
1700V, 35 mΩ N-Channel mSiC[™] MOSFET

MSC035SMA170B

Product Overview

1700V, 35 m Ω typical at V_{GS} = 20V, 41 m Ω typical at V_{GS} = 18V, Silicon Carbide (SiC) N-Channel MOSFET, TO-247.

Features

- Low capacitances and low gate charge
- Fast switching speed due to low internal gate resistance (ESR)
- Stable operation at high junction temperature, T_{I(max)} = 175 °C
- · Fast and reliable body diode
- Superior avalanche ruggedness
- · RoHS compliant

Benefits

- High efficiency to enable lighter and more compact system
- Simple to drive and easy to parallel
- Improved thermal capabilities and lower switching losses
- · Eliminates the need for external freewheeling diode
- · Lower system cost of ownership

Applications

- Photovoltaic (PV) inverter, converter, and industrial motor drives
- Smart grid transmission and distribution
- · Induction heating and welding
- Hybrid Electric Vehicle (HEV) powertrain and Electric Vehicle (EV) charger
- Power supply and distribution

1. Device Specifications

This section shows the specifications of this device.

1.1. Absolute Maximum Ratings

The following table shows the absolute maximum ratings of this device.

Table 1-1. Absolute Maximum Ratings

Symbol	Parameter	Ratings	Unit
V _{DSS}	Drain source voltage	1700	V
I _D	Continuous drain current at T _C = 25 °C	71	Α
	Continuous drain current at T _C = 100 °C	50	
I _{DM}	Pulsed drain current ¹	250	
V_{GS}	Gate-source voltage	23 to -10	V
	Transient gate-source voltage	25 to -12	
P _D	Total power dissipation at T _C = 25 °C	427	W
	Linear derating factor	2.86	W/°C

Note:

1. Repetitive rating: pulse width and case temperature are limited by the maximum junction temperature.

The following table shows the thermal and mechanical characteristics of this device.

Table 1-2. Thermal and Mechanical Characteristics

Symbol	Characteristic/Test Conditions	Min.	Тур.	Max.	Unit
$R_{\theta JC}$	Junction-to-case thermal resistance	_	0.27	0.35	°C/W
T _J	Operating junction temperature	-55	_	175	°C
T _{STG}	Storage temperature	-55	_	150	
T_L	Lead temperature for 10 seconds	_	_	300	°C
τ_{M}	Mounting torque, M3 screw for heat sink attachment (requires 1, not included)	-	0.8	_	N-m
Wt	Package weight	_	6.2	_	g

ESD practices should comply with JESD-625.

1.2. Electrical Performance

The following table shows the static characteristics of this device. $T_J = 25$ °C unless otherwise specified.

Table 1-3. Static Characteristics

Symbol	Characteristic	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$V_{GS} = 0V$, $I_D = 100 \mu A$	1700	_	_	V
R _{DS(on)}	Drain-source on resistance ¹	$V_{GS} = 20V, I_D = 30A$	_	35	45	mΩ
		$V_{GS} = 18V, I_D = 30A$	_	41	_	
V _{GS(th)}	Gate-source threshold voltage	$V_{GS} = V_{DS}$, $I_D = 2.5 \text{ mA}$	1.9	3.0	5.0	V
I _{DSS}	Zero gate voltage drain current	V _{DS} = 1700V, V _{GS} = 0V	_	0.3	35	μΑ
		V _{DS} = 1700V, V _{GS} = 0V, T _J = 175 °C	_	3.5	_	
I _{GSS}	Gate-source leakage current	V _{GS} = 20V/–10V	_	_	±100	nA

Note:

1. Pulse test: pulse width < 380 μ s, duty cycle < 2%.

The following table shows the dynamic characteristics of this device. T_J = 25 °C unless otherwise specified. The dynamic characteristics are characterized, not 100% tested, at the recommended operating V_{GS} = 20V/–5V.

Table 1-4. Dynamic Characteristics

Symbol	Characteristic	Test Conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance	V _{GS} = 0V, V _{DD} = 1000V, V _{AC} = 25	_	3300	_	pF
C _{rss}	Reverse transfer capacitance	mV, f = 200 kHz	_	13	_	
C _{oss}	Output capacitance		_	155	_	
Q _G	Total gate charge	$V_{GS} = -5V/20V$, $V_{DD} = 850V$, $I_{D} =$	_	178	_	nC
Q _{GS}	Gate-source charge	30A	_	49	_	
Q_{GD}	Gate-drain charge		_	27	_	
t _{d(on)}	Turn-on delay time	V_{DD} = 1360V, V_{GS} = -5V/20V, I_{D} = 50A, $R_{G(ext)}$ = 4 Ω , Freewheeling diode = MSC035SMA170B (V_{GS} = -5V); reference Figure 1-18	_	65	_	ns
t _r	Voltage rise time		_	28	_	
t _{d(off)}	Turn-off delay time		_	28	_	
t _f	Voltage fall time		_	15	_	
E _{on}	Turn-on switching energy		_	5645	_	μJ
E _{off}	Turn-off switching energy		_	176	_	
ESR	Gate equivalent series resistance	f = 1 MHz, 25 mV, drain short	_	0.85	<u> </u>	Ω
SCWT	Short circuit withstand time	V _{DS} = 1200V, V _{GS} = 20V	_	3.1	_	μs
E _{AS}	Avalanche energy, single pulse	I _D = 30A	_	4000	_	mJ

The following table shows the body diode characteristics of this device. $T_J = 25$ °C unless otherwise specified. The body diode reverse recovery is characterized, not 100% tested.

Table 1-5. Body Diode Characteristics

Symbol	Characteristic	Test Conditions	Min.	Тур.	Max.	Unit
V_{SD}	Diode forward voltage	I _{SD} = 30A, V _{GS} = 0V	_	3.51	_	٧
		$I_{SD} = 30A, V_{GS} = -5V$	_	3.59	5.0	
t _{rr}	Reverse recovery time	I_{SD} = 50A, V_{GS} = -5V, Drive R_G = 4 Ω , V_{DD} =	_	72	_	ns
Q _{rr}	Reverse recovery charge	1360V, dl/dt = –15000 A/μs	_	1234	_	nC
I _{RRM}	Reverse recovery current		_	34	_	Α

1.3. Typical Performance Curves

Data for performance curves are characterized, not 100% tested.

Figure 1-1. Drain Current vs. \boldsymbol{V}_{DS} at \boldsymbol{T}_{J}

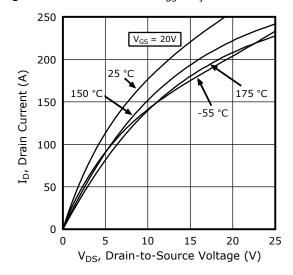


Figure 1-2. Drain Current vs. V_{DS} at V_{GS}

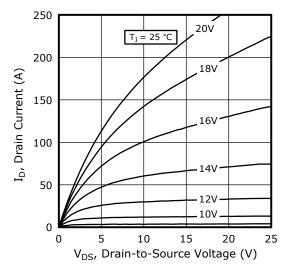


Figure 1-3. Drain Current vs. $V_{DS}\, at\, V_{GS}$

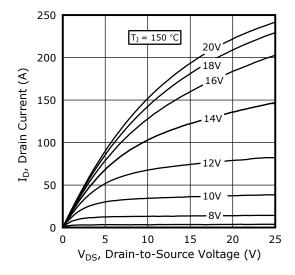


Figure 1-4. Drain Current vs. V_{DS} at V_{GS}

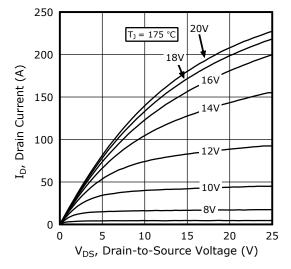


Figure 1-5. R_{DS(on)} vs. Junction Temperature

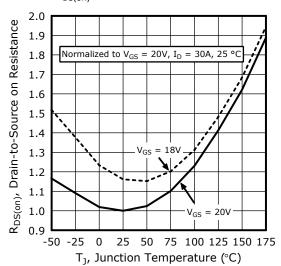


Figure 1-6. Gate Charge Characteristics

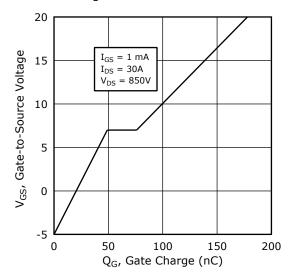


Figure 1-7. Capacitance vs. Drain-to-Source Voltage

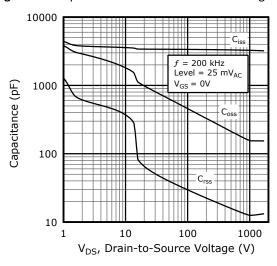


Figure 1-8. Output Charge vs. Drain-to-Source Voltage

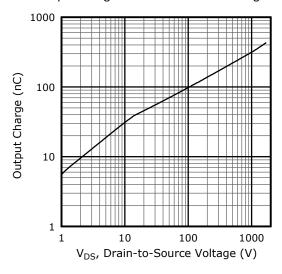
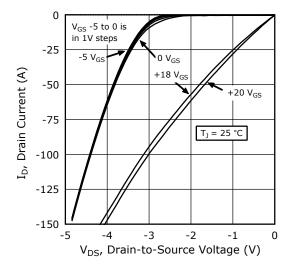



Figure 1-9. I_D vs. V_{DS} 3rd Quadrant Conduction

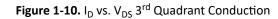


Figure 1-11. Switching Energy E_{on} vs. $V_{DS} \& I_{D}$

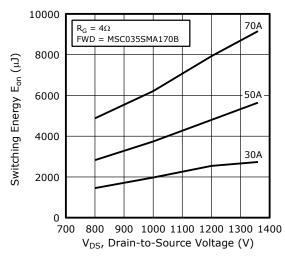


Figure 1-12. Switching Energy E_{off} vs. $V_{DS} \& I_{D}$

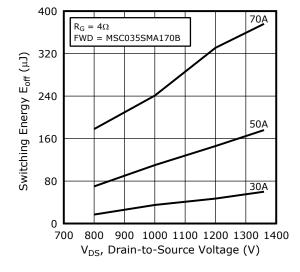


Figure 1-13. Switching Energy vs. R_G

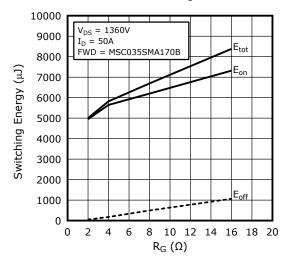


Figure 1-14. Switching Energy vs. Junction Temperature

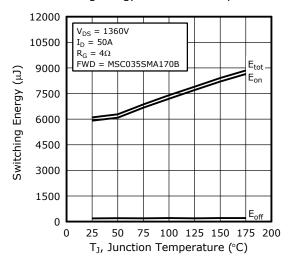
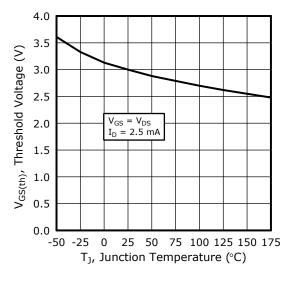
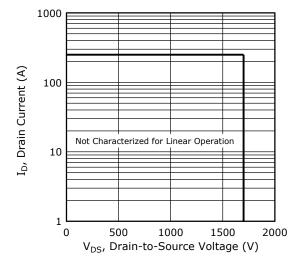
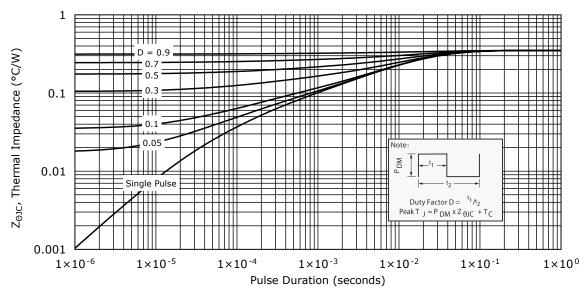



Figure 1-15. Threshold Voltage vs. Junction Temperature Figure 1-16. Forward Safe Operating Area

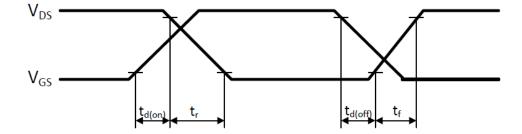
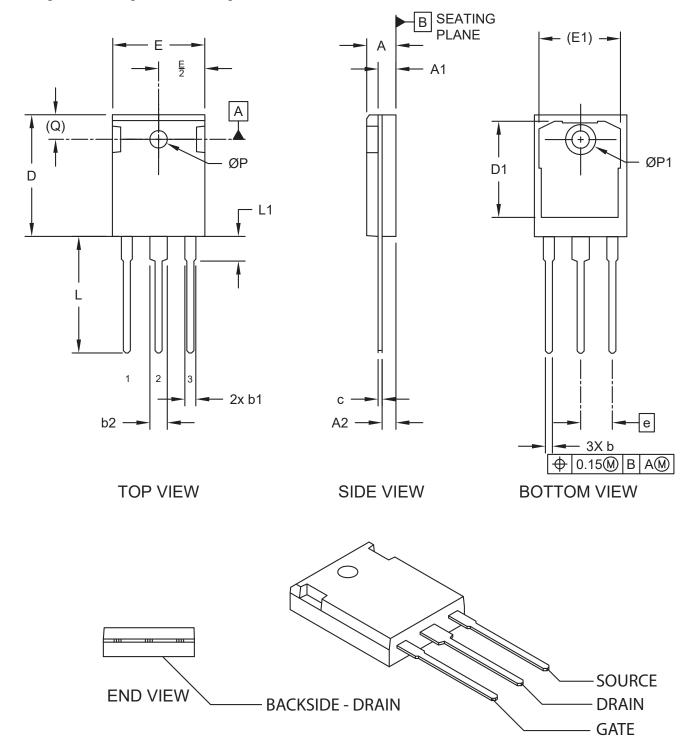


Figure 1-17. Maximum Transient Thermal Impedance

The following figure shows the switching waveform diagram of this device.

Figure 1-18. Switching Waveform


2. Package Specification

This section shows the package specification of this device.

2.1. Package Outline Drawing

The following figure illustrates the TO-247 package outline of this device.

Figure 2-1. Package Outline Drawing

The following table shows the TO-247 dimensions and should be used in conjunction with the package outline drawing.

Table 2-1. TO-247 Dimensions

Symbol	Description	Min. (mm)	Max. (mm)	
N	Number of leads	3	-	
е	Pitch	5.44 BSC		
Α	Overall height	4.70	5.31	
A1	Tab height	1.50	2.49	
A2	Seating plane to lead	2.21	2.59	
b	Lead width	1.02	1.40	
b1	Lead shoulder width (X2)	1.65	2.41	
b2	Lead shoulder width	2.87	3.38	
С	Lead thickness	0.41	0.79	
L	Lead length	19.81	20.32	
L1	Lead shoulder length	3.99	4.50	
D	Molded body length	20.80	21.46	
D1	Thermal pad length	16.25	17.65	
Е	Total width	15.49	16.26	
E1	Thermal pad width	13.10	14.50	
Q	Hole center to tab edge	6.15 REF		
ØP	Hole diameter	3.51	3.81	
ØP1	Thermal pad hole diameter	7.18 REF		

Notes:

Dimensioning and tolerancing per ASME Y14.5M.

- BSC: Basic dimension. Theoretically exact value shown without tolerances.
- REF: Reference dimension, usually without tolerance, for information purposes only.

3. Revision History

The revision history describes the changes that were implemented in the document. The changes are listed by revision, starting with the most current publication.

Table 3-1. Revision History

Revision	Date	Description
В	05/2025	The following changes are made in this revision of the document:
		• Updated values in Table 1-1, Table 1-2, Table 1-3, and Table 1-5.
		• Updated figures in Typical Performance Curves.
		Updated Figure 2-1.
A	11/2023	The following changes are made in this revision of the document:
		Document migrated from Microsemi template to Microchip template; Assigned Microchip literature number DS-00005159A, which replaces the previous Microsemi literature number 050-7769. Hadatad Granes in Taxical Burfares Constants
		Updated figures in Typical Performance Curves.
Initial release (Microsemi Revision A)	03/2020	Initial release

Microchip Information

Trademarks

The "Microchip" name and logo, the "M" logo, and other names, logos, and brands are registered and unregistered trademarks of Microchip Technology Incorporated or its affiliates and/or subsidiaries in the United States and/or other countries ("Microchip Trademarks"). Information regarding Microchip Trademarks can be found at https://www.microchip.com/en-us/about/legal-information/microchip-trademarks.

ISBN: 979-8-3371-0683-0

Legal Notice

This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at www.microchip.com/en-us/support/design-help/client-support-services.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip products:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions.
- Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip products are strictly prohibited and may violate the Digital Millennium Copyright Act.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not mean that we are guaranteeing the product is "unbreakable".
 Code protection is constantly evolving. Microchip is committed to continuously improving the code protection features of our products.

