
AD12	Vinh	Input Voltage Range Vінн	Vinl		Vrefh	V	This voltage reflects Sample and Hold Channels 0, 1, 2, and 3 (CH0-CH3), positive input		
AD13	VINL	Input Voltage Range VINL	Vrefl		AVss + 1V	V	This voltage reflects Sample and Hold Channels 0, 1, 2, and 3 (CH0-CH3), negative input		
AD17	RIN	Recommended Imped- ance of Analog Voltage Source	_		200	Ω	Impedance to achieve maximum performance of ADC		

TABLE 30-56: ADC MODULE SPECIFICATIONS

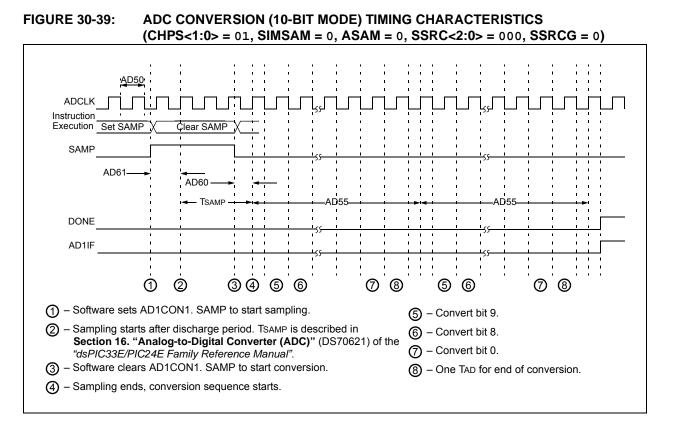

Note 1: These parameters are not characterized or tested in manufacturing.

AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions		
		ADC Accuracy (12-bit Mod	de) – Mea	sureme	nts with	externa	I VREF+/VREF-		
AD20a	Nr	Resolution	12 data bits bits		bits				
AD21a	INL	Integral Nonlinearity	-2	_	+2	LSb	VINL = AVSS = VREFL = 0V, AVDE = VREFH = 3.6V		
AD22a	DNL	Differential Nonlinearity	>-1	_	<1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V		
AD23a	Gerr	Gain Error	1.25	1.5	3	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V		
AD24a	EOFF	Offset Error	1.25	1.52	2	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V		
AD25a	—	Monotonicity	—	_	—	—	Guaranteed		
		ADC Accuracy (12-bit Mo	de) – Mea	asureme	nts with	interna	VREF+/VREF-		
AD20a	Nr	Resolution	12 data bits		bits				
AD21a	INL	Integral Nonlinearity	-2	_	+2	LSb	VINL = AVSS = 0V, AVDD = 3.6V		
AD22a	DNL	Differential Nonlinearity	>-1		<1	LSb	VINL = AVSS = 0V, AVDD = 3.6V		
AD23a	Gerr	Gain Error	2	3	7	LSb	VINL = AVSS = 0V, AVDD = 3.6V		
AD24a	EOFF	Offset Error	2	3	5	LSb	VINL = AVSS = 0V, AVDD = 3.6V		
AD25a	_	Monotonicity	_			_	Guaranteed		
		Dynamie	c Perforn	nance (1	2-bit Mo	de)			
AD30a	THD	Total Harmonic Distortion	—	—	-75	dB	—		
AD31a	SINAD	Signal to Noise and Distortion	68.5	69.5	_	dB	_		
AD32a	SFDR	Spurious Free Dynamic Range	80	_	_	dB	_		
AD33a	Fnyq	Input Signal Bandwidth	—	—	250	kHz	—		
AD34a	ENOB	Effective Number of Bits	11.09	11.3	—	bits	—		

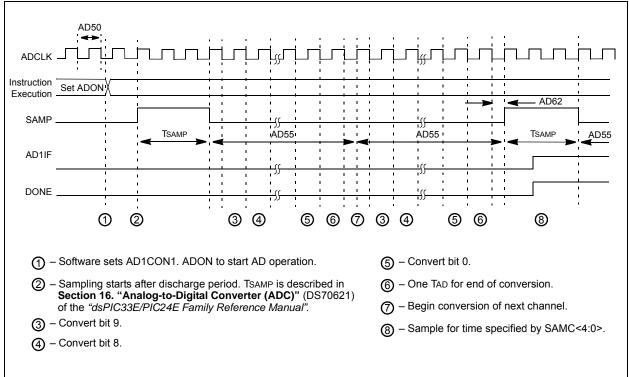
TABLE 30-57: ADC MODULE SPECIFICATIONS (12-BIT MODE)

AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions		
		ADC Accuracy (10-bit Mode	e) – Meas	urement	ts with e	xternal	VREF+/VREF-		
AD20b	Nr	Resolution	10 data bits		bits	—			
AD21b	INL	Integral Nonlinearity	-1	_	+1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V		
AD22b	DNL	Differential Nonlinearity	>-1	_	<1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V		
AD23b	Gerr	Gain Error	1	3	6	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V		
AD24b	EOFF	Offset Error	1	2	3	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V		
AD25b	—	Monotonicity	—	—		_	Guaranteed		
		ADC Accuracy (10-bit Mode	e) – Meas	uremen	ts with ir	nternal	VREF+/VREF-		
AD20b	Nr	Resolution	10 data bits		bits	—			
AD21b	INL	Integral Nonlinearity	-1.5	—	+1.5	LSb	VINL = AVSS = 0V, AVDD = 3.6V		
AD22b	DNL	Differential Nonlinearity	>-1	—	<1	LSb	VINL = AVSS = 0V, AVDD = 3.6V		
AD23b	Gerr	Gain Error	1	5	6	LSb	VINL = AVSS = 0V, AVDD = 3.6V		
AD24b	EOFF	Offset Error	1	2	5	LSb	VINL = AVSS = 0V, AVDD = 3.6V		
AD25b	_	Monotonicity	_	_		-	Guaranteed		
		Dynamic	Performa	nce (10-	bit Mod	e)			
AD30b	THD	Total Harmonic Distortion	—	—	-64	dB	—		
AD31b	SINAD	Signal to Noise and Distortion	57	58.5	_	dB			
AD32b	SFDR	Spurious Free Dynamic Range	72		_	dB			
AD33b	Fnyq	Input Signal Bandwidth	_	—	550	kHz	—		
AD34b	ENOB	Effective Number of Bits	9.16	9.4	_	bits			

TABLE 30-58: ADC MODULE SPECIFICATIONS (10-BIT MODE)


TABLE 30-59: ADC CONVERSION (12-BIT MODE) TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions		
	•	Cloc	k Parame	ters			•		
AD50	Tad	ADC Clock Period	117.6	_		ns	_		
AD51	tRC	ADC Internal RC Oscillator Period	—	250		ns	_		
		Con	version R	ate					
AD55	tCONV	Conversion Time	—	14 Tad		ns	_		
AD56	FCNV	Throughput Rate	_	_	500	Ksps	_		
AD57	TSAMP	Sample Time	3 Tad	_	_		_		
	•	Timir	ng Parame	eters					
AD60	tPCS	Conversion Start from Sample Trigger ⁽²⁾	2 Tad	—	3 Tad	_	Auto convert trigger not selected		
AD61	tPSS	Sample Start from Setting Sample (SAMP) bit ⁽²⁾	2 Tad	—	3 Tad	_	_		
AD62	tcss	Conversion Completion to Sample Start (ASAM = 1) ⁽²⁾	—	0.5 Tad	_		_		
AD63	tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On ⁽²⁾			20	μs	See Note 3		


Note 1: Because the sample caps will eventually lose charge, clock rates below 10 kHz may affect linearity performance, especially at elevated temperatures.

2: These parameters are characterized but not tested in manufacturing.

3: The parameter tDPU is the time required for the ADC module to stabilize at the appropriate level when the module is turned on (ADON (AD1CON1<15>) ='1'). During this time, the ADC result is indeterminate.

FIGURE 30-40: ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (CHPS<1:0> = 01, SIMSAM = 0, ASAM = 1, SSRC<2:0> = 111, SSRCG = 0, SAMC<4:0> = 00010)

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				≤+85°C for Industrial	
Param No.	Symbol	Characteristic	Min Typ ⁽¹⁾ Max Units Conditions					
Clock Parameters								
AD50	TAD	ADC Clock Period	76	_	_	ns	—	
AD51	tRC	ADC Internal RC Oscillator Period	—	250	—	ns	—	
	Conversion Rate							
AD55	tCONV	Conversion Time	—	12 Tad	_	_	—	
AD56	FCNV	Throughput Rate	—		1.1	Msps	Using Simultaneous Sampling	
AD57	TSAMP	Sample Time	2 Tad	—	_	_	—	
		Timin	g Param	eters				
AD60	tPCS	Conversion Start from Sample Trigger ⁽¹⁾	2 Tad	_	3 Tad		Auto-Convert Trigger not selected	
AD61	tpss	Sample Start from Setting Sample (SAMP) bit ⁽¹⁾	2 Tad	-	3 Tad			
AD62	tcss	Conversion Completion to Sample Start (ASAM = 1) ⁽¹⁾	—	0.5 TAD	—	_	—	
AD63	tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On ⁽¹⁾			20	μs	See Note 3	

TABLE 30-60: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.

2: Because the sample caps will eventually lose charge, clock rates below 10 kHz may affect linearity performance, especially at elevated temperatures.

3: The parameter tDPU is the time required for the ADC module to stabilize at the appropriate level when the module is turned on (AD1CON1<ADON> = 1). During this time, the ADC result is indeterminate.

TABLE 30-61: DMA MODULE TIMING REQUIREMENTS

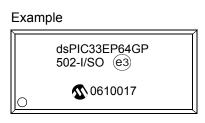
		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for Extended					
Param No.	Characteristic	Min Typ Max Units Cor			Conditions		
DM1	DMA Byte/Word Transfer Latency	1 TCY ⁽²⁾ — — ns					

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Because DMA transfers use the CPU data bus, this time is dependent on other functions on the bus.

31.0 PACKAGING INFORMATION

31.1 Package Marking Information


28-Lead SPDIP

28-Lead SOIC

28-Lead SSOP

Example

Legend	d: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.
Note:	be carrie	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.

31.1 Package Marking Information (Continued)


36-Lead TLA

44-Lead TLA

44-Lead TQFP

Example

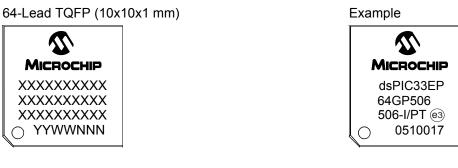
Example

Example

Example

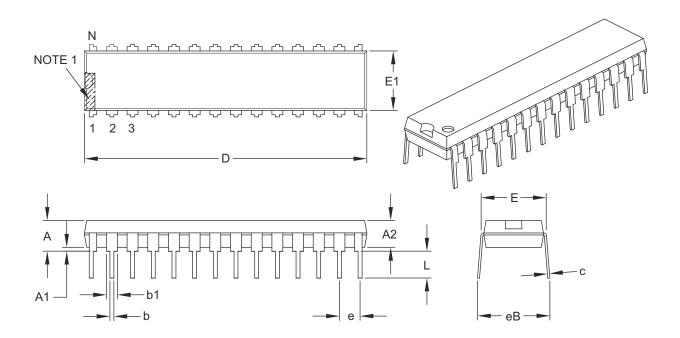
Legend	: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.
Note:	be carried	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.

31.1 Package Marking Information (Continued)



64-Lead QFN (9x9x0.9 mm)

Example	
\cap	



Legen	d: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.
Note:	be carrie	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.

31.2 Package Details

28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

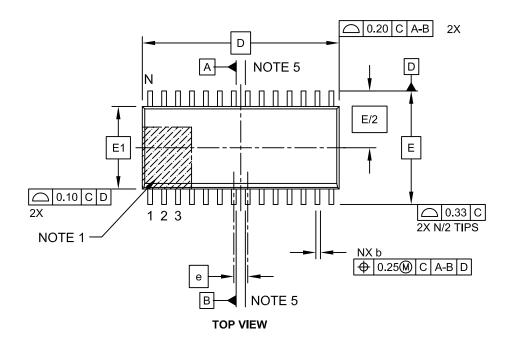
	Units		INCHES	
Dimer	Dimension Limits		NOM	MAX
Number of Pins	Number of Pins N		28	
Pitch	е		.100 BSC	
Top to Seating Plane	А	-	-	.200
Molded Package Thickness	A2	.120	.135	.150
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	E	.290	.310	.335
Molded Package Width	E1	.240	.285	.295
Overall Length	D	1.345	1.365	1.400
Tip to Seating Plane	L	.110	.130	.150
Lead Thickness	С	.008	.010	.015
Upper Lead Width	b1	.040	.050	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eB	-	_	.430

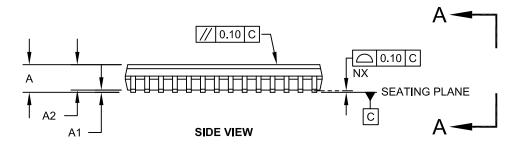
Notes:

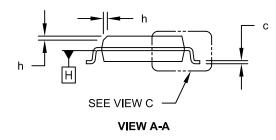
1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

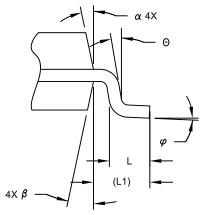

4. Dimensioning and tolerancing per ASME Y14.5M.

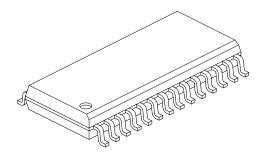

BSC: Basic Dimension. Theoretically exact value shown without tolerances.


Microchip Technology Drawing C04-070B

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging





Microchip Technology Drawing C04-052C Sheet 1 of 2

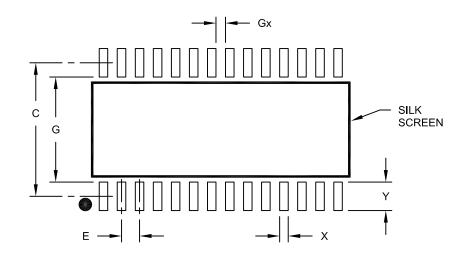
28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

VIEW C

	MILLIMETERS					
Dimension	Limits	MIN	NOM	MAX		
Number of Pins	N		28			
Pitch	е		1.27 BSC			
Overall Height	A	-	-	2.65		
Molded Package Thickness	A2	2.05	-	-		
Standoff §	A1	0.10	-	0.30		
Overall Width	E	10.30 BSC				
Molded Package Width	E1	7.50 BSC				
Overall Length	D	17.90 BSC				
Chamfer (Optional)	h	0.25	-	0.75		
Foot Length	L	0.40	-	1.27		
Footprint	L1	1.40 REF				
Lead Angle	Θ	0°	-	-		
Foot Angle	φ	0°	-	8°		
Lead Thickness	С	0.18	-	0.33		
Lead Width	b	0.31	-	0.51		
Mold Draft Angle Top	α	5°	-	15°		
Mold Draft Angle Bottom	β	5°	-	15°		

Notes:


- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing C04-052C Sheet 2 of 2

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, AND PIC24EPXXXGP/MC20X

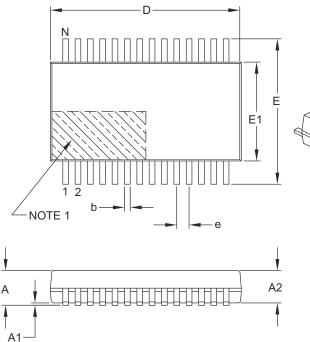
28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

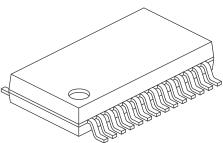
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

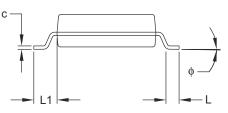
RECOMMENDED LAND PATTERN

	Units			S
Dimension	Dimension Limits		NOM	MAX
Contact Pitch	E	E 1.27 BSC		
Contact Pad Spacing	С		9.40	
Contact Pad Width (X28)	X			0.60
Contact Pad Length (X28)	Y			2.00
Distance Between Pads	Gx	0.67		
Distance Between Pads	G	7.40		

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.


Microchip Technology Drawing No. C04-2052A

28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

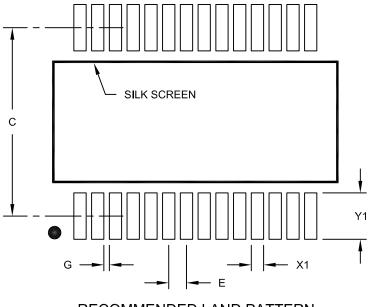
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			5
Dimension	Dimension Limits		NOM	MAX
Number of Pins	Ν		28	
Pitch	е		0.65 BSC	
Overall Height	Α	-	_	2.00
Molded Package Thickness	A2	1.65	1.75	1.85
Standoff	A1	0.05	_	_
Overall Width	Е	7.40	7.80	8.20
Molded Package Width	E1	5.00	5.30	5.60
Overall Length	D	9.90	10.20	10.50
Foot Length	L	0.55	0.75	0.95
Footprint	L1	1.25 REF		
Lead Thickness	С	0.09	_	0.25
Foot Angle	φ	0°	4°	8°
Lead Width	b	0.22	_	0.38

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.


- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073B

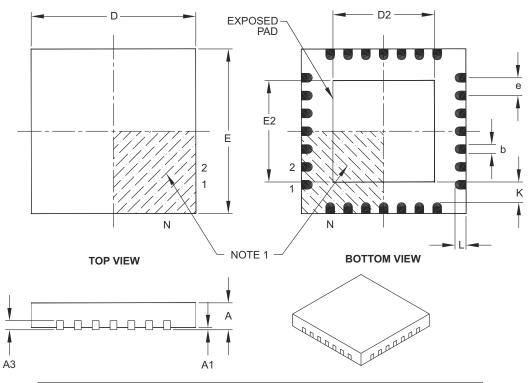
28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units			S
Dimensior	Dimension Limits		NOM	MAX
Contact Pitch	E	0.65 BSC		
Contact Pad Spacing	С	7.20		
Contact Pad Width (X28)	X1			0.45
Contact Pad Length (X28)	Y1			1.75
Distance Between Pads	G	0.20		

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2073A

28-Lead Plastic Quad Flat, No Lead Package (MM) – 6x6x0.9 mm Body [QFN-S] with 0.40 mm Contact Length

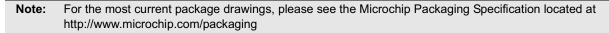
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

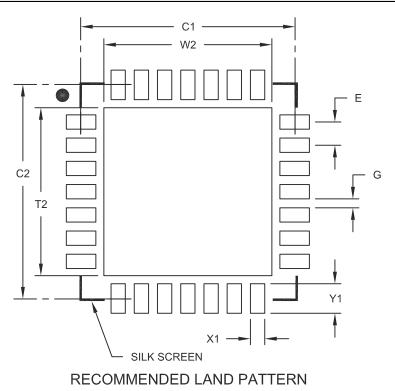
	Units		MILLIMETERS		
	Dimension Limits		NOM	MAX	
Number of Pins N			28		
Pitch	е		0.65 BSC		
Overall Height	A	0.80	0.90	1.00	
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3	0.20 REF			
Overall Width	E		6.00 BSC		
Exposed Pad Width	E2	3.65	3.70	4.70	
Overall Length	D	6.00 BSC			
Exposed Pad Length	D2	3.65	3.70	4.70	
Contact Width	b	0.23	0.38	0.43	
Contact Length	L	0.30	0.40	0.50	
Contact-to-Exposed Pad	К	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.


3. Dimensioning and tolerancing per ASME Y14.5M.

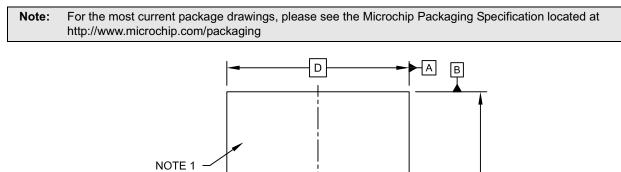

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

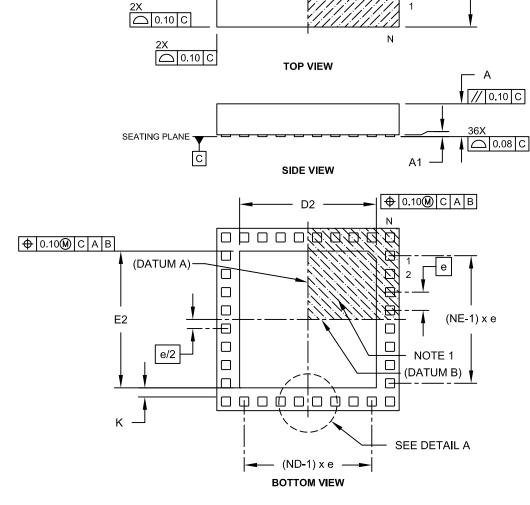
REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-124B

28-Lead Plastic Quad Flat, No Lead Package (MM) – 6x6x0.9 mm Body [QFN-S] with 0.40 mm Contact Length

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E		0.65 BSC	
Optional Center Pad Width	W2			4.70
Optional Center Pad Length	T2			4.70
Contact Pad Spacing	C1		6.00	
Contact Pad Spacing	C2		6.00	
Contact Pad Width (X28)	X1			0.40
Contact Pad Length (X28)	Y1			0.85
Distance Between Pads	G	0.25		


Notes:

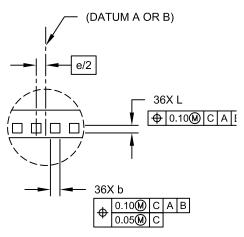

1. Dimensioning and tolerancing per ASME Y14.5M

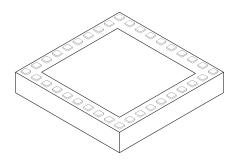
BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2124A

36-Lead Thermal Leadless Array Package (TL) – 5x5x0.9 mm Body with Exposed Pad [TLA]

Microchip Technology Drawing C04-187B Sheet 1 of 2


E


NOTE 1

2

36-Lead Thermal Leadless Array Package (TL) – 5x5x0.9 mm Body with Exposed Pad [TLA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

DETAIL A

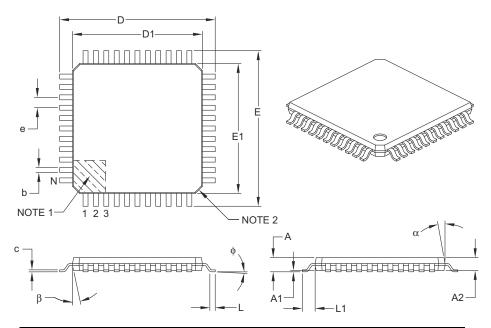
	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX
Number of Pins	И		36	
Number of Pins per Side	ND		10	
Number of Pins per Side	NE		8	
Pitch	e	0.50 BSC		
Overall Height	А	0.80	0.90	1.00
Standoff	A1	0.025	-	0.075
Overall Width	Ш	5.00 BSC		
Exposed Pad Width	E2	3.60	3.75	3.90
Overall Length	D	5.00 BSC		
Exposed Pad Length	D2	3.60	3.75	3.90
Contact Width	b	0.20	0.25	0.30
Contact Length	L	0.20	0.25	0.30
Contact-to-Exposed Pad	К	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-187B Sheet 2 of 2

44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS	
	Dimension Limits	MIN	NOM	MAX
Number of Leads	N	44		
Lead Pitch	е		0.80 BSC	
Overall Height	А	_	-	1.20
Molded Package Thickness	A2	0.95	1.00	1.05
Standoff	A1	0.05	-	0.15
Foot Length	L	0.45	0.60	0.75
Footprint	L1	1.00 REF		
Foot Angle	ф	0°	3.5°	7°
Overall Width	E	12.00 BSC		
Overall Length	D	12.00 BSC		
Molded Package Width	E1		10.00 BSC	
Molded Package Length	D1		10.00 BSC	
Lead Thickness	С	0.09	_	0.20
Lead Width	b	0.30	0.37	0.45
Mold Draft Angle Top	α	11°	12°	13°
Mold Draft Angle Bottom	β	11°	12°	13°

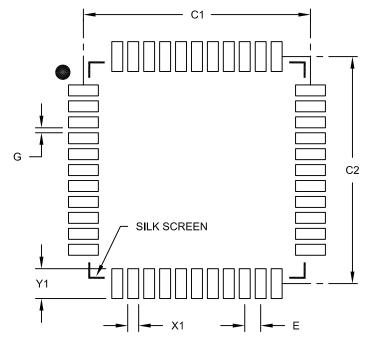
Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.


REF: Reference Dimension, usually without tolerance, for information purposes only.

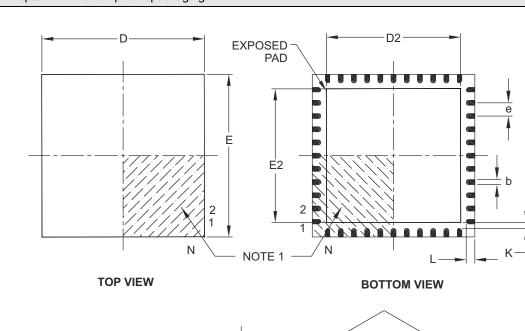
Microchip Technology Drawing C04-076B

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, AND PIC24EPXXXGP/MC20X

44-Lead Plastic Thin Quad Flatpack (PT) 10X10X1 mm Body, 2.00 mm Footprint [TQFP]

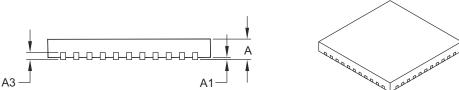
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN


Units		MILLIMETERS			
Dimension Limits		MIN	NOM	MAX	
Contact Pitch	E	0.80 BSC			
Contact Pad Spacing	C1		11.40		
Contact Pad Spacing	C2		11.40		
Contact Pad Width (X44)	X1			0.55	
Contact Pad Length (X44)	Y1			1.50	
Distance Between Pads	G	0.25			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2076B

44-Lead Plastic Quad Flat, No Lead Package (ML) – 8x8 mm Body [QFN]

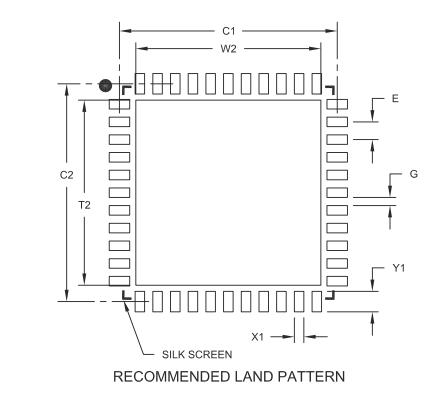
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS		
Dimensio	on Limits	MIN	NOM	MAX	
Number of Pins	Ν		44		
Pitch	е		0.65 BSC		
Overall Height	Α	0.80	0.90	1.00	
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3	0.20 REF			
Overall Width	Е		8.00 BSC		
Exposed Pad Width	E2	6.30	6.45	6.80	
Overall Length	D	8.00 BSC			
Exposed Pad Length	D2	6.30	6.45	6.80	
Contact Width	b	0.25	0.30	0.38	
Contact Length	L	0.30	0.40	0.50	
Contact-to-Exposed Pad	К	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.


- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-103B

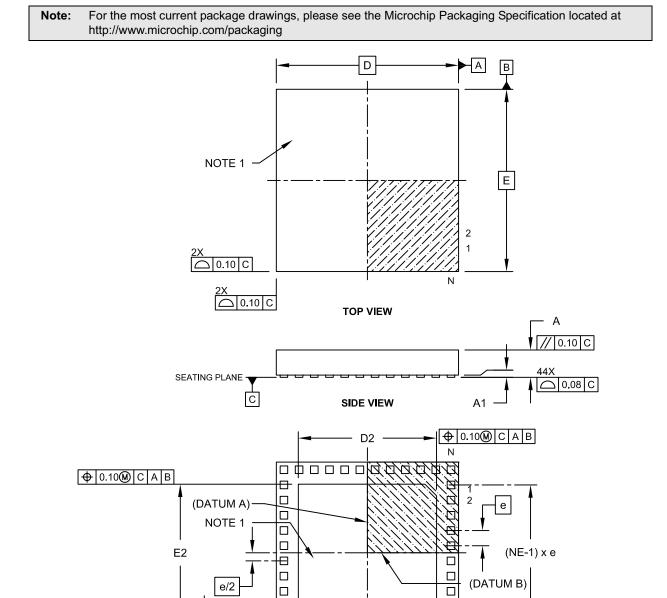
dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, AND PIC24EPXXXGP/MC20X

For the most current package drawings, please see the Microchip Packaging Specification located at

http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.65 BSC		
Optional Center Pad Width	W2			6.80
Optional Center Pad Length	T2			6.80
Contact Pad Spacing	C1		8.00	
Contact Pad Spacing	C2		8.00	
Contact Pad Width (X44)	X1			0.35
Contact Pad Length (X44)	Y1			0.80
Distance Between Pads	G	0.25		

Notes:


Note:

1. Dimensioning and tolerancing per ASME Y14.5M

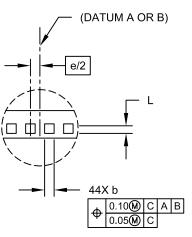
BSC: Basic Dimension. Theoretically exact value shown without tolerances.

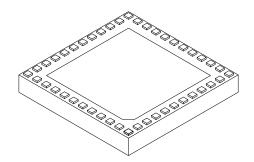
Microchip Technology Drawing No. C04-2103A

Microchip Technology Drawing C04-157B Sheet 1 of 2

SEE DETAIL A

Ξ


- (ND-1) x e -BOTTOM VIEW


E

Κ

44-Lead Thermal Leadless Array Package (TL) – 6x6x0.9 mm Body with Exposed Pad [TLA]

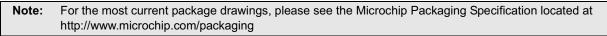
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

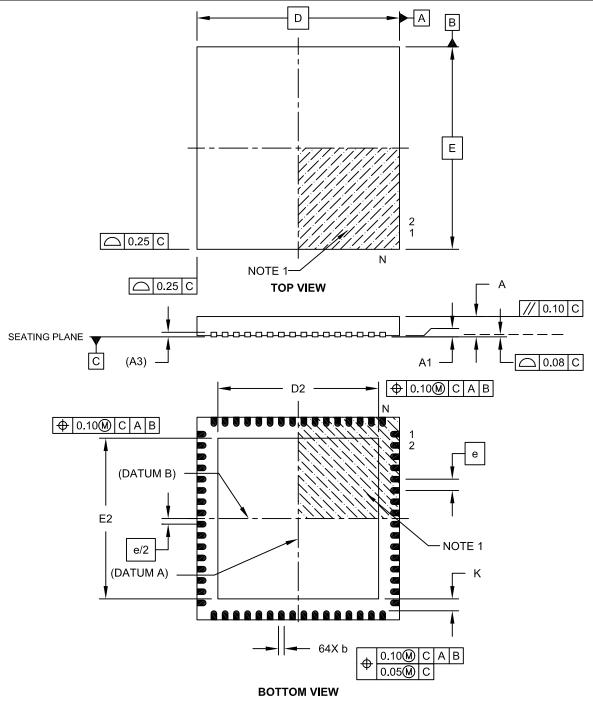
DETAIL A

	Units MILLIMETERS			S
Dimension	Limits	MIN	MAX	
Number of Pins	Ν		44	
Number of Pins per Side	ND		12	
Number of Pins per Side	NE		10	
Pitch	е	0.50 BSC		
Overall Height	А	0.80	0.90	1.00
Standoff	A1	0.025	-	0.075
Overall Width	Е	6.00 BSC		
Exposed Pad Width	E2	4.40	4.55	4.70
Overall Length	D		6.00 BSC	
Exposed Pad Length	D2	4.40	4.55	4.70
Contact Width	b	0.20	0.25	0.30
Contact Length	L	0.20	0.25	0.30
Contact-to-Exposed Pad	К	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

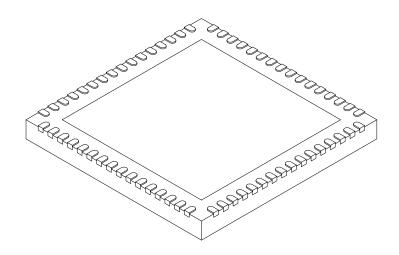

2. Package is saw singulated.


3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-157B Sheet 2 of 2

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 7.15 x 7.15 Exposed Pad [QFN]



Microchip Technology Drawing C04-149C Sheet 1 of 2

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 7.15 x 7.15 Exposed Pad [QFN]

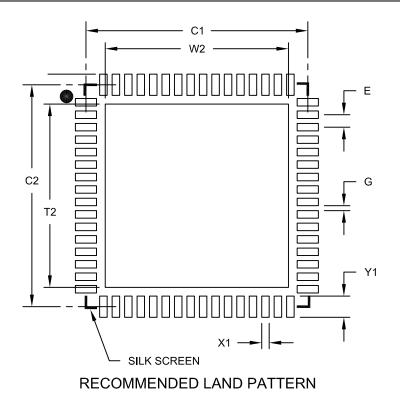
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS		
Dimension	Limits	MIN	NOM	MAX
Number of Pins	N		64	
Pitch	е		0.50 BSC	
Overall Height	A	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3	0.20 REF		
Overall Width	E	9.00 BSC		
Exposed Pad Width	E2	7.05	7.15	7.50
Overall Length	D	9.00 BSC		
Exposed Pad Length	D2	7.05	7.15	7.50
Contact Width	b	0.18	0.25	0.30
Contact Length	L	0.30	0.40	0.50
Contact-to-Exposed Pad	K	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.


3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-149C Sheet 2 of 2

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 0.40 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS			
Dimension Limits		MIN	NOM	MAX	
Contact Pitch	E	0.50 BSC			
Optional Center Pad Width	W2			7.35	
Optional Center Pad Length	T2			7.35	
Contact Pad Spacing	C1		8.90		
Contact Pad Spacing	C2		8.90		
Contact Pad Width (X64)	X1			0.30	
Contact Pad Length (X64)	Y1			0.85	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2149A

É E1 h 123 NOTE 2 NOTE 1 С A2 A1 L1 MILLIMETERS Units **Dimension Limits** MIN NOM MAX Number of Leads Ν 64 Lead Pitch 0.50 BSC е **Overall Height** Α 1.20 Molded Package Thickness A2 0.95 1.00 1.05 Standoff A1 0.05 0.15 _ 0.45 0.60 0.75 Foot Length L Footprint L1 1.00 REF 7° Foot Angle ø 0° 3.5° **Overall Width** Е 12.00 BSC

64-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

Overall Length

Lead Thickness

Lead Width

Molded Package Width

Molded Package Length

Mold Draft Angle Top

Mold Draft Angle Bottom

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

D

E1

D1

с

b

α

β

0.09

0.17

11°

11°

12.00 BSC

10.00 BSC 10.00 BSC

> -0.22

12°

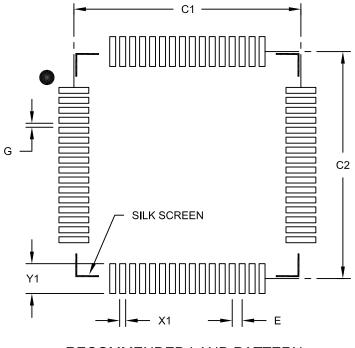
12°

- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-085B

0.20


0.27

13°

13°

64-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.50 BSC		
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X64)	X1			0.30
Contact Pad Length (X64)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2085B

APPENDIX A: REVISION HISTORY

Revision A (April 2011)

This is the initial released version of this document.

Revision B (July 2011)

This revision includes minor typographical and formatting changes throughout the data sheet text.

All other major changes are referenced by their respective section in Table A-1.

TABLE A-1:MAJOR SECTION UPDATES

Section Name	Update Description
"High-Performance, 16-bit Digital Signal Controllers and Microcontrollers"	Changed all pin diagrams references of VLAP to TLA.
Section 4.0 "Memory Organization"	Updated the All Resets values for CLKDIV and PLLFBD in the System Control Register Map (see Table 4-35).
Section 5.0 "Flash Program Memory"	Updated "one word" to "two words" in the first paragraph of Section 5.2 "RTSP Operation ".
Section 9.0 "Oscillator	Updated the PLL Block Diagram (see Figure 9-2).
Configuration"	Updated the Oscillator Mode, Fast RC Oscillator (FRC) with divide-by-N and PLL (FRCPLL), by changing (FRCDIVN + PLL) to (FRCPLL).
	Changed (FRCDIVN + PLL) to (FRCPLL) for COSC<2:0> = 001 and NOSC<2:0> = 001 in the Oscillator Control Register (see Register 9-1).
	Changed the POR value from 0 to 1 for the DOZE<1:0> bits, from 1 to 0 for the FRCDIV<0> bit, and from 0 to 1 for the PLLPOST<0> bit; Updated the default definitions for the DOZE<2:0> and FRCDIV<2:0> bits and updated all bit definitions for the PLLPOST<1:0> bits in the Clock Divisor Register (see Register 9-2).
	Changed the POR value from 0 to 1 for the PLLDIV<5:4> bits and updated the default definitions for all PLLDIV<8:0> bits in the PLL Feedback Division Register (see Register 9-2).
Section 22.0 "Charge Time Measurement Unit (CTMU)"	Updated the bit definitions for the IRNG<1:0> bits in the CTMU Current Control Register (see Register 22-3).
Section 25.0 "Op amp/ Comparator Module"	Updated the voltage reference block diagrams (see Figure 25-1 and Figure 25-2).
Section 30.0 "Electrical Characteristics"	Removed Voltage on VCAP with respect to Vss and added Note 5 in Absolute Maximum Ratings ⁽¹⁾ .
	Removed parameter DC18 (VCORE) and Note 3 from the DC Temperature and Voltage Specifications (see Table 30-4).
	Updated Note 1 in the DC Characteristics: Operating Current (IDD) (see Table 30-6).
	Updated Note 1 in the DC Characteristics: Idle Current (IIDLE) (see Table 30-7).
	Changed the Typical values for parameters DC60a-DC60d and updated Note 1 in the DC Characteristics: Power-down Current (IPD) (see Table 30-8).
	Updated Note 1 in the DC Characteristics: Doze Current (IDOZE) (see Table 30-9).
	Updated Note 2 in the Electrical Characteristics: BOR (see Table 30-12).
	Updated parameters CM20 and CM31, and added parameters CM44 and CM45 in the AC/DC Characteristics: Op amp/Comparator (see Table 30-14).
	Added the Op amp/Comparator Reference Voltage Settling Time Specifications (see Table 30-15).
	Added Op amp/Comparator Voltage Reference DC Specifications (see Table 30-16).
	Updated Internal FRC Accuracy parameter F20a (see Table 30-21).
	Updated the Typical value and Units for parameter CTMUI1, and added parameters CTMUI4, CTMUFV1, and CTMUFV2 to the CTMU Current Source Specifications (see Table 30-55).

Section Name	Update Description
Section 31.0 "Packaging Information"	Updated packages by replacing references of VLAP with TLA.
"Product Identification System"	Changed VLAP to TLA.

TABLE A-1: MAJOR SECTION UPDATES (CONTINUED)

INDEX

Α	
AC Characteristics	35
Capacitive Loading Requirements on Output Pins 38	5
Internal FRC Accuracy	57
Internal RC Accuracy	37
Load Conditions	35
ADC	
Initialization	97
Key Features	97
Analog-to-Digital Converter (ADC)	97
Arithmetic Logic Unit (ALU)	5
Assembler	
MPASM Assembler	8

_

В	
Bit-Reversed Addressing	
Example	105
Implementation	104
Sequence Table (16-Entry)	
Bit-Reversed Addressing (dsPIC33EPXXXMC20X/50X	
and dsPIC33EPXXXGP50X Devices Only)	104
Block Diagrams	
16-bit Timer1 Module	193
ADC Conversion Clock Period	299
ADC1 and ADC2 Module	298
Comparator I/O Operating Modes	327
Comparator Voltage Reference	328
Connections for On-Chip Voltage Regulator	353
CPU Core	38
CRC Module	343
CRC Shift Engine	344
CTMU Configurations	
Time Measurement	293
Digital Filter Interconnect	
dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/5	
and PIC24EPXXXGP/MC20X	26
ECAN Module	268
Input Capture	201
Oscillator System Diagram	143
Output Compare	
PLL	
Quadrature Encoder Interface	232
Reset System	
Shared Port Structure	
SPIx module	
Type B (Timer2 and Timer4)	
Type C (Timer3 and Timer5)	
UART	
User Programmable Blanking Function	
Watchdog Timer (WDT)	354

С

C Compilers MPLAB C18	
Charge Time Measurement Unit. See CTMU.	
Code Examples	
Port Write/Read	
PWRSAV Instruction Syntax	
Code Protection	349, 355
Configuring Analog Port Pins	
CPU	
Control Register	41

CPU Clocking System Sources	
CRC	
User Interface	344
Data	344
CTMU Module	
Register Map	87
Customer Change Notification Service	
Customer Notification Service	467
Customer Support	467
D	
Data Address Space	40
Alignment	
Memory Map for dsPIC33EP64MC20X/50X	
and dsPIC33EP64GP50X Devices	50
Memory Map for	
PIC24EP64GP/MC20X/50X Devices	
Near Data Space	
SFR	
Width	49
DC Characteristics	372
BOR	381
I/O Pin Input Specifications	378
I/O Pin Output Specifications	381
Idle Current (IDOZE)	377
Idle Current (IIDLE)	
Internal Voltage Regulator	373
Operating Current (IDD)	
Power-Down Current (IPD)	376
Program Memory	
Temperature and Voltage Specifications	
Development Support	367
DMA Module	
DSADR register	
supported peripherals	
DMAC Registers	132
DMAxCNT	
DMAxCON	
DMAxPAD	
DMAxREQ	
DMAxSTA	
DMAxSTB	
Doze Mode	
DSP Engine	45

Е

ECAN Module	
CiBUFPNT1 register	278
CiBUFPNT2 register	279
CiBUFPNT3 register	279
CiBUFPNT4 register	280
CiCFG1 register	276
CiCFG2 register	277
CiCTRL1 register	269
CiCTRL2 register	270
CiEC register	276
CiFCTRL register	272
CiFEN1 register	278
CiFIFO register	273
CiFMSKSEL1 register	282
CiFMSKSEL2 register	283
CiINTE register	275

CiINTF register
CiRXFnEID register
CiRXFnSID register
CiRXFUL1 register
CiRXFUL2 register
CiRXMnEID register
CiRXMnSID register
CiRXOVF1 register
CiRXOVF2 register
CiTRmnCON register
CiVEC register
Modes of Operation
Overview
ECAN Registers
Acceptance Filter Enable Register (CiFEN1)278
Acceptance Filter Extended Identifier Register n
(CiRXFnEID)
Acceptance Filter Mask Extended Identifier Register n
(CiRXMnEID)
Acceptance Filter Mask Standard Identifier Register n
(CiRXMnSID)
Acceptance Filter Standard Identifier Register n
(CiRXFnSID)
Baud Rate Configuration Register 1 (CiCFG1)276
Baud Rate Configuration Register 2 (CiCFG2)277
Control Register 1 (CiCTRL1)269
Control Register 2 (CiCTRL2)270
FIFO Control Register (CiFCTRL)272
FIFO Status Register (CiFIFO)273
Filter 0-3 Buffer Pointer Register (CiBUFPNT1) 278
Filter 12-15 Buffer Pointer Register (CiBUFPNT4) 280
Filter 15-8 Mask Selection Register (CiFMSKSEL2). 283
Filter 4-7 Buffer Pointer Register (CiBUFPNT2) 279
Filter 7-0 Mask Selection Register (CiFMSKSEL1) 282
Filter 8-11 Buffer Pointer Register (CiBUFPNT3) 279
Interrupt Code Register (CiVEC)
Interrupt Enable Register (CIINTE)
Interrupt Flag Register (CiINTF)
Receive Buffer Full Register 1 (CiRXFUL1)285
Receive Buffer Full Register 2 (CiRXFUL2)285
Receive Buffer Overflow Register 2 (CiRXOVF2) 286
Receive Overflow Register (CiRXOVF1)
ECAN Transmit/Receive Error Count Register (CiEC) 276
ECAN TX/RX Buffer m Control Register (CiTRmnCON) 287
Electrical Characteristics
AC
Enhanced CAN Module
Equations
Device Operating Frequency
Errata
Liiala
F
Flach Drogram Momony 100
Flash Program Memory
Control Registers
Operations
Programming Algorithm112
RTSP Operation110
Table Instructions109
Flexible Configuration
u
н
High-Speed PWM211

L
-

•	
I/O Ports	163
Parallel I/O (PIO)	163
Write/Read Timing	164
In-Circuit Debugger	
In-Circuit Emulation	349
In-Circuit Serial Programming (ICSP)	349, 355
Input Capture	201
Registers	202
Input Change Notification	164
Instruction Addressing Modes	101
File Register Instructions	101
Fundamental Modes Supported	102
MAC Instructions (dsPIC33EPXXXMC20X/5	
dsPIC33EPXXXGP50X Devices Only)	102
MCU Instructions	101
Move and Accumulator Instructions	102
Other Instructions	102
Instruction Set	
Overview	360
Summary	357
Instruction-Based Power-Saving Modes	153
Idle	154
Sleep	154
Internal RC Oscillator	
Use with WDT	354
Internet Address	467
Interrupt Control and Status Registers	121
IFSx	121
INTCON1	121
INTCON2	121
Interrupt Vector Table (IVT)	117
Interrupts Coincident with Power Save Instructions	154
_	

J

JTAG Boundary Scan Interface	349
JTAG Interface	355

Μ

Memory Organization Microchip Internet Web Site	
Modulo Addressing	
Applicability	104
Operation Example	103
Start and End Address	103
W Address Register Selection	103
Modulo Addressing (dsPIC33EPXXXMC20X/50X	and
dsPIC33EPXXXGP50X Devices Only)	103
Most Recent RAM Address Low Register	137
Most Recent RAM High Address	137
MPLAB ASM30 Assembler, Linker, Librarian	368
MPLAB Integrated Development Environment Software	367
MPLAB PM3 Device Programmer	370
MPLAB REAL ICE In-Circuit Emulator System	369
MPLINK Object Linker/MPLIB Object Librarian	368

0

Open-Drain Configuration	164
Output Compare	205
P	
1	

Packaging	
Details	
Marking	435, 437

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, AND PIC24EPXXXGP/MC20X

Peripheral Trigger Generator (PTG) Module
Peripherals supported by DMA 129
Pinout I/O Descriptions (table)
Power-Saving Features 153
Clock Frequency and Switching153
Program Address Space
Construction106
Data Access from Program Memory Using
Table Instructions107
Data Access from, Address Generation 106
Memory Map 47
Table Read Instructions
TBLRDH 107
TBLRDL 107
Program Memory
Organization
Reset Vector
Programmable CRC
Special Function Registers
Programmer's Model
Register Description
PTG
Introduction
Q
Quadrature Encoder Interface (QEI)
R
Reader Response 468
Register
PTG Adjust (PTGADJ)
PTG Literal (PTGL0)
PTG Step Queue Pointer (PTGQPTR)
PTG Step Queue Pointer Register 0 (PTGQUE0) 322
Register Maps
register mape
ADC1 and ADC275
ADC1 and ADC2
ADC1 and ADC275
ADC1 and ADC2
ADC1 and ADC2 75 Comparator 87 CPU Core (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X Devices Only) 53 CPU Core (PIC24EPXXXGP/MC20X Devices Only) 53 CPU Core for dsPIC33EPXXXGP50X and PIC24EPXXXGP20X Devices Only 55 DMAC 88 ECAN1 (When WIN (C1CTRL) = 0 or 1) dsPIC33EPXXXMC/GP50X Devices Only 76 ECAN1 (When WIN (C1CTRL) = 0) dsPIC33EPXXXMC/GP50X Devices Only 76 ECAN1 (WIN (C1CTRL) = 1) dsPIC33EPXXXMC/GP50X Devices Only 77 I2C1 and I2C2 73 Input Capture 1 through Input Capture 16 67 Interrupt Controller (dsPIC33EPXXXMC20X Devices Only) 60 Interrupt Controller (dsPIC33EPXXXMC20X Devices Only) 62 Interrupt Controller (dsPIC33EPXXXMC50X Devices Only) 64 Interrupt Controller (dsPIC34EPXXXGP20X Devices Only) 64
ADC1 and ADC2
ADC1 and ADC2 75 Comparator 87 CPU Core (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X Devices Only) 53 CPU Core (PIC24EPXXXGP/MC20X Devices Only) 53 CPU Core for dsPIC33EPXXXGP50X and PIC24EPXXXGP20X Devices Only 55 DMAC 88 ECAN1 (When WIN (C1CTRL) = 0 or 1) dsPIC33EPXXMC/GP50X Devices Only 76 ECAN1 (When WIN (C1CTRL) = 0) dsPIC33EPXXXMC/GP50X Devices Only 76 ECAN1 (WIN (C1CTRL) = 1) dsPIC33EPXXXMC/GP50X Devices Only 77 I2C1 and I2C2 73 Input Capture 1 through Input Capture 16 67 Interrupt Controller (dsPIC33EPXXXMC20X Devices Only) 60 Interrupt Controller (dsPIC33EPXXXMC50X Devices Only) 62 Interrupt Controller (dsPIC33EPXXXMC50X Devices Only) 64 Interrupt Controller (dsPIC33EPXXXMC50X Devices Only) 64 Interrupt Controller (dsPIC33EPXXXMC50X Devices Only) 56 Interrupt Controller (dsPIC33EPXXXMC50X Devices Only) 56 Interrupt Controller (dsPIC33EPXXXMC50X Devices Only) 56
ADC1 and ADC2 75 Comparator 87 CPU Core (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X Devices Only) 53 CPU Core (PIC24EPXXXGP/MC20X Devices Only) 53 CPU Core for dsPIC33EPXXXGP50X and PIC24EPXXXGP20X Devices Only 55 DMAC 88 ECAN1 (When WIN (C1CTRL) = 0 or 1) dsPIC33EPXXXMC/GP50X Devices Only 76 ECAN1 (When WIN (C1CTRL) = 0) dsPIC33EPXXXMC/GP50X Devices Only 76 ECAN1 (WIN (C1CTRL) = 1) dsPIC33EPXXXMC/GP50X Devices Only 77 I2C1 and I2C2 73 Input Capture 1 through Input Capture 16 67 Interrupt Controller (dsPIC33EPXXXMC20X Devices Only) 60 Interrupt Controller (dsPIC33EPXXXMC50X Devices Only) 62 Interrupt Controller (dsPIC33EPXXXMC50X Devices Only) 64 Interrupt Controller (dsPIC33EPXXXMC50X Devices Only) 64 Interrupt Controller (dsPIC33EPXXXMC50X Devices Only) 56 Interrupt Controller (PIC24EPXXXGP20X Devices Only) 56 Interrupt Controller (PIC24EPXXXMC20X Devices Only) 58 Output Compare 1 through Output Compare 16 68
ADC1 and ADC2 75 Comparator 87 CPU Core (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X Devices Only) 53 CPU Core (PIC24EPXXXGP/MC20X Devices Only) 53 CPU Core for dsPIC33EPXXXGP50X and PIC24EPXXXGP20X Devices Only 55 DMAC 88 ECAN1 (When WIN (C1CTRL) = 0 or 1) dsPIC33EPXXMC/GP50X Devices Only 76 ECAN1 (When WIN (C1CTRL) = 0) dsPIC33EPXXXMC/GP50X Devices Only 76 ECAN1 (WIN (C1CTRL) = 1) dsPIC33EPXXXMC/GP50X Devices Only 77 I2C1 and I2C2 73 Input Capture 1 through Input Capture 16 67 Interrupt Controller (dsPIC33EPXXXMC20X Devices Only) 60 Interrupt Controller (dsPIC33EPXXXMC50X Devices Only) 62 Interrupt Controller (dsPIC33EPXXXMC50X Devices Only) 64 Interrupt Controller (dsPIC33EPXXXMC50X Devices Only) 64 Interrupt Controller (dsPIC33EPXXXMC50X Devices Only) 56 Interrupt Controller (dsPIC33EPXXXMC50X Devices Only) 56 Interrupt Controller (dsPIC33EPXXXMC50X Devices Only) 56

Derinherel Din Select Innut
Peripheral Pin Select Input (dsPIC33EPXXXMC20X Devices Only)
Peripheral Pin Select Input
(dsPIC33EPXXXMC50X Devices Only)
Peripheral Pin Select Input
(PIC24EPXXXGP20X Devices Only)
Peripheral Pin Select Input
(PIC24EPXXXMC20X Devices Only)
Peripheral Pin Select Output
(dsPIC33EPXXXGP/MC202/502 and
PIC24EPXXXGP/MC202 Devices Only)
Peripheral Pin Select Output
(dsPIC33EPXXXGP/MC203/503 and
PIC24EPXXXGP/MC203 Devices Only)
Peripheral Pin Select Output
(dsPIC33EPXXXGP/MC204/504 and
PIC24EPXXXGP/MC204 Devices Only) 80
Peripheral Pin Select Output
(dsPIC33EPXXXGP/MC206/506 and
PIC24EPXXGP/MC206 Devices Only) 80
PMD (dsPIC33EPXXXMC50X Devices Only)
PMD (PIC24EPXXXGP20X Devices Only) 85
PORTA
(PIC24EPXXXGP/MC202 and
dsPIC33EPXXXGP/MC202/502 Devices Only) 94
PORTA (PIC24EPXXXGP/MC203 and
dsPIC33EPXXXGP/MC203/503 Devices Only) 93
PORTA
(PIC24EPXXXGP/MC204 and
dsPIC33EPXXXGP/MC204/504 Devices Only)92
PORTA
(PIC24EPXXXGP/MC206 and
dsPIC33EPXXXGP/MC206/506 Devices Only) 89
PORTB
(PIC24EPXXXGP/MC202 and
dsPIC33EPXXXGP/MC202/50294
PORTB
(PIC24EPXXXGP/MC203 and
dsPIC33EPXXXGP/MC203/503 Devices Only) 93
PORTB
(PIC24EPXXXGP/MC204 and
dsPIC33EPXXXGP/MC204/504 Devices Only 92
PORTB
(PIC24EPXXXGP/MC206
and dsPIC33EPXXXGP/MC206/506 Devices Only)
89 PORTC
(PIC23EPXXXGP/MC203 and dsPIC33EPXXXGP/MC203/503 Devices Only) 93
PORTC
(PIC24EPXXXGP/MC204 and
dsPIC33EPXXXGP/MC204/504 Devices Only)92
PORTC
(PIC24EPXXXGP/MC206 and
dsPIC33EPXXXGP/MC206/506 Devices Only) 89
PORTD
(PIC24EPXXXGP/MC206 and
dsPIC33EPXXXGP/MC206/506 Devices Only) 90
PORTE
(PIC24EPXXXGP/MC206 and
dsPIC33EPXXXGP/MC206/506 Devices Only) 90
PORTF
(PIC24EPXXXGP/MC206 and
dsPIC33EPXXXGP/MC206/506 Devices Only) 90

PORTG
(PIC24EPXXXGP/MC206 and
dsPIC33EPXXXGP/MC206/506 Devices Only)91
PWM
(dsPIC33EPXXXMC20X/50X and
PIC24EPXXXMC20X Devices Only)
PWM Generator 1
(dsPIC33EPXXXMC20X/50X and
PIC24EPXXXMC20X Devices Only)70
PWM Generator 2
(dsPIC33EPXXXMC20X/50X and
PIC24EPXXXMC20X Devices Only)71
PWM Generator 3
(dsPIC33EPXXXMC20X/50X and
PIC24EPXXXMC20X Devices Only)71
QEI1 Register Map
(dsPIC33EPXXXMC20X/50X and
PIC24EPXXXMC20X Devices Only)72
Reference Clock
SPI1, SPI2, SPI3, and SPI474
System Control84
Timer1 through Timer966
UART1, UART2, UART3, and UART473
Registers
AD1CHS0 (ADC1 Input Channel 0 Select) 306
AD1CHS123 (ADC1 Input Channel 1, 2, 3 Select) 305
AD1CON1 (ADC1 Control 1)
AD1CON2 (ADC1 Control 2)
AD1CON3 (ADC1 Control 3)
AD1CON4 (ADC1 Control 4)
AD1CSSH (ADC1 Input Scan Select High)
AD1CSSL (ADC1 Input Scan Select Low)
ALTDTRx (PWM Alternate Dead-Time)
AUXCONx (PWM Auxiliary Control)230
CHOP (PWM Chop Clock Generator)
CiBUFPNT1 (ECAN Filter 0-3 Buffer Pointer)
CiBUFPNT2 (ECAN Filter 4-7 Buffer Pointer)
CiBUFPNT3 (ECAN Filter 8-11 Buffer Pointer)
CiBUFPNT4 (ECAN Filter 12-15 Buffer Pointer) 280
CiCFG1 (ECAN Baud Rate Configuration 1)
CiCFG2 (ECAN Baud Rate Configuration 2)
CiCTRL1 (ECAN Control 1)
CiCTRL2 (ECAN Control 2)
CIEC (ECAN Transmit/Receive Error Count)
CiFCTRL (ECAN FIFO Control)
CiFIFO (ECAN FIFO Status)
CIFINSKSEL1 (ECAN FILTER 7-0 Mask Selection) 282
CiFMSKSEL2 (ECAN Filter 15-8 Mask Selection)283
CINTE (ECAN Interrupt Enable)
CINTE (ECAN Interrupt Enable)
CIRXFnEID (ECAN Acceptance Filter n
Extended Identifier)
CiRXFnSID (ECAN Acceptance Filter n
Standard Identifier)
CiRXFUL1 (ECAN Receive Buffer Full 1)
CiRXFUL2 (ECAN Receive Buffer Full 2)
CiRXMnEID (ECAN Acceptance Filter Mask n
Extended Identifier)
CiRXMnSID (ECAN Acceptance Filter Mask n
Standard Identifier)
CiRXOVF1 (ECAN Receive Buffer Overflow 1)
CiRXOVF2 (ECAN Receive Buffer Overflow 2)
CiTRBnSID (ECAN Buffer n Standard Identifier) 288,
289, 291

CiTRmnCON (ECAN TX/RX Buffer m Control)	
CiVEC (ECAN Interrupt Code)	
CLKDIV (Clock Divisor)	
CM4CON (Comparator Control 4)	
CMSTAT (Comparator Status)	330
CMxCON (Comparator Control 1-3)	
CMxFLTR (Comparator Filter Control)	340
CMxMSKCON (Comparator Mask Gating Control)	338
CMxMSKSRC (Comparator Mask Source Control)	
CORCON (Core Control)	
CTMUCON (CTMU Control)	
CTMUCON1 (CTMU Control Register 1)	294
CTMUCON1 (CTMU Control Register 2)	295
CTMUICON (CTMU Current Control)	200
CVRCON (Comparator Voltage Reference Control)	341
DEVID (Device ID)	
DEVREV (Device Revision)	
DTRx (PWM Dead-Time)	
FCLCONx (PWM Fault Current-Limit Control)	223
FOLCONX (PWW Fault Current-Limit Control)	220
I2CxCON (I2Cx Control)	255
I2CxMSK (I2Cx Slave Mode Address Mask)	
I2CxSTAT (I2Cx Status)	
ICxCON1 (Input Capture x Control 1)	
ICxCON2 (Input Capture x Control 2)	
IDNXxCNTH (Index Counter High Word)	
INDXxCNTL (Index Counter Low Word)	
INDXxHLD (Index Counter Hold)	
INTCON1 (Interrupt Control 1)	124
INTCON2 (Interrupt Control 2)	126
INTCON2 (Interrupt Control 3)	127
INTCON4 (Interrupt Control 4)	127
INTTREG Interrupt Control and Status Register	
INTxHLDH (Interval Timer Hold High Word)	
INTxHLDL (Interval Timer Hold Low Word)	
INTxTMRH (Interval Timer High Word)	243
INTxTMRL (INterval Timer Low Word)	244
IOCONx (PWM I/O Control)	
LEBCONx (Leading-Edge Blanking Control)	
LEBDLYx (Leading-Edge Blanking Delay)	
MDC (PWM Master Duty Cycle)	
NVMCOM (Flash Memory Control)	
NVMCON (Non-volatile (NVM) Memory Control)	
NVMKEY (Non-volatile Memory Key)	112
OCxCON1 (Output Compare x Control 1)	206
OCxCON2 (Output Compare x Control 2)	
OSCCON (Oscillator Control)	
OSCTUN (FRC Oscillator Tuning)	
PDCx (PWM Generator Duty Cycle)	
PHASEx (PWM Primary Phase Shift)	
PLLFBD (PLL Feedback Divisor)	
PMD1 (Peripheral Module Disable Control 1)	156
PMD2 (Peripheral Module Disable Control 2)	
PMD3 (Peripheral Module Disable Control 3)	
PMD4 (Peripheral Module Disable Control 4)	
PMD6 (Peripheral Module Disable Control 6)	
PMD7 (Peripheral Module Disable Control 7)	
POSxCNTH (Position Counter High Word)	
POSXCNTL (Position Counter Low Word)	
POSxCNTL (Position Counter Hold)	
PTCON (PWM Time Base Control)	
PTCON2 (Primary Master Clock Divider Select)	
PTG Broadcast Trigger Enable (PTGBTE)	
PTG Control (PTGCON)	315
PTG Control/Status (PTGCST)	313
PTG Counter 0 Limit (PTGC0LIM)	319

....

PTG Counter 1 Limit (PTGC1LIM)
PTG Hold (PTGHOLD)
PTG Step Delay Limit (PTGSDLIM)
PTG Timer0 Limit (PTGT0LIM)
PTG Timer1 Limit (PTGT1LIM)
PTPER (Primary Master Time Base Period)218
PWMCONx (PWM Control)220
QEI1CON (QEI Control)233
QEI1GECH (Greater Than or Equal Compare
High Word)243
QEI1GECL (Greater Than or Equal Compare
Low Word)
QEI1ICH (Initialization/Capture High Word)
QEI1ICL (Initialization/Capture Low Word)
QEI1IOC (QEI I/O Control)
QEI1LECH (Less Than or Equal Compare
High Word)242 QEI1LECL (Less Than or Equal Compare
Low Word)
QEI1STAT (QEI Status)
RCON (Reset Control)
REFOCON (Reference Oscillator Control)
RPINR0 (Peripheral Pin Select Input 0)
RPINR1 (Peripheral Pin Select Input 1)
RPINR11 (Peripheral Pin Select Input 11)
RPINR12 (Peripheral Pin Select Input 12)
RPINR14 (Peripheral Pin Select Input 14)
RPINR15 (Peripheral Pin Select Input 15) 178
RPINR18 (Peripheral Pin Select Input 18) 179
RPINR19 (Peripheral Pin Select Input 19)180
RPINR20 (Peripheral Pin Select Input 20) 181
RPINR23 (Peripheral Pin Select Input 23) 182
RPINR26 (Peripheral Pin Select Input 26) 183
RPINR3 (Peripheral Pin Select Input 3) 172
RPINR37 (Peripheral Pin Select Input 37)184
RPINR38 (Peripheral Pin Select Input 38) 185
RPINR40 (Peripheral Pin Select Input 40) 186
RPINR7 (Peripheral Pin Select Input 7) 173
RPINR8 (Peripheral Pin Select Input 8)
RPOR0 (Peripheral Pin Select Output 0)
RPOR1 (Peripheral Pin Select Output 1)
RPOR2 (Peripheral Pin Select Output 2)
RPOR4 (Peripheral Pin Select Output 3)
RPOR5 (Peripheral Pin Select Output 5)
RPOR6 (Peripheral Pin Select Output 6)
RPOR7 (Peripheral Pin Select Output 7)
RPOR8 (Peripheral Pin Select Output 8)
RPOR9 (Peripheral Pin Select Output 9) 191
SEVTCMP (Primary Special Event Compare)
SPIxCON1 (SPIx Control 1)249
SPIxCON2 (SPIx Control 2)251
SPIxSTAT (SPIx Status and Control)247
SR (CPU Status)41, 122
T1CON (Timer1 Control) 194
TxCON (T2CON or T4CON Control) 198
TyCON (T3CON or T5CON Control) 199
UxMODE (UARTx Mode)
UxSTA (UARTx Status and Control)
VELxCNT (Velocity Counter)
Reset 112
Illegal Opcode
Uninitialized W Register
Reset Sequence 117 Resets
110

Resources	Required	for Didital	PFC	34	36
1103001003	ricquireu	ior Digitar	1 1 0		00

S

Serial Peripheral Interface (SPI) Software Simulator (MPLAB SIM) Software Stack Pointer, Frame Pointer	
CALLL Stack Frame	101
Special Features of the CPU	349
Symbols Used in Opcode Descriptions	358

т

Temperature and Voltage Specifications	
AC	385
Timer1	
Timer2/3 and Timer4/5	195
Timing Characteristics	
CLKO and I/O	388
Timing Diagrams	
10-bit ADC Conversion (CHPS<1:0> = 01,	
SIMSAM = 0, ASAM = 0,	
SSRC<3:0> = 000)	433
10-bit ADC Conversion (CHPS<1:0> = 01,	
SIMSAM = 0, ASAM = 1,	
SSRC<2:0> = 111,	
SAMC<4:0> = 00001)	433
10-bit ADC Conversion (CHPS<1:0> = 01,	
SIMSAM = 0, ASAM = 1, SSRC<3:0> = 111,	
SAMC<4:0> = 00010)	433
12-bit ADC Conversion	
(ASAM = 0, SSRC<3:0> = 000)	432
ECAN I/O	
External Clock	
I2Cx Bus Data (Master Mode)	
I2Cx Bus Data (Slave Mode)	
I2Cx Bus Start/Stop Bits (Master Mode)	
I2Cx Bus Start/Stop Bits (Slave Mode)	
Input Capture (CAPx)	
Motor Control PWM	
Motor Control PWM Fault	
OC/PWM	
Output Compare (OCx)	
QEA/QEB Input	
QEI Module Index Pulse	
Reset, Watchdog Timer, Oscillator Start-up Timer ar	
Power-up Timer Timer1, 2, 3 External Clock	
TimerQ (QEI Module) External Clock	
	390
Timing Requirements CLKO and I/O	200
DCI AC-Link Mode DCI Multi-Channel, I ² S Modes	
DMA Module	
External Clock	386
Timing Specifications	40.4
10-bit ADC Conversion Requirements	
12-bit ADC Conversion Requirements	
CAN I/O Requirements	
I2Cx Bus Data Requirements (Master Mode)	
I2Cx Bus Data Requirements (Slave Mode)	426
Motor Control PWM Requirements	
Output Compare Requirements	
PLL Clock	
QEI External Clock Requirements	
QEI Index Pulse Requirements	
Quadrature Decoder Requirements	397

Reset, Watchdog Timer, Oscillator Start-up Time Power-up Timer and Brown-out Reset	r,
Requirements	390
Simple OC/PWM Mode Requirements	394
Timer1 External Clock Requirements	391
Timer2 External Clock Requirements	392
Timer3 External Clock Requirements	392

U

Universal Asynchronous Receiver Transmitter (UART).... 261

۷

W

Watchdog Timer (WDT)	349, 354
Programming Considerations	
WWW Address	
WWW, On-Line Support	24

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

TO: RE:	Technical Publications Manager Total Pages Sent Reader Response							
	-							
TTOIII.								
	Telephone: ()	FAX: ()						
Application (optional):								
Would you like a reply?YN								
Device: dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and Literature Number: DS70657B PIC24EPXXXGP/MC20X								
Questions:								
1. W	1. What are the best features of this document?							
2. H	2. How does this document meet your hardware and software development needs?							
3. D								
J. D	b. Do you find the organization of this document easy to follow? If not, why?							
4. W	4. What additions to the document do you think would enhance the structure and subject?							
_								
5. W	. What deletions from the document could be made without affecting the overall usefulness?							
_								
6. Is	there any incorrect or misleading in	iormation (what and where)?						
7. H	ow would you improve this documer	t?						

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Package	rk ily ize (KE (if app	3) —		a)	nples: dsPIC33EP64MC504-I/PT: dsPIC33, Enhanced Performance, 64 KB program memory, Motor Control, 44-pin, Industrial temperature, TQFP package.
Architecture:	33 24	= =	16-bit Digital Signal Controller 16-bit Microcontroller		
Flash Memory Family:	EP	=	Enhanced Performance		
Product Group:	GP MC	= =			
Pin Count:	02 03 04 06	=	36-pin 44-pin		
Temperature Range:	l E	= =	-40° C to+85° C (Industrial) -40° C to+125° C (Extended)		
Package:	MM MR PT SP SS SS TL TL				

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney Tel: 61-2-9868-6733

Fax: 61-2-9868-6755 **China - Beijing** Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3180 Fax: 86-571-2819-3189

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-6578-300 Fax: 886-3-6578-370

Taiwan - Kaohsiung Tel: 886-7-213-7830 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

05/02/11