
onlin
ec

om
ponen

ts
.co

m

5086A

User Manual

Driver Software for Controller Boards for IBM-compatible PCs

This manual is valid for the driver software version 0.9 for the controller boards:

IBS PC CB/I-T Order No. 27 80 84 9
IBS PC CB/COP/I-T Order No. 27 54 51 6
IBS PC CB/RTX486/I-T Order No. 27 61 47 0

Type: IBS PC CB SWD UM E

Revision: A

Order No.: 27 53 96 0

INTERBUS-S

Copyright by Phoenix Contact 05/1995

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

5086A

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

InterBus-S

Please Observe the Following:

In order to guarantee that your use of this manual is as straightforward as
possible and that hardware is used safely in the installation, operation and
maintenance phases, we request that you carefully read and observe the
following instructions:

Explanation of Symbols Used

The attention symbol refers to erroneous handling, which could lead to damage
to the hardware or software, or, in indirect connection with dangerous process
peripherals (e.g., unprotected shafts or motors with actuator functions), to light
to severe personal injury. The symbol is always located to the left of the tagged
text.

The hand symbol gives you tips and advice on the efficient use of hardware and
on software optimization, to save you from performing extra work, for example.
In addition, text marked in this way informs you of system-related maximum and
minimum conditions that must absolutely be observed to achieve error-free
operation. The hand is also found in front of clarifications of terms.

The text symbol refers to detailed sources of information (manuals, data sheets,
literature, etc.) on the subject matter, product, etc. This text also provides helpful
infomation for the orientation, reading order, etc. in the manual.

We are Interested in Your Opinion

We are constantly attempting to improve the quality of our manuals. Should you
have any suggestions or recommendations for improvement of the contents and
layout of our manuals, we would appreciate it if you would send us your
comments. Please use the universal telefax form at the end of the manual for
this.

Statement of Legal Authority

This manual, including all illustrations contained herein, is copyright protected.
Use of this manual by any third party in departure from the copyright provision
is forbidden. Reproduction, translation or electronic or photographic archiving
or alteration requires the express written consent of Phoenix Contact. Violations
are liable for damages.

Phoenix Contact reserves the right to make any technical changes that serve for
the purpose of technical progress.

Phoenix Contact reserves all rights in the case of a patent award or listing of a
registered design. External products are always named without reference to
patent rights. The existence of such rights shall not be excluded, however.

The use of products described in this manual is oriented exclusively to qualified
application programmers and software engineers familiar with automation
technology and the applicable national standards. Phoenix Contact assumes no
liability for erroneous handling of or damage to Phoenix Contact or external
products resulting from disregard of information contained in this manual.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

InterBus-S

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

InterBus-S
Table of Contents

i5086A

A Table of Contents

1 Driver Software Overview . 1-3

2 Driver Software for C Under DOS . 2-3

2.1 Structure of the Driver Software on the Host PC 2-3
2.2 Structure of the Driver Software on the COP 2-3
2.3 Libraries and Include Files 2-4
2.4 Functions for DOS 2-5
2.4.1 Device Driver Interface Functions 2-6
2.4.1.1 Data Channel Management Functions 2-6
2.4.1.2 Mailbox Interface Functions 2-8
2.4.1.3 Data Interface Functions 2-10
2.4.2 Hardware Control Functions 2-13
2.4.2.1 DIP Switch Inquiry 2-13
2.4.2.2 SysFail Register Monitoring 2-14
2.4.2.3 SRAM Access Functions 2-14
2.4.2.4 Watchdog Control Functions 2-16
2.4.3 IBS Diagnostic Function 2-18

3 Driver Software for Pascal Under DOS 3-3

3.1 Structure of the Driver Software on the Host PC 3-3
3.2 Structure of the Driver Software on the COP 3-3
3.3 Units . 3-4
3.4 Functions for DOS 3-5
3.4.1 Functions of the Device Driver Interface 3-6
3.4.1.1 Data Channel Management Functions 3-6
3.4.1.2 Mailbox Interface Functions 3-8
3.4.1.3 Data Interface Functions 3-10
3.4.2 Hardware Control Functions 3-13
3.4.2.1 DIP Switch Inquiry 3-13
3.4.2.2 SysFail Register Monitoring 3-14
3.4.2.3 SRAM Access Functions 3-14
3.4.2.4 Watchdog Control Functions 3-16
3.4.3 IBS Diagnostic Function 3-18

4 Additions to the Driver Software for Windows 4-3

4.1 Structure of the Driver Software on the Host (PC) 4-3
4.2 Notification Mode 4-3
4.3 Library Under Windows 4-5
4.4 Include Files for "C" 4-5
4.5 Units for Pascal 4-6
4.6 Initialization File Under Windows 4-6
4.7 Functions for Windows 4-7
4.7.1 Device Driver Interface Functions 4-8
4.7.2 Notification Mode Management Functions 4-9
4.7.3 Hardware Control Functions 4-13

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

ii

InterBus-S
Table of Contents

5086A

4.8 Use of the Driver Software with C++ 4-14

5 Additions to the Driver Software for OS/2 5-3

5.1 Structure of the Driver Software on the Host (PC) 5-3
5.2 Notification Mode Under OS/2 5-3
5.3 Library and Include Files for OS/2 5-5
5.4 CONFIG.SYS Under OS/2 5-6
5.5 Compiler Options 5-7
5.6 Functions for OS/2 5-8
5.6.1 Device Driver Interface Functions 5-8
5.6.2 Blocked Mode Management Functions 5-10
5.6.3 Hardware Control Functions 5-13
5.7 Use of the Driver Software with C++ 5-14

6 Macros for Programming Support . 6-3

6.1 Data Conversion Macros 6-3
6.1.1 Macros for Converting the Data Block of a Command 6-5
6.1.2 Macros for Converting the Data Block of a Message 6-7
6.1.3 Macros for Converting Input Data 6-8
6.1.4 Macros for Converting Output Data 6-10

7 Driver Software Diagnostics. . 7-3

7.1 DDI Messages 7-4
7.2 DDI Error Messages 7-4
7.2.1 Controller Board Initialization Error Messages 7-4
7.2.2 General Error Messages 7-6
7.2.3 Error Messages when Opening a Data Channel 7-7
7.2.4 Message/Command Transfer Error Messages 7-8
7.2.5 Process Data Transfer Error Messages 7-10
7.2.6 Error Messages Under DOS 7-10
7.2.7 Error Messages Under Microsoft Windows 7-11
7.2.8 Error Messages Under OS/2 7-12

A Appendix . A-3

A.1 Figures . A-3
A.2 Tables. . A-4
A.3 Index . A-5

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

1-15086A

Driver Software Overview

This section provides information on the driver software available for different

- operating systems;
- programming languages;
- compilers.

Section 1

1 Driver Software Overview . 1-3

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

1-2 5086A

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

InterBus-S
Driver Software Overview

1-35086A

1 Driver Software Overview

Driver software for various operating systems is available for the host controller
boards. In addition, you can select from several compilers for the programming
languages C and Pascal. This section shows the possible combinations of ope-
rating systems and compilers on your PC and the coprocessor boards of the IBS
PC CB/COP/I-T and IBS PC CB/RTX486/I-T.

See the sections referred to in Tables 1-3 and 1-4 for a detailed description.

Table 1-1: Operating systems

Operating system Version Processor

Microsoft® DOS 5.0, 6.2 PC (host)

SMA TDOS® 3.5a COP386

Technosoft RTXDOS-16® 6.1 COP486

Microsoft Windows® 3.1 Host

IBM OS/2® 2.1 Host

Table 1-2: Compiler

Compiler Version

Borland C/Turbo C® 3.0 / 3.1

Microsoft C/C++® 7.0

Microsoft Visual C++® 1.0

IBM C Set/2® 2.0

Borland Turbo Pascal® 6.0 / 7.0

Microsoft Visual Basic® 3.0

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

1-4

InterBus-S
Driver Software Overview

5086A

Coprocessor board (COP) programming under DOS does not differ from host
programming under DOS. Therefore, a program created on the host under DOS
can also be executed on the coprocessor board.

Table 1-3: Compiler/operating system combinations on the host

Operating systems

Microsoft DOS® Microsoft Windows® IBM OS/2®

C
o

m
p

ile
r

Borland C/Turbo C®

Section 2 Sections 2 and 4 —Microsoft C/C++®

Microsoft Visual C++®

IBM C® — — Sections
2 and 5

Borland Turbo Pascal® Section 3 Sections 3 and 4 —

Microsoft Visual Basic® In preparation

Table 1-4: Compiler/operating system combinations on the coprocessor
board

Operating systems

TDOS® RTXDOS®

C
o

m
p

ile
r Borland C/Turbo C®

Section 2
Microsoft C/C++®

Borland Turbo Pascal® Section 3

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

2-15086A

Driver Software for C Under DOS

This section provides information on

- the implementation and the functions of the device driver interfaces;
- the required include files and libraries;
- device drivers for DOS.

Section 2

2 Driver Software for C Under DOS . 2-3

2.1 Structure of the Driver Software on the Host PC 2-3
2.2 Structure of the Driver Software on the COP 2-3
2.3 Libraries and Include Files 2-4
2.4 Functions for DOS 2-5
2.4.1 Device Driver Interface Functions 2-6
2.4.1.1 Data Channel Management Functions 2-6
2.4.1.2 Mailbox Interface Functions 2-8
2.4.1.3 Data Interface Functions 2-10
2.4.2 Hardware Control Functions 2-13
2.4.2.1 DIP Switch Inquiry 2-13
2.4.2.2 SysFail Register Monitoring 2-14
2.4.2.3 SRAM Access Functions 2-14
2.4.2.4 Watchdog Control Functions 2-16
2.4.3 IBS Diagnostic Function 2-18

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

2-2 5086A

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

InterBus-S
Driver Software for C Under DOS

2-35086A

2 Driver Software for C Under DOS

2.1 Structure of the Driver Software on the Host PC

Link the device driver interface in the form of a library to your application
programs. The device drivers for DOS are TSR programs (similar to the drivers
of network adapters).

Figure 2-1: IBS driver software under Microsoft DOS® for C

A device driver, i.e. a TSR program, must be installed for each controller board!
The device driver installation is described in Section 4 Installation and First
Startup of the IBS PC CB UM E manual.

2.2 Structure of the Driver Software on the COP

Figure 2-2: Driver software for C on the coprocessor board

5086A202

MPM

IBS
master board

COP

Host

TSR program

Library

Application
 program

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

2-4

InterBus-S
Driver Software for C Under DOS

5086A

Coprocessor board (COP) programming does not differ from host programming
under DOS. From driver software version 0.9 onwards, linking with special
libraries, too, is no longer required for the processor board, because the same
libraries are used for the operation on the host and on the COP. Therefore, a
program created on the host under DOS can be executed on the coprocessor
board.

For the operation on the COP, use the TSR program IBSCOP.EXE as device
driver, instead of IBSPCCB.EXE.

2.3 Libraries and Include Files

To facilitate the user’s work with the driver software, versions 0.9 and higher
combine all required DDI and auxiliary functions in one library. This library is
used on the host PC as well as on the coprocessor board. Therefore, an
application program can be run on the host PC or on the coprocessor board
without previous recompiling or linking. A prerequisite is that the appropriate
drivers (TSR programs) are loaded on both systems.

Only the functions for reading from and writing to the coprocessor board’s
SRAM are not available on the host PC, where the error message
ERR_INVLD_CMD (008Chex) is returned when they are called. Now as before,
the library is available as large or medium model (Microsoft C Version 7.0 and
higher, and Borland C++ Version 3.0 and higher).

To simplify also the handling of the include files, only the include file IBS_DOS.H
needs to be incorporated with driver software 0.9 and higher. All other required
include files are called from this include file. However, you may also call the
required include files individually.

In addition, when the IBS_DOS.H is used it is no longer necessary to manually
enter compiler switches in the program or in the compiler’s command line. The
required constant declaration (IBS_DOS_DRV) then takes place within
IBS_DOS.H.

The include file DDI_MACR.H allows the use of the macro functions described
in Section 4.2.4. The macros are defined in this file.

If you do not want to use IBS_DOS.H and call the required include files
separately in the program, insert the instruction #define IBS_DOS_DRV before
incorporating the include files (either in the program text or as a compiler option).

Table 2-1: Libraries and include files

Memory model: Library: Include file

medium MDDI_TSR.LIB IBS_DOS.H (calls STDTYPES.H, COMPILER.H,
IBS_CM.H, DDI_USR.H, DDI_ERR.H, DDI_LIB.H,
PC_UTIL.H and DDI_MACR.H)large LDDI_TSR.LIB

Libraries

Include files

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

InterBus-S
Functions for DOS

2-55086A

Examples:
#define IBS_DOS_DRV
#include "stdtypes.h"
#include "ddi_usr.h"
...

or

cl /C+ /O+ /DIBS_DOS_DRV ...

2.4 Functions for DOS

Table 2-2: Overview of the DDI functions for DOS

Function Task Page

DDI_DevOpenNode Opens a data channel to a node 2-6

DDI_DevCloseNode Closes a data channel to a node 2-7

DDI_MXI_SndMessage Writes a message to the MPM 2-8

DDI_MXI_RcvMessage Reads a message from the MPM 2-9

DDI_DTI_ReadData Reads data from the MPM 2-10

DDI_DTI_WriteData Writes data to the MPM 2-11

Table 2-3: Overview of the hardware control functions

Function Task Page

COP_WriteStaticRAM Writes a number of bytes to the SRAM of the COP 2-14

COP_ReadStaticRAM Reads a number of bytes from the SRAM of the COP 2-15

GetDIPSwitch Reads out the settings of the DIP switches for setting the
boot configuration

2-13

GetSysFailRegister Reads the contents of the SysFail register 2-14

EnableWatchDog Enables a watchdog 2-16

TriggerWatchDog Triggers a watchdog 2-16

GetWatchDogState Reads out the state of a watchdog 2-17

ClearWatchDog Resets the state of a watchdog 2-17

GetIBSDiagnostic Evaluates the IBS master board state 2-18

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

2-6

InterBus-S
Driver Software for C Under DOS

5086A

2.4.1 Device Driver Interface Functions

2.4.1.1 Data Channel Management Functions

DDI_DevOpenNode

Task: This function opens a data channel to a node.

Synopsis: INT16 DDI_DevOpenNode(CHAR *devName,INT16 perm,INT16 *nodeHd);

Parameters: *devName Device name of the device to be accessed. The name
identifies the controller board (board number) and the
MPM node on this board (see Section 5.2.3.1 Data
Channel Management in the IBS PC CB UM E manual.)

perm The access permission specifies with which access
rights the data channel may be accessed. A distinction
can be made between read, write and read/write
accesses.

*nodeHd The node handle is a value assigned by the DDI, which
is used to find an allocation to the opened node in all
other functions.

Positive
acknowledgment: Node handle

Negative
acknowledgment: DDI error code Gives a more detailed specification of the error found

when opening the data channel to a node (see Section
8 DDI Error Messages).

Cause: - unknown device name
- node does not exist

Call syntax:
INT16 DDI_DevOpenNode(
 CHAR *devName, /* IN: device name */
 INT16 perm, /* IN: access permission */
 INT16 *nodeHd); /* OUT: address of node handle */

Constants for the access rights:
DDI_READ Read access only
DDI_WRITE Write access only
DDI_RW Read and write access

In the current version of the driver software (V 0.9), the same data channel
(same device name) between two MPM nodes (e.g. host and COP) may be
opened only once. If the same data channel between two MPM nodes is open
more than once at a time, the data of one data channel overwrites the data of
another, as it uses the same MPM memory area. In this case no error message
is output.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

InterBus-S
Data Channel Management Functions

2-75086A

Examples: Wrong:
DDI_DevOpenNode("IBB1N1_D“, ... , nodeHandle1)
DDI_DevOpenNode("IBB1N1_D“, ... , nodeHandle2)

Correct:
DDI_DevOpenNode("IBB1N1_D“, ... , nodeHandle1)
DDI_DevOpenNode("IBB1N2_D“, ... , nodeHandle2)

(See Section 5.2.3.1 Data Channel Management in the IBS PC CB UM E ma-
nual)

DDI_DevCloseNode

Task: This function closes a data channel to a node which had been opened with
DDI_DevOpenNode() before. After this function has been called successfully,
the device is no longer "connected“ with the calling program, and the node
handle is no longer valid.

Synopsis: INT16 DDI_DevCloseNode(INT16 nodeHd);

Parameter: nodeHd The node handle specifies the node to be closed.

Positive
acknowledgment: ERR_OK (0000hex)

Meaning The function was executed successfully.

Negative
acknowledgment: DDI error code Gives a more detailed specification of the error that oc-

curred when the function was called (see Section 8 DDI
Error Messages).

Cause: - Invalid device name
- Invalid node handle
- ode does not exist

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

2-8

InterBus-S
Driver Software for C Under DOS

5086A

2.4.1.2 Mailbox Interface Functions

DDI_MXI_SndMessage

Task: This function places a message or a command in a mailbox.

Synopsis: INT16 DDI_MXI_SndMessage
(INT16 node_Hd,T_DDI_MXI_ACCESS *ddi_mxi_acc);

Parameters: nodeHd The node handle is the logical number (handle) of a
channel previously opened on the device driver inter-
face.

*ddi_mxi_acc Pointer to a data structure of the type
T_DDI_MXI_ACCESS (see below).

T_DDI_MXI_ACCESS: Data structure with the elements required to transfer a message/command

Structure elements: msgType The firmware 3.x does not yet support the structure
element message type. Set it to 0.

msgLength The structure element message length contains the total
length of the message to be sent in bytes. The maximum
permissible total length (see below) is 1024.

*msgBlk The structure element *msgBlk is a pointer to a message
block containing the message to be sent in mailbox
syntax. The mailbox syntax format is described in the
IBS PC CB UM E manual.

DDIUserID The structure element DDIUserID is not yet supported
by the firmware 3.x. Set DDIUserID to 0.

Positive
acknowledgment: ERR_OK (0000hex)

Meaning The function was executed successfully.

Negative
acknowledgment: DDI error code Specifies why the function could not be executed (see

Section 7 DDI Error Messages)
Cause invalid node handle;

no suitable mailbox found;
the message exceeds the maximum usable mailbox
length (1020 bytes = 1024 bytes minus 2 command
code bytes minus 2 parameter count bytes).

Call syntax:
INT16 DDI_MXI_SndMessage(
 INT16 node_Hd, /* IN : node handle */
 T_DDI_MXI_ACCESS * ddi_mxi_acc);/* IN : pointer to
 mailbox access
 structure */

Format of the structure T_DDI_MXI_ACCESS:
typedef struct {
 INT16 msgType /* Message type */
 USIGN16 msgLength; /* Message length */
 USIGN16 DDIUserID; /* DDI_User_ID */
 USIGN8 *msgBlk; /* pointer to array for the message */
} T_DDI_MXI_ACCESS;

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

InterBus-S
Mailbox Interface Functions

2-95086A

DDI_MXI_RcvMessage

Task: This function fetches a message from a mailbox. It is used, for example, to fetch
the acknowledgment of an IBS command. It does not wait for the
acknowledgment! If there is no acknowledgment, a message to this effect is
output in the DDI error code parameter.

Prerequisite: The length of the provided receive buffer must be entered in the msgLength
component of the T_DDI_MXI_ACCESS structure. The driver checks the size of
the receive buffer before reading in and generates the error message
ERR_MSG_TO_Long (009Ahex) if the received message is longer than the
memory space available.

Synopsis: USIGN16 DDI_MXI_RcvMessage
(USIGN16 nodeHd,T_DDI_MXI_ACCESS *ddi_ mxi_acc);

Parameters: nodeHd The node handle is the logical number of a channel
previously opened on the DDI.

*ddi_mxi_acc Pointer to a data structure of the type
T_DDI_MXI_ACCESS (see below).

T_DDI_MXI_ACCESS: Data structure with the elements required to transfer a message/command

Structure elements: msgType The fimware 3.x does not yet support the structure
element message type. Set it to 0.

msgLength Before calling the function DDI_MXI_RcvMessage,
enter the size of the available input buffer in bytes, using
the structure element message length. After a message
has been received successfully, the structure element
message length contains the actual length of the
message in bytes.

*msgBlk The structure element *msgBlk is a pointer to a message
block containing the received message in mailbox
syntax. The IBS PC CB UM E manual describes the
structure of the mailbox syntax.

DDIUserID The firmware 3.x does not yet support the structure
element DDIUserID. Set DDIUserID to 0.

Positive
acknowledgment: ERR_OK (0000hex)

Meaning The function was executed successfully.

Negative
acknowledgment: DDI error code Specifies why the function could not be executed

(see section 7 DDI Error Messages).
Cause - invalid node handle

- receive buffer too small
- no message available

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

2-10

InterBus-S
Driver Software for C Under DOS

5086A

Call syntax:
USIGN16 DDI_MXI_RcvMessage(
 USIGN16 nodeHd, /* IN : node handle */
 T_DDI_MXI_ACCESS *ddi_ mxi_acc);/* OUT: pointer to
 mailbox access structure*/

Format of the structure T_DDI_MXI_ACCESS:
typedef struct {
 INT16 msgType; /* message type */
 USIGN16 msgLength; /* message length */
 USIGN16 DDIUserID; /* DDI_User_ID */
 USIGN8 *msgBlk;/* pointer to array for the message*/
} T_DDI_MXI_ACCESS;

2.4.1.3 Data Interface Functions

DDI_DTI_ReadData

Task: This functions reads data from the MPM via the data interface. It places the data
in Motorola format in the specified buffer.

Comment: Before the data is further processed, use the macros for converting input data.
These macros convert the input data from the Motorola format to the Intel format
(see Section 6).

Synopsis: INT16 DDI_DTI_ReadData
(INT16 node_Hd,T_DDI_DTI_ACCESS *ddi_dti_acc);

Parameters: nodeHd This parameter specifies the node.
*ddi_dti_acc Pointer to a data structure of the type

T_DDI_DTI_ACCESS (see below).

T_DDI_DTI_ACCESS: Data structure with the elements required for transferring process data

Structure elements: length The structure element length contains the number of
data to be read in bytes. The maximum number is 1024
bytes.

address The structure element address specifies the DTI
address of a process data word in the MPM (see Section
Organization of the MPM in the IBS PC CB UM E
manual).

dataCons The structure element data consistency specifies the
data consistency to be used for the access.

*data This structure element is a pointer to the buffer where
the data to be read is to be stored.

Constants for the possible data consistency areas:
DTI_DATA_BYTE : Byte data consistency (1 byte)
DTI_DATA_WORD : Word data consistency (2 bytes)
DTI_DATA_LWORD : Long-word data consistency (4 bytes)
DTI_DATA_48 Bit : 48-bit data consistency (6 bytes)

The data consistency areas DTI_DATA_LWORD and DTI_DATA_48BIT are
only possible for an access to the IBS master board from firmware 3.72

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

InterBus-S
Data Interface Functions

2-115086A

onwards.

Positive
acknowledgment: ERR_OK (0000hex)

Meaning The function was executed successfully.

Negative
acknowledgment: DDI error code Specifies in more detail the error that has occurred

during process data reading (see Section 7 DDI Error
Messages).

Cause - invalid node handle
- invalid parameters
- data area boundaries exceeded

Call syntax:
INT16 DDI_DTI_ReadData(
 INT16 node_Hd, /* IN : node handle */
 T_DDI_DTI_ACCESS *ddi_dti_acc); /* IN : dti access
 structure */

Format of the structure T_DDI_DTI_ACCESS:
typedef struct {
 USIGN16 length; /* number of bytes to read/write */
 USIGN16 address; /* address to read/write process data*/
 INT16 dataCons; /* data consistency of the access */
 USIGN8 *data; /* pointer to data to read/write */
} T_DDI_DTI_ACCESS;

DDI_DTI_WriteData

Task: This function writes data via the data interface to the MPM. For this purpose, the
function requires data in the Motorola format.

Comment: Before writing data to the MPM, use the output data conversion macros, which
convert the output data from the Intel format to the Motorola format (see Section
6).

Synopsis: INT16 DDI_DTI_WriteData
(INT16 nodeHd,T_DDI_DTI_ACCESS *ddi_dti_acc);

Parameters: nodeHd The node handle specifies the node.
*ddi_dti_acc Pointer to a data structure of the type

T_DDI_DTI_ACCESS (see below).

T_DDI_DTI_ACCESS: Data structure with the elements required for the transfer of process data

Structure elements: length The structure element length contains the number of
data to be written in bytes. The maximum number is
1024 bytes (1 kbyte).

address The structure element address specifies the DTI
address of a process data word in the MPM (see Section
Organization of the MPM in the IBS PC CB UM E manu-
al).

dataCons The structure element data consistency specifies the

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

2-12

InterBus-S
Driver Software for C Under DOS

5086A

data consistency for the access.
*data Pointer to the buffer from which the data to be written is

to be taken.

Constants for possible data consistency areas:
DTI_DATA_BYTE : Byte data consistency (1 byte)
DTI_DATA_WORD : Word data consistency (2 bytes)
DTI_DATA_LWORD : Long-word data consistency (4 bytes)
DTI_DATA_48 Bit : 48-bit data consistency (6 bytes)

The data consistency areas DTI_DATA_LWORD and DTI_DATA_48BIT are
only possible for access to the master board from firmware 3.72 onwards.

Positive
acknowledgment: ERR_OK (0000hex)

Meaning The function was executed successfully.

Negative
acknowledgment: DDI error code Specifies in more detail an error that occurred during a

process data write process (see Section 7 DDI Error
Messages).

Cause - invalid node handle
- invalid parameters
- the data area boundaries are exceeded

Call syntax:
INT16 DDI_DTI_WriteData(
 INT16 nodeHd, /* IN : node handle */
 T_DDI_DTI_ACCESS *ddi_dti_acc); /* IN : dti access
 structure*/

Format of the structure T_DDI_DTI_ACCESS:
typedef struct {
 USIGN16 length; /* number of bytes to read/write */
 USIGN16 address; /* address to read/write process data*/
 INT16 dataCons; /* data consistency of the access */
 USIGN8 *data; /* pointer to data to read/write */
} T_DDI_DTI_ACCESS;

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

InterBus-S
Hardware Control Functions

2-135086A

2.4.2 Hardware Control Functions

2.4.2.1 DIP Switch Inquiry

GetDIPSwitch

Task: The function GetDIPSwitch writes the settings of the DIP switch for boot
configuration setting to the variable referenced by dataPtr. Therefore, the user
can determine the boot configuration during program execution, e.g. to ascertain
which board (PC or COP) controls the InterBus-S system. The eight switches
are mapped to bits 0 to 7 of the word, e.g. DIP switch 1 is assigned to bit 0, DIP
switch 2 to bit 1, etc., of the word. When a switch is in the ON position, the
associated bit is zero. The unused bits 8 to 15 of the word are in any case in
status one.

Synopsis: INT16 FAR GetDIPSwitch(USIGN16 boardNumber, USIGN16 FAR *dataPtr)

Parameters: boardNumber Board number (PC: 1 to 4, COP: 1)
*dataPtr Pointer to a variable where the ascertained switch

settings are entered).

Positive
acknowledgment: ERR_OK (0000hex)

Meaning The function was executed successfully.

Negative
acknowledgment: ERR_INVALID_BOARD_NUM (0080hex)

Meaning An invalid board number was specified.
ERR_TSR_NOT_LOADED (008Bhex)
Meaning The specified board has not been installed, or the driver

for it has not been loaded.)

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

2-14

InterBus-S
Driver Software for C Under DOS

5086A

2.4.2.2 SysFail Register Monitoring

GetSysFailRegister

Task: The GetSysFailRegister function writes the contents of the SysFail register to
the variable referenced by sysFailRegPtr. Bits 0, 4, 8 and 12 of the register
indicate whether the SysFail signal of the corresponding board (PC, IBS master
and COP) has been activated or not. In the event of a malfunction of an MPM
node (e.g. watchdog has initiated a reset), the associated bit in the SysFail
register is activated, i.e. set to one. This bit then remains set until the end of the
malfunction. The individual bits of the register are assigned as follows to the
MPM nodes:
Bit 0 --> host PC
Bit 4 --> IBS master board (MA)
Bit 8 --> coprocessor board (COP)
Bit 12 is not used, as there are only three MPM nodes.

Synopsis: INT16 FAR GetSysFailRegister
(USIGN16 boardNumber,USIGN16 FAR *sysFailRegPtr)

Parameters: boardNumber Board number (PC: 1 to 4, COP: 1)
*sysFailRegPtr Pointer to a variable where the contents of the SysFail

register are entered.

Positive
acknowledgment: ERR_OK (0000hex)

Meaning The function was executed successfully.

Negative
acknowledgment: ERR_INVALID_BOARD_NUM (0080hex)

Meaning An invalid board number was specified.
ERR_TSR_NOT_LOADED (008Bhex)
Meaning The specified board has not been installed, or the driver

for it has not been loaded.)

2.4.2.3 SRAM Access Functions

(only for IBS PC CB/COP/I-T and IBS PC CB/486RTX/I-T)

COP_WriteStaticRAM

Task: Writes the specified number of bytes from the given address onwards to the
static RAM of the COP. The lowest possible address is 0.

Synopsis: INT16 FAR COP_WriteStaticRAM
(USIGN32 address, USIGN16 length, USIGN8 FAR *data)

Parameters: address Start address in the static RAM
length Data record length (number of bytes to be written)
*data Pointer to the buffer from which the function is to take

the data to be written.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

InterBus-S
SRAM Access Functions

2-155086A

Positive
acknowldegment: ERR_OK (0000hex)

Meaning The function was executed successfully.

Negative
acknowledgment: ERR_AREA_EXCDED (0096hex)

Meaning The data record to be read is too long. The function can
read a maximum of 64 kbytes in one call.

Remedy Call the function twice to transfer larger data volumes
block by block. Increase the start address by 64 kbytes
in the second call.

Meaning The upper boundary of the area has been exceeded.
The static RAM has a size of 128 kbytes.

Remedy Ensure that the total ofstart address and data record
length does not exceed the area boundary.

COP_ReadStaticRAM

Task: Reads the specified number of bytes from the specified address onwards from
the static RAM of the COP.

Synopsis: INT16 FAR COP_ReadStaticRAM(USIGN32 address, USIGN16 length,
USIGN8 FAR *data)

Parameters: address Start address in the static RAM
length Data record length (number of bytes to be read)
*data Pointer to the buffer where the function is to store the

data to be read.

Positive
acknowledgment: ERR_OK (0000hex)

Meaning The function was executed successfully.

Negative
acknowledgment: ERR_AREA_EXCDED (0096hex)

Meaning The data record to be written is too long. The function
can write a maximum of 64 kbytes in one call.

Remedy Call the function twice to transfer larger data quantities
block by block. Increase the start address by 64 kbytes
in the second call.

Meaning The upper boundary of the area has been exceeded.
The static RAM has a size of 128 kbytes.

Remedy Ensure that the total of start address and data record
length does not exceed the area boundary.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

2-16

InterBus-S
Driver Software for C Under DOS

5086A

2.4.2.4 Watchdog Control Functions

EnableWatchDog()

Task: The function enables the watchdog.

Synopsis: INT16 FAR EnableWatchDog(USIGN16 boardNumber)

Parameter: boardNumber Board number (PC: 1 to 4, COP: 1)

Positive
acknowledgment: ERR_OK (0000hex)

Meaning The function was executed successfully.

Negative
acknowledgment: ERR_INVALID_BOARD_NUM (0080hex)

Meaning An invalid board number was specified.
Remedy Enter a valid board number.

Comment: After the function has been called, the watchdog must be triggered at regular
intervals.
PC: Trigger interval less than 146 ms, otherwise a bit is set in the SysFail

register.
COP: Trigger interval less than 125 ms, otherwise a bit resetting the COP

is set in the SysFail register.

TriggerWatchDog()

Task: The function triggers the watchdog.

Synopsis: INT16 FAR TriggerWatchDog(USIGN16 boardNumber)

Parameter: boardNumber Board number (PC: 1 to 4, COP: 1)

Positive
acknowledgment: ERR_OK (0000hex)

Meaning The function was executed successfully.

Negative
acknowledgment: ERR_INVALID_BOARD_NUM (0080hex)

Meaning An invalid board number was specified.
Remedy Enter a valid board number.

Comment: This call must be repeated at regular intervals, to ensure that the watchdog does
not initiate a reset.
PC: Trigger interval less than 146 ms, otherwise a bit is set in the SysFail

register.
COP: Trigger interval less than 125 ms, otherwise resetting the COP is set

in the SysFail register.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

InterBus-S
Watchdog Control Functions

2-175086A

GetWatchDogState()

Task: This function allows you to inquire from your application program whether the
watchdog has initiated a reset. If the application program is running on the host,
the function inquires automatically the host watchdog state. If the application
program is running on the COP, the function inquires automatically the COP
watchdog state.

Synopsis: INT16 FAR GetWatchDogState(USIGN16 boardNumber)

Parameter: boardNumber Board number (PC: 1 to 4, COP: 1)

Positive
aknowledgment: -

Negative
acknowledgment: ERR_INVALID_BOARD_NUM (0080hex)

Meaning: An invalid board number was specified.

Remedy: Specify a valid board number.

Return value: Coprocessor board watchdog state:
1 The watchdog initiated the last COP warmstart (software reset).
0 The watchdog did not initiate the last COP warmstart (software reset).
Host watchdog state:
1 The host watchdog initiated a reset.
0 The host watchdog did not initiate a reset.

The return values are no longer available after a hardware reset of the controller
board or the host.

ClearWatchDog()

Task: The function resets the watchdog state.

Synopsis: INT16 FAR ClearWatchDog (USIGN16 boardNumber)

Parameter: boardNumber Board number (PC: 1 to 4, COP: 1)

Positive
acknowledgment: ERR_OK (0000hex)

Meaning The function was executed successfully.

Negative
acknowledgment: ERR_INVALID_BOARD_NUM (0080hex)

Meaning An invalid board number was specified.
Remedy Enter a valid board number.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

2-18

InterBus-S
Driver Software for C Under DOS

5086A

2.4.3 IBS Diagnostic Function

GetIBSDiagnostic();

Task: Using the GetIBSDiagnostic() function you can evaluate the state of the IBS
master board and, therewith, the state of the IBS system.

Synopsis: INT16 GetIBSDiagnostic(USIGN16 boardNumber,T_IBS_DIAG FAR *diagInfo);

Parameters: boardNumber Board number (PC: 1 to 4, COP: 1)
*ErrInfo: Pointer to the structure with error details

T_IBS_DIAG Structure with diagnostic details

Structure elements: State The bits of the state structure element describe the bus
state. Masking (ANDing) the state structure element
with the following constants allows to evaluate the state
of the IBS system:

 DIAG_IBS_READY IBS is ready
 DIAG_IBS_RUN IBS has started and is running
 DIAG_IBS_SYS_FAIL A bit in the SysFail register was
 set(e.g. by a watchdog)
 DIAG_IBS_BSA A bus segment is disabled
 DIAG_IBS_ERROR IBS master board indicated error

errType The bits of the errType structure elements describe error
conditions in more detail. Masking (ANDing) the errType
structure element with the following constants allows
you to evaluate the error type:

 DIAG_CNTRL_ERR Controller error
 DIAG_RMT_BUS_ERR Remote bus error
 (e.g. defective remote bus cable)
 DIAG_LCL_BUS_ERR Local bus error
 (e.g. defective local bus cable)
 DIAG_MDL_ERR IBS module error
 (e.g. interrupted I/O supply
 voltage, output overload)

diagPara The evaluation of the structure element diagPara differs
according to its value and to the structure element
errType:

- If the structure element errType indicates a remote bus, local bus or IBS de-
vice error and the value of the structure element diagPara is in the range from
0 to 255, diagPara specifies the number of the bus segment where the error
has occurred. Output the bus segment in decimal notation.

- If the structure element errType indicates a remote bus, local bus or IBS de-
vice error and the value of the structure element diagPara is higher than 255,
diagPara specifies an error number (E01, E02, E04, E05 or E06). See the de-
scription of the message Bus_Error_Information_Indication (80C4hex) in the
controller board manual (IBS PC CB UM E).

- If the structure element errType indicates a controller error, the structure
element diagPara specifies a controller error number (see the list of the
controller error numbers). Output the controller error number in hexadecimal
notation.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

InterBus-S
IBS Diagnostic Function

2-195086A

Positive
acknowledgment: ERR_OK (0000hex)

Meaning The function was executed successfully.

Negative
acknowledgment: ERR_INVLD_BOARD_NUM (0080hex)

Meaning Invalid board number

Negative
acknowledgment: ERR_NODE_NOT_READY (0087hex)

Meaning IBS master board cannot be accessed.
Remedy Wait a moment and then try again.

Negative
acknowledgment: MPM NOT AVAILABLE (0099hex)

Meaning The MPM cannot be accessed.
Remedy Reinstall the driver.

Evaluate the return values only when the function was executed successfully
(positive acknowledgment ERR_OK (0000hex)). On return of a negative
acknowledgment it is not ensured that the return values reflect the IBS master
board state!

Call syntax:
INT16 GetIBSDiagnostic(
 USIGN16 BoardNumber, /*Board number */
 T_IBS_DIAG FAR *diagInfo);/*Pointer to structure
 with error details */

Format of the structure T_IBS_DIAG FAR:
typedef struct {
 USIGN16 state; /* Bus state, Ready, Run etc. */
 USIGN16 errType; /* Error type, remote bus, local
 bus or controller error */
 USIGN16 diagPara; /* Supplementary information,
 see parameter description on the
previous page */
} T_IBS_DIAG;

Example: Refer to the next page for a program detail for evaluating the state structure ele-
ment by masking (ANDing) with specified constants:

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

2-20

InterBus-S
Driver Software for C Under DOS

5086A

void Diagnose (void)
{
GetIBSDiagnostic(boardNumber, &Errinfo);
 if ((Errinfo.state & DIAG_IBS_READY) = = DIAG_IBS_READY)
 {
 printf(„IBS Ready“)
 }
 if ((Errinfo.state & DIAG_IBS_RUN) = = DIAG_IBS_RUN)
 {
 printf(„IBS Run“)
 }
 else
 {
 printf(„IBS Stop!“)
 }
}

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

3-15086A

Driver Software for Pascal Under DOS

This section provides information on

- the implementation and the functions of the device driver interface;
- the required units;
- device drivers for DOS.

Section 3

3 Driver Software for Pascal Under DOS 3-3

3.1 Structure of the Driver Software on the Host PC 3-3
3.2 Structure of the Driver Software on the COP 3-3
3.3 Units . 3-4
3.4 Functions for DOS 3-5
3.4.1 Functions of the Device Driver Interface 3-6
3.4.1.1 Data Channel Management Functions 3-6
3.4.1.2 Mailbox Interface Functions 3-8
3.4.1.3 Data Interface Functions 3-10
3.4.2 Hardware Control Functions 3-13
3.4.2.1 DIP Switch Inquiry 3-13
3.4.2.2 SysFail Register Monitoring 3-14
3.4.2.3 SRAM Access Functions 3-14
3.4.2.4 Watchdog Control Functions 3-16
3.4.3 IBS Diagnostic Function 3-18

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

3-2 5086A

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

InterBus-S
Driver Software for Pascal Under DOS

3-35086A

3 Driver Software for Pascal Under DOS

3.1 Structure of the Driver Software on the Host PC

Link the device driver interface in the form of a unit to your application program.
The device drivers for DOS are TSR programs (similar to the drivers of network
adapters).

Figure 3-1: IBS driver software under Microsoft-DOS® for Pascal

A device driver, i.e. a TSR program, must be installed for each controller board!
The device driver installation is described in Section 4 First Installation and
Startup of the IBS PC CB UM E manual.

3.2 Structure of the Driver Software on the COP

Figure 3-2: IDriver software for Pascal on the coprocessor board

5086A301

Application program
PC

MACOPMACOP MACOPMACOP

TSR program TSR program TSR program TSR program

Unit

MPM MPMMPMMPM

5086A302

MPM

IBS
master board

COP

Host

TSR program

Unit

Application
program

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

3-4

InterBus-S
Driver Software for Pascal Under DOS

5086A

Coprocessor board (COP) programming does not differ from host programming
under DOS. From driver software version 0.9 onwards, linking with special units,
too, is no longer required for the processor board, because the same units are
used for the operation on the host and on the COP. Therefore, a program
created on the host under DOS can be executed on the coprocessor board.

For the operation on the COP, call the TSR program IBSCOP.EXE as device
driver, instead of IBSPCCB.EXE.

3.3 Units

To facilitate the user’s work with the driver software, versions 0.9 and higher
combine all required DDI and auxiliary functions in the unit DDI_DRV.PAS. This
unit is used on the host PC as well as on the coprocessor board. Therefore, an
application program can be run on the host PC or on the coprocessor board
without previous recompiling or linking. A prerequisite is that the appropriate
drivers (TSR programs) are loaded on both systems.

Only the functions for reading from and writing to the coprocessor board’s
SRAM are not available on the host PC, where the error message
ERR_INVLD_CMD (008Chex) is returned when they are called.

The unit DDI_VAR.PAS contains the definitions of the constants and global
variables. This unit also permits the use ot the macros described in Section 6.
For Pascal, they are declared as functions in this file.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

InterBus-S
Functions for DOS

3-55086A

3.4 Functions for DOS

Table 3-1: Overview of the DDI functions for DOS

Function Task Page

DDI_DevOpenNode Opens a data channel to a node 3-6

DDI_DevCloseNode Closes a data channel to a node 3-7

DDI_MXI_SndMessage Writes a message to the MPM 3-8

DDI_MXI_RcvMessage Reads a message from the MPM 3-9

DDI_DTI_ReadData Reads data from the MPM 3-10

DDI_DTI_WriteData Writes data to the MPM 3-11

Table 3-2: Overview of the hardware control functions

Function Task Page

COP_WriteStaticRAM Writes a number of bytes to the SRAM of the COP 3-14

COP_ReadStaticRAM Reads a number of bytes from the SRAM of the COP 3-15

GetDIPSwitch Reads out the settings of the DIP switch for setting the boot
configuration

3-13

GetSysFailRegister Reads out the contents of the SysFail register 3-14

EnableWatchDog Enables a watchdog 3-16

TriggerWatchDog Triggers a watchdog 3-16

GetWatchDogState Reads out the state of a watchdog 3-17

ClearWatchDog Resets the state of a watchdog 3-17

GetIBSDiagnostic Evaluates the IBS master board state 3-18

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

3-6

InterBus-S
Driver Software for Pascal Under DOS

5086A

3.4.1 Functions of the Device Driver Interface

3.4.1.1 Data Channel Management Functions

DDI_DevOpenNode

Task: This function opens a data channel to a node.

Synopsis: DDI_DevOpenNode
(DevName:StringPtr ;perm:INT16;NodeHd:INT16Ptr):INT16;

Parameters: DevName The device name is the name of the device to be
accessed. It identifies the controller board (board
number) and the MPM node on this controller board (see
Section 5.2.3.1 Data Channel Management in the IBS
PC CB UM E manual.

perm The access permission specifies with which access
rights the data channel may be accessed. A distinction
can be made between read, write, and read/write
accesses.

NodeHd The node handle is a value assigned by the DDI, which
is used to find an allocation to the opened node in all
other functions.

Positive
acknowledgment: Node handle

Negative
acknowledgment: DDI error code Gives a more detailed specification of the error found

when opening the data channel to a node (see Section
7 DDI Error Messages).

Cause - unknown device name
- node does not exist

Call syntax:
DDI_DevOpenNode(
 DevName:StringPtr; { IN: device name }
 perm:INT16; { IN: access permission }
 NodeHd:INT16Ptr) { OUT: address of node handle }
 :INT16;

Constants for the access rights:
DDI_READ Read access only
DDI_WRITE Write access only
DDI_RW Read and write access

In the current verion of the driver software (V 0.9), the same data channel (same
device name) between two MPM nodes (e.g. host and COP) may be opened
only once. If the same data channel between two MPM nodes is open more than
once at a time, the data of one data channel overwrites the data of another, as
it uses the same MPM memory area. In this case no error message is output.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

InterBus-S
Data Channel Management Functions

3-75086A

Examples: Wrong:
var ret : USIGN16;
var s : string;

s:= ’IBB1N1_D’ +#0;
ret:= DDI_DevOpenNode(addr(s[1]),...., @nodeHd1)

s:= ’IBB1N1_D’ +#0;
ret:= DDI_DevOpenNode(addr(s[1]),...., @nodeHd2)

Correct:
var ret : USIGN16;
var s : string;

s:= ’IBB1N1_D’ +#0;
ret:= DDI_DevOpenNode(addr(s[1]),...., @nodeHd1)

s:= ’IBB1N2_D’ +#0;
ret:= DDI_DevOpenNode(addr(s[1]),...., @nodeHd2)

(See Section 5.2.3.1 Data Channel Management in the IBS PC CB UM E
manual)

The term(addr(s[1]) is required, as the device driver was written in the
programming language “C“ . It ensures a C-compatible transfer structure.

DDI_DevCloseNode

Task: This function closes a data channel to a node which had been opened with
DDI_DevOpenNode() before. After this function has been called successfully,
the device is no longer "connected“ with the calling program, and the node
handle is no longer valid.

Synopsis: DDI_DevCloseNode(NodeHd : INT16):INT16;

Parameter: *nodeHd The node handle specifies the node to be closed.

Positive
acknowledgment: ERR_OK (0000hex)

Meaning The function was executed successfully.

Negative
acknowledgment: DDI error code Gives a more detailed specification of the error that oc-

curred when the function was called (see Section 8 DDI
Error Messages).

Cause - unknown device name
- invalid node handle
- node does not exist

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

3-8

InterBus-S
Driver Software for Pascal Under DOS

5086A

3.4.1.2 Mailbox Interface Functions

DDI_MXI_SndMessage

Task: This function places a message or a command in a mailbox.

Synopsis: DDI_MXI_SndMessage
(NodeHd : INT16;mxiAcc : P_DDI_MXI_ACCESS): INT16;

(INT16 node_Hd,T_DDI_MXI_ACCESS *ddi_mxi_acc);

Parameters: NodeHd The node handle is the logical number (handle) of a
channel previously opened at the DDI.

mxiAcc Pointer to a data structure of the type
T_DDI_MXI_ACCESS (see below).

T_DDI_MXI_ACCESS: Data structure with the elements required to transfer a command.

Structure elements: msgType The firmware 3.x does not support the structure element
message type. Set it to 0.

msgLength The structure element message length contains the total
length of the message to be sent in bytes. The maximum
permissible total length (see below) is 1024.

msgBlk The structure element msgBlk is a pointer to a message
block that contains in mailbox syntax the message to be
sent. The mailbox syntax format is described in the IBS
PC CB UM E manual.

DDIuserID The structure element DDIUserID is not yet supported
by the firmware 3.x. Set DDIUserID to 0.

Positive
acknowledgment: ERR_OK (0000hex)

Meaning The function was executed successfully.

Negative
acknowledgment: DDI error code Specifies why the function could not be executed (see

Section 7 DDI Error Messages)
Cause invalid node handle;

no suitable mailbox found;
the message exceeds the maximum usable mailbox
length (1020 bytes = 1024 bytes minus 2 command
code bytes minus 2 parameter count bytes).

Call syntax:
DDI_MXI_SndMessage(
 NodeHd : INT16; {IN : node handle *}
 mxiAcc : P_DDI_MXI_ACCESS) {IN : pointer to mailbox
 access structure *}
 :INT16;

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

InterBus-S
Mailbox Interface Functions

3-95086A

Format of the structure T_DDI_MXI_ACCESS:
P_DDI_MXI_ACCESS = ^T_DDI_MXI_ACCESS;
T_DDI_MXI_ACCESS = record
 msgType : INT16; {message type }
 msgLength : USIGN16; {message length }
 DDIUserID : USIGN16; {DDI_User_ID }
 MsgBlk : USIGN8Ptr;{pointer to array for the message}
 end;

DDI_MXI_RcvMessage

Task: This function fetches a message from a mailbox. It is used, for example, to fetch
the acknowledgment of an IBS command. It does not wait for the
acknowledgment! If there is no acknowledgment, a message to this effect is
output in the DDI error code parameter.

Prerequisite: The length of the provided receive buffer must be entered in the msgLength
component of the T_DDI_MXI_ACCESS structure. The driver checks the size
of the receive buffer before reading in, and generates the error message
ERR_MSG_TO_Long (009Ahex) if the received message is longer than the
memory space available.

Synopsis: DDI_MXI_RcvMessage(NodeHd:INT16;mxiAcc:P_DDI_MXI_ACCESS):INT16;

Parameters: NodeHd The node handle is the logical number of a channel pre-
viously opened at the device driver interface.

mxiAcc Pointer to a data structure of a type
T_DDI_MXI_ACCESS (see below).

T_DDI_MXI_ACCESS: Data structure with the elements required for the transfer of a message/com-
mand.

Structure elements: msgType The firmware 3.x does not support the structure element
message type. Set it to 0.

msgLength Before calling the function DDI_MXI_RcvMessage,
enter the size of the available input buffer in bytes, using
the structure element message length. After a message
has been received successfully, the structure element
message length contains the actual length of the
message in bytes.

msgBlk The structure element *msgBlk is a pointer to a message
block that contains in mailbox syntax the message to be
sent. The mailbox syntax format is described in the IBS
PC CB UM E manual.

DDIuserID The structure element DDIUserID is not yet supported
by the firmware 3.x. Set DDIUserID to 0.

Positive
acknowledgment: ERR_OK (0000hex)

Meaning The function was executed successfully.

Negative
acknowledgment: DDI error code Specifies why the function could not be executed (see

Section 7 DDI Error Messages).

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

3-10

InterBus-S
Driver Software for Pascal Under DOS

5086A

Cause - invalid node handle
- receive buffer too small for the received message
- no message available

Call syntax:
DDI_MXI_RcvMessage(
 NodeHd:INT16; { IN : node handle }
 mxiAcc:P_DDI_MXI_ACCESS) { OUT: pointer to mailbox
 access structure }
 :INT16;

Format of the structure P_DDI_MXI_ACCESS:
P_DDI_MXI_ACCESS = ^T_DDI_MXI_ACCESS;
T_DDI_MXI_ACCESS = record
 msgType : INT16; { Message type }
 msgLength : USIGN16; { Message length }
 DDIUserID : USIGN16; { DDI_User_ID }
 MsgBlk : USIGN8Ptr;{ pointer to array for the message}
 end;

3.4.1.3 Data Interface Functions

DDI_DTI_ReadData

Task: This functions reads data from the MPM via the data interface. It places the data
in Motorola format in the specified buffer.

Comment: Before the data is further processed, use the macros for converting input data.
These macros convert the input data from the Motorola format to the Intel format
(see Section 6).

Synopsis: DDI_DTI_ReadData(NodeHd:INT16;dtiAcc:P_DDI_DTI_ACCESS):INT16;

Parameters: NodeHd The node handle specifies the node.
dtiAcc Pointer to a data structure of the type

T_DDI_MXI_ACCESS (see below).

T_DDI_DTI_ACCESS: Data structure with the elements required for transferring process data.

Structure elements: length The structure element length contains the number of
data to be read in bytes. The maximum number is 1024
bytes.

address The structure element address specifies the DTI
address of a process data word in the MPM (see Section
Segmentation of the MPM in the IBS PC CB UM E ma-
nual).

dataCons The structure element data consistency specifies the
data consistency to be used for the access.

data Pointer to the buffer where the data to be read is to be
stored.

Constants for the possible data consistency areas:
DTI_DATA_BYTE : Byte data consistency (1 byte)
DTI_DATA_WORD : Word data consistency (2 bytes)

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

InterBus-S
Data Interface Functions

3-115086A

DTI_DATA_LWORD : Long-word data consistency (4 bytes)
DTI_DATA_48 Bit : 48-bit data consistency (6 bytes)

The data consistency areas DTI_DATA_LWORD and DTI_DATA_48BIT for ac-
cess to the IBS master board are only possible from firmware 3.72 onwards.

Positive
acknowledgment: ERR_OK (0000hex)

Meaning The function was executed successfully.

Negative
acknowledgment: DDI error code Specifies in more detail the error that has occurred

during process data reading (see Section 7 DDI Error
Messages).

Cause - invalid node handle
- invalid parameters
- data area boundaries exceeded

Call syntax:
DDI_DTI_ReadData(
 NodeHd:INT16; { IN : node handle }
 dtiAcc:P_DDI_DTI_ACCESS) { IN : dti access structure }
 :INT16;

Format of the structure T_DDI_DTI_ACCESS:
P_DDI_DTI_ACCESS = ^T_DDI_DTI_ACCESS;
T_DDI_DTI_ACCESS = record
 length : USIGN16; { number of bytes to read/write }
 address : USIGN16; { address to read/write process data}
 dataCons : INT16; { data consistency of the access }
 Data : USIGN8Ptr;{ pointer to data to read/write }
 end;

DDI_DTI_WriteData

Task: This function writes data via the data interface to the MPM. For this purpose, the
function requires data in the Motorola format.

Synopsis: DDI_DTI_WriteData(NodeHd:INT16;dtiAcc:P_DDI_DTI_ACCESS):INT16;

Comment: Before writing data to the MPM, use the output data conversion macros. These
macros convert the output data from the Intel format to the Motorola format (see
Section 6).

Parameters: NodeHd The node handle specifies the node.
dtiAcc Pointer to a data structure of the type

T_DDI_DTI_ACCESS (see below).

T_DDI_DTI_ACCESS: Data structure with the elements required for the transfer of process data.

Structure elements: length The structure element length contains the number of
data to be read in bytes. The maximum number is 1024
bytes (1 kbyte).

address The structure element address specifies the DTI

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

3-12

InterBus-S
Driver Software for Pascal Under DOS

5086A

address of a process data word in the MPM (see Section
Segmentation of the MPM in the IBS PC CB UM E
manual).

dataCons The structure element data consistency specifies the
data consistency for the access.

data Pointer to the buffer from which the data to be written is
to be taken.

Constants for possible data consistency areas:
DTI_DATA_BYTE : Byte data consistency (1 byte)
DTI_DATA_WORD : Word data consistency (2 bytes)
DTI_DATA_LWORD : Long-word data consistency (4 bytes)
DTI_DATA_48 Bit : 48-bit data consistency (6 bytes)

The data consistency areas DTI_DATA_LWORD and DTI_DATA_48BIT are
possible for accesses to the IBS master board only from firmware 3.72 onwards.

Positive
acknowledgment: ERR_OK (0000hex)

Meaning The function was executed successfully.

Negative
acknowledgment: DDI error code Specifies in more detail an error that occurred during a

process data write process (see Section 7 DDI Error
Messages).

Cause - invalid node handle
- invalid parameters
- the data area boundaries are exceeded

Call syntax:
DDI_DTI_WriteData(
 NodeHd:INT16; { IN : node handle }
 dtiAcc:P_DDI_DTI_ACCESS) { IN : dti access structure }
 :INT16;

Format of the structure T_DDI_DTI_ACCESS:
P_DDI_DTI_ACCESS = ^T_DDI_DTI_ACCESS;
T_DDI_DTI_ACCESS = record
 length : USIGN16; { number of bytes to read/write }
 address : USIGN16; { address to read/write process data}
 dataCons : INT16; { data consistency of the access }
 Data : USIGN8Ptr;{ pointer to data to read/write }
 end;

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

InterBus-S
Hardware Control Functions

3-135086A

3.4.2 Hardware Control Functions

3.4.2.1 DIP Switch Inquiry

GetDIPSwitch

Task: The function GetDIPSwitch writes the settings of the DIP switch for boot
configuration setting to the variable referenced by dataPtr. Therefore, the user
can determine the boot configuration during program execution, e.g. to ascertain
which board (PC or COP) controls the InterBus-S system. The eight switches
are mapped to bits 0 to 7 of the word, e.g. DIP switch 1 is assigned to bit 0, DIP
switch 2 to bit 1, etc., of the word. When a switch is in the ON position, the
associated bit is zero. The unused bits 8 to 15 of the word are in any case in
status one.

Synopsis: GetDIPSwitch(boardNumber : USIGN16; dataPtr : USIGN16Ptr):INT16;

Parameters: boardNumber Board number (PC: 1 to 4, COP: 1)
dataPtr Pointer to a variable where the ascertained switch set-

tings are entered).
Positive
acknowledgment: ERR_OK (0000hex)

Meaning The function was executed successfully.

Negative
acknowledgment: ERR_INVALID_BOARD_NUM (0080hex)

Meaning: An invalid board number was specified.
ERR_TSR_NOT_LOADED (008Bhex)
Meaning The specified board has not been installed, or the driver

for it has not been loaded.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

3-14

InterBus-S
Driver Software for Pascal Under DOS

5086A

3.4.2.2 SysFail Register Monitoring

GetSysFailRegister

Task: The GetSysFailRegister function writes the contents of the SysFail register to
the variable referenced by sysFailRegPtr. Bits 0, 4, 8 and 12 of the register
indicate whether the SysFail signal of the corresponding board (PC, IBS master
and COP) has been activated or not. In the event of a malfunction of an MPM
device (e.g. watchdog has initiated a reset), the associated bit in the SysFail
register is activated, i.e. set to one. This bit then remains set until the end of the
malfunction. The individual bits of the register are assigned as follows to the
MPM nodes:
Bit 0 --> host PC
Bit 4 --> IBS master board (MA)
Bit 8 --> coprocessor board (COP)
Bit 12 is not used, as there are only three MPM nodes.

Synopsis: GetSysFailRegister
(boardNumber : USIGN16; SysFailReg : USIGN16Ptr):INT16;

Parameters: boardNumber Board number (PC: 1 bis 4, COP: 1)
sysFailRegPtr Pointer to a variable where the contents of the SysFail

register are entered.

Positive
acknowledgment: ERR_OK (0000hex)

Meaning The function was executed successfully.

Negative
acknowledgment: ERR_INVALID_BOARD_NUM (0080hex)

Meaning An invalid board number was specified.
ERR_TSR_NOT_LOADED (008Bhex)
Meaning The specified board has not been installed, or the driver

for it has not been loaded.

3.4.2.3 SRAM Access Functions

(only for IBS PC CB/COP/I-T and IBS PC CB/486RTX/I-T)

COP_WriteStaticRAM

Task: Writes the specified number of bytes from the given address onwards to the
static RAM of the COP. The lowest possible address is 0.

Synopsis: COP_WriteStaticRam
(address:USIGN32;length:USIGN16;Data:Pointer):INT16;

Parameters: address Start address in the static RAM
length Data record length (number of bytes to be written)
data Pointer to the buffer from which the function is to take

the data to be written.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

InterBus-S
SRAM Access Functions

3-155086A

Positive
acknowldegment: ERR_OK (0000hex)

Meaning The function was executed successfully.

Negative
acknowledgment: ERR_AREA_EXCDED (0096hex)

Meaning The data record to be read is too long. The function can
read a maximum of 64 kbytes in one call.

Remedy Call the function twice to transfer larger data volumes
block by block. Increase the start address by 64 kbytes
in the second call.

Meaning The upper boundary of the area has been exceeded.
The static RAM has a size of 128 kbytes.

Remedy Ensure that the total of start address and data record
length does not exceed the area boundary.

COP_ReadStaticRAM

Task: Reads the specified number of bytes from the specified address onwards from
the static RAM of the COP.

Synopsis: COP_ReadStaticRam
(address:USIGN32;length:USIGN16;Data:Pointer):INT16;

Parameters: address Start address in the static RAM
length Data record length (number of bytes to be read)
data Pointer to the buffer where the function is to store the

data to be read.

Positive
acknowledgment: ERR_OK (0000hex)

Meaning The function was executed successfully.

Negative
acknowledgment: ERR_AREA_EXCDED (0096hex)

Meaning The data record to be written is too long. The function
can write a maximum of 64 kbytes in one call.

Remedy Call the function twice to transfer larger data quantities
block by block. Increase the start address by 64 kbytes
in the second call.

Meaning The upper boundary of the area has been exceeded.
The static RAM has a size of 128 kbytes.

Remedy Ensure that the total of start address and data record
length does not exceed the area boundary.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

3-16

InterBus-S
Driver Software for Pascal Under DOS

5086A

3.4.2.4 Watchdog Control Functions

EnableWatchDog()

Task: The function enables the watchdog.

Synopsis: EnableWatchDog(boardNumber : USIGN16):INT16;

Parameter: boardNumber Board number (PC: 1 to 4, COP: 1)

Positive
acknowledgment: ERR_OK (0000hex)

Meaning The function was executed successfully.

Negative
acknowledgment: ERR_INVALID_BOARD_NUM (0080hex)

Meaning An invalid board number was specified.
Remedy Enter a valid board number.

Comment: After the function has been called, the watchdog must be triggered at regular
intervals.
PC Trigger interval less than 146 ms, otherwise IBS master board reset
COP Trigger interval less than 125 ms, otherwise COP and IBS master

board reset

TriggerWatchDog()

Task: The function triggers the watchdog.

Synopsis: INT16 FAR TriggerWatchDog(USIGN16 boardNumber)

Parameter: boardNumber Board number (PC: 1 to 4, COP: 1)

Positive
acknowledgment: ERR_OK (0000hex)

Meaning The function was executed successfully.

Negative
acknowledgment: ERR_INVALID_BOARD_NUM (0080hex)

Meaning An invalid board number was specified.
Remedy Enter a valid board number.

Comment: This call must be repeated at regular intervals, to ensure that the watchdog does
not initiate a reset.
PC: Trigger interval less than 146 ms, otherwise IBS master board reset
COP: Trigger interval less than 125 ms, otherwise COP and IBS master

board reset

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

InterBus-S
Watchdog Control Functions

3-175086A

GetWatchDogState()

Task: This function allows you to inquire from your application program whether the
watchdog has initiated a reset. If the application program is running on the host,
the function inquires automatically the host watchdog state. If the application
program is running on the COP, the function inquires automatically the COP
watchdog state.

Synopsis: GetWatchDogState(boardNumber : USIGN16):INT16;

Parameter: boardNumber Board number (PC: 1 to 4, COP: 1)

Positive
aknowledgment: -

Negative
acknowledgment: ERR_INVALID_BOARD_NUM (0080hex)

Meaning An invalid board number was specified.
Remedy Specify a valid board number.

Return value: Coprocessor board watchdog state:
1 The watchdog initiated the last COP warmstart (software reset).
0 The watchdog did not initiate the last COP warmstart (software reset).
Host watchdog state:
1 The host watchdog initiated a reset.
0 The host watchdog did not initiate a reset.

The return values are no longer available after a hardware reset of the controller
board or the host.

ClearWatchDog()

Task: The function resets the watchdog state.

Synopsis: INT16 FAR ClearWatchDog (USIGN16 boardNumber)

Parameter: boardNumber Board number (PC: 1 to 4, COP: 1)

Positive
acknowledgment: ERR_OK (0000hex)

Meaning The function was executed successfully.

Negative
acknowledgment: ERR_INVALID_BOARD_NUM (0080hex)

Meaning An invalid board number was specified.
Remedy Enter a valid board number.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

3-18

InterBus-S
Driver Software for Pascal Under DOS

5086A

3.4.3 IBS Diagnostic Function

GetIBSDiagnostic();

Task: The GetIBSDiagnostic() function is used to evaluate the IBS master board state
and, therefore, the state of the IBS system.

Synopsis: GetIBSDiagnostic(boardNumber : USIGN16; Info : P_IBS_DIAG):INT16;

Parameters: boardNumber Board number (PC: 1 to 4, COP: 1)
Info Pointer to structure with error details

P_IBS_DIAG Structure with error details

Structure elements: state The bits of the structure element state describe the bus
state. Masking (ANDing) the structure element state
with the following constants allows to evaluate the state
of the IBS system:

 DIAG_IBS_READY IBS is ready
 DIAG_IBS_RUN IBS has started and is running
 DIAG_IBS_SYS_FAIL A bit was set in the SysFail
 register (e.g. by a watchdog)
 DIAG_IBS_BSA A bus segment has been disabled
 DIAG_IBS_ERROR IBS master board indicated error

errType The bits of the errType structure element describe error
conditions in more detail. Masking (ANDing) the
structure element errType with the following constants
allows you to evaluate the error type:

 DIAG_CNTRL_ERR Controller error
 DIAG_RMT_BUS_ERR Remote bus error
 (e.g. defective remote bus cable)
 DIAG_LCL_BUS_ERR Local bus error
 (e.g. defective local bus cable)
 DIAG_MDL_ERR IBS module error
 (e.g. interrupted I/O supply
 voltage, output overload)

diagPara The evaluation of the structure element diagPara differs
according to its value and to the structure element
errType:

- If the structural element errType indicates a remote bus, local bus or IBS de-
vice error and the value of the structure element diagPara is in the range from
0 to 255, diagPara specifies the number of the bus segment where the error
has occurred. Output the bus segment in decimal notation.

- If the structure element errType indicates a remote bus, local bus or IBS de-
vice error and the value of the structural element diagPara is higher than 255,
diagPara specifies an error number (E01, E02, E04, E05 or E06). See the de-
scription of the message Bus_Error_Information_Indication (80C4hex) in the
controller board manual (IBS PC CB UM E).

- If the structure element errType indicates a controller error, the structural
element diagPara specifies a controller error number (see the list of the
controller error numbers). Output the controller error number in hexadecimal
notation.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

InterBus-S
IBS Diagnostic Function

3-195086A

Positive
acknowledgment: ERR_OK (0000hex)

Meaning The function was executed successfully.

Negative
acknowledgment: ERR_INVLD_BOARD_NUM (0080hex)

Meaning Invalid board number

Negative
acknowledgment: ERR_NODE_NOT_READY (0087hex)

Meaning IBS master board is not accessible (e.g. is booting)
Remedy Wait a moment and then try again

Negative
acknowledgment: MPM NOT AVAILABLE (0099hex)

Meaning The MPM is not accessible
Remedy Reinstall the driver

Evaluate the diagnostic information only when the function was successfully
executed (positive acknowledgment ERR_OK (0000hex)). On return of a
negative acknowledgment no valid diagnostic information is available!

Call syntax:
GetIBSDiagnostic(
 boardNumber : USIGN16; { controller board number }
 Info : P_IBS_DIAG) { pointer to structure
 with error details }
 :INT16;

Format of the structure P_IBS_DIAG:
P_IBS_DIAG = ^T_IBS_DIAG;
T_IBS_DIAG = record
 state : USIGN16; { state of the bus e.g. Ready, Run }
 errType : USIGN16; { type of the error, e.g. remote,
 local bus or I/O periphery error }
 diagPara : USIGN16; { supplementary information, see the
 parameter description on the
 previous page }
 end;

Example: Refer to the next page for a program detail for evaluating the structure element
state by masking (ANDing) with specified constants:

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

3-20

InterBus-S
Driver Software for Pascal Under DOS

5086A

Procedure Diagnose;
 Result : INT16;
 IBS_Info : T_IBS_DIAG

begin
 Result:=GetIBSDiagnostic(boardNumber, @IBS_Info);

 if Result=ERR_OK then begin
 if (IBS_Info.state AND DIAG_IBS_READY) = DIAG_IBS_READY
 then writeln(’IBS Ready’);
 if (IBS_Info.state AND DIAG_IBS_RUN) = DIAG_IBS_RUN
 then writeln(’IBS Run’);
 else
 writeln(’IBS Stop!’)
 end
end;

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

4-15086A

Additions to the Driver Software for Windows®

This section provides information for

- the implementation of the device driver interface and the device drivers for
Windows;

- the functions to be used;
- the required include files and libraries.

Section 4

4 Additions to the Driver Software for Windows 4-3

4.1 Structure of the Driver Software on the Host (PC) 4-3
4.2 Notification Mode 4-3
4.3 Library Under Windows 4-5
4.4 Include Files for "C" 4-5
4.5 Units for Pascal 4-6
4.6 Initialization File Under Windows 4-6
4.7 Functions for Windows 4-7
4.7.1 Device Driver Interface Functions 4-8
4.7.2 Notification Mode Management Functions 4-9
4.7.3 Hardware Control Functions 4-13
4.8 Use of the Driver Software with C++ 4-14

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

4-2 5086A

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

InterBus-S
Additions to the Driver Software for Windows

4-35086A

4 Additions to the Driver Software for Windows

4.1 Structure of the Driver Software on the Host (PC)

The driver software for Microsoft Windows® is provided as a Dynamic Link
Library (DLL) (IBSPCCB.DLL). This DLL incorporates the device driver interface
and device drivers for four controller boards.

Figure 4-1: IBS driver software under Microsoft Windows®

The IBSPCCB.DLL file incorporates the device drivers for four controller boards,
which have to be entered and parameterized in the IBSPCCB.INI file.

4.2 Notification Mode

The operation in the Notification Mode allows to inform the application program
by means of a Windows message of the arrival of a message (e.g. message
from the IBS master board) in the MPM. The cyclic call of the function
DDI_MXI_RcvMessage() from the application program is in that case not
required under Microsoft Windows®.

5086A401

Application program
PC

MACOPMACOP MACOPMACOP

Dynamic Link Library

MPM MPMMPMMPM

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

4-4

InterBus-S
Additions to the Driver Software for Windows

5086A

Figure 4-2: Notification Mode under Microsoft Windows®

Operation of the Notification Mode under Microsoft Windows®:
1 The IBS master board (MA) or the coprocessor board (COP) place a

message in the multi-port memory (MPM).
2 The arrival of the message in the MPM causes an interrupt, which is

evaluated by the mailbox interface of the DDI.
3 When the Notification Mode between the IBS master board or the

coprocessor board and the application program is enabled, the DDI
generates by means of the PostMessage procedure a Windows message
informing the application program of the arrival of a message in the MPM.

4 Thereupon, the DDI_MXI_RcvMessage is called in the application program.
5 The message is supplied to the application program in a buffer.

The Windows message indicates only that there is a message in the MPM. To
read out the message, use the DDI_MXI_RcvMessage function.

To obtain a quick reaction it is recommended to assign the node handle value
to the parameter firstParam (example: firstParam = nodeHd). When the
Windows message is received, this parameter, which corresponds to wParam,
can be used for reading out the message. When the value for the Windows
message (msg) is assigned, it is recommended to use the Windows constant
WM_USER (example: msg = WM_USER + 255).

The DDI_SetMsgNotification function activates the Notification Mode between a
Windows window and an MPM user. To deactivate the Notification Mode, call
the function DDI_ClrMsgNotification. You can activate and deactivate the

Application program

DDI

MPM

5086A402

(Multi-port memory)

(Device driver interface)

MA/COP
1

2

3

4 5

PC

W
in

dows m
es

sa
ge

IBS controller board

M
es

sa
g

e

M
es

sa
g

e

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

InterBus-S
Library Under Windows

4-55086A

Notification Mode for each MPM user separately.

The Notification Mode is automatically terminated when the data channel
assigned to the node handle is closed, i.e. the node handle concerned is
cleared.

4.3 Library Under Windows

The operation of the controller boards under Microsoft Windows® requires only
a Dynamic Link Library (DLL). This DLL (IBSPCCB.DLL) created in the
protected mode incorporates the same DDI functions as provided by the driver
software for DOS. In addition, two functions for indicating the arrival of
messages were implemented in the mailbox interface (Notification Mode).

Using the normal Windows copying procedure, copy the file IBSPCCB.DLL to
the directory where your application program is located, or to the Windows root
directory.

4.4 Include Files for "C"

From driver software version 0.9 onwards you only need to incorporate the
include file IBS_WIN.H. All other required include files (STDTYPES.H,
COMPILER.H, IBS_CM.H, DDI_USR.H, DDI_ERR.H, DDI_LIB.H, PC_UTIL.H
and DDI_MACR) are called from this include file. However, like in earlier driver
software versions, you can also call the required include files separately.

When the include file IBS_WIN.H is used, it is not necessary to manually enter
compiler switches in the program or in the compiler’s command line. The
required constant declaration (IBS_WIN_DRV) then takes place within
IBS_WIN.H.

The include file DDI_MACR.H allows the use of the macro functions described
in Section 7. The macros are defined in this file.

If you do not want to use IBS_WIN.H but call the required include files separately
in the program, insert the instruction #define IBS_WIN_DRV before
incorporating the include files. This can be done either in the program text or as
a compiler option.

Examples:

#define IBS_WIN_DRV
#include "stdtypes.h"
#include "ddi_usr.h"
...
or:
cl /C /Ox /DIBS_WIN_DRV ...

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

4-6

InterBus-S
Additions to the Driver Software for Windows

5086A

4.5 Units for Pascal

The only unit to be incorporated in addition to the units required under DOS
(DDI_DRV.PAS and DDI_VAR.PAS), is the unit TPPCCB.PAS. This unit is the
Pascal interface to the library IBSPCCB.DLL. The Notification Mode control
functions are also declared in this unit.

4.6 Initialization File Under Windows

The Windows root directory must also contain the IBSPCCB.INI file, which is
used for parameterization. Enter the parameters required for controller board
initialization (I/O address, MPM address and interrupt number) in the
IBSPCCB.INI file. The following example shows the entries for the operation of
a controller board.

[GENERAL]
EnableInitErrorMessage=TRUE

[BOARD1]
BoardInUseFlag=TRUE
IOAddress=120
MPMAddress=D000
IRQ=10

[BOARD2]
BoardInUseFlag=FALSE
IOAddress=120
MPMAddress=D100
IRQ=11

[BOARD3]
BoardInUseFlag=FALSE
IOAddress=120
MPMAddress=D200
IRQ=12

[BOARD4]
BoardInUseFlag=FALSE
IOAddress=120
MPMAddress=D300
IRQ=15

Figure 4-3: Examples of entries in the IBSPCCB.INI file

Set, for example, the entry BoardInUseFlag to TRUE for board 1 to ensure that
the controller board no. 1 is recognized during the initialization phase.
Otherwise, the controller board will be marked as not installed and will not be
initialized, even if it does exist.

If you enter an invalid value, the DLL initialization will not be aborted.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

InterBus-S
Functions for Windows

4-75086A

- In the case of the entry EnableInitErrorMessage=TRUE, an error message
will be output to a Windows message box when the DLL is loaded (start of
the application program).

- In the case of the entry EnableInitErrorMessage=FALSE, no error message
will be output when the DLL is loaded (start of the application program). In
this case you can see only from the driver or DDI functions (e.g. when a data
channel is opened for the first time) that an initialization error has taken place.

Except for the restriction that the values for MPMAddress may only be in the
range from A0000hex to FF000hex , the values are the same as for the driver
software for DOS.

4.7 Functions for Windows

Table 4-1: Overview of the DDI functions for Microsoft Windows®

Function Task Page

DDI_DevOpenNode Opens a data channel to a node 4-8

DDI_DevCloseNode Closes a data channel to a node 4-8

DDI_MXI_SndMessage Writes a message to the MPM 4-8

DDI_MXI_RcvMessage Reads a message from the MPM 4-8

DDI_DTI_ReadData Reads data from the MPM 4-8

DDI_DTI_WriteData Writes data to the MPM 4-8

DDI_SetMsgNotification Activates the Notification Mode for Windows 4-9

DDI_ClrMsgNotification Deactivates the Notification Mode for Windows 4-11

Table 4-2: Overview of the hardware control functions

Function Task Page

COP_WriteStaticRAM Writes a number of bytes to the SRAM of the COP *

COP_ReadStaticRAM Reads a number of bytes from the SRAM of the COP *

GetDIPSwitch Reads out the settings of the DIP switch for setting the boot
configuration

4-13

GetSysFailRegister Reads out the contents of the SysFail register 4-13

EnableWatchDog The use of the watchdog for host monitoring is not
recommended. It is not ensured that your program can trigger
the watchdog within the required time. One example: Move
the frame of a window using your mouse. The program will
halt as long as you are holding the frame of the window with
your mouse!

—

TriggerWatchDog —

GetWatchDogState —

ClearWatchDog —

GetIBSDiagnostic Evaluates the IBS master board state 4-13

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

4-8

InterBus-S
Additions to the Driver Software for Windows

5086A

* These are functions for the coprocessor board. They are defined exclusively
for use under the DOS-compatible operating systems (RTXDOS, TDOS) of
the coprocessor board and described in Section 2 (C) and Section 3 (Pascal).

4.7.1 Device Driver Interface Functions

The DDI functions for the operation under Microsoft Windows® do not differ
basically from those used under DOS. They have the same functionality and use
the same parameters. Differences result from the fact that it is possible under
Windows to get informed of the arrival of a message in the MPM by means of a
Windows message. This feature is effected by the Notification Mode.

Declaration of the DDI functions available for Microsoft Windows®

In contrast to the driver software for DOS, the DDI functions of the driver
software for Microsoft Windows® are declared in the DLL IBSPCCB.DLL as
FAR PASCAL to allow the use of this DLL with different programming
languages. The functions for Microsoft Windows® are declared as follows:

INT16 FAR PASCAL DDI_DevOpenNode(CHAR FAR *devName, INT16 perm, INT16 FAR *nodeHd)
INT16 FAR PASCAL DDI_DevCloseNode(INT16 nodeHd)
INT16 FAR PASCAL DDI_DTI_WriteData(INT16 nodeHd, T_DDI_DTI_ACCESS FAR *dtiAcc)
INT16 FAR PASCAL DDI_DTI_ReadData(INT16 nodeHd, T_DDI_DTI_ACCESS FAR *dtiAcc)
INT16 FAR PASCAL DDI_MXI_SndMessage(INT16 nodeHd, T_DDI_MXI_ACCESS FAR *mxiAcc)
INT16 FAR PASCAL DDI_MXI_RcvMessage(INT16 nodeHd, T_DDI_MXI_ACCESS FAR *mxiAcc)

These functions are, with the exception of the declarations, identical with the
driver software for DOS and are described in Section 2 (C) and Section 3
(Pascal). The parameters to be transferred correspond to the descriptions in
those sections.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

InterBus-S
Notification Mode Management Functions

4-95086A

4.7.2 Notification Mode Management Functions

Two additional functions are available for activating and deactivating the
Notification Mode.

DDI_SetMsgNotification

Task: This function activates the Notification Mode for a data channel.

Prerequisite: The node handle (nodeHd) also transferred to the function must belong to an
opened data channel of the mailbox interface, otherwise a general DDI error
message is output.

Synopsis (C): INT16 DDI_SetMsgNotification
(INT16 nodeHd, T_IBS_WIN_NOTIFY FAR *notifyInfoPtr)

Synopsis (Pascal) :DDI_SetMsgNotification
(NodeHd : INT16;notifyInfoPtr: P_IBS_WIN_NOTIFY):INT16;

Parameters: nodeHd The node handle is the logical number of a channel that
had previously been opened on the DDI.

*notifyInfoPtr Pointer to a data structure of the type
T_IBS_WIN_NOTIFY (see below).

T_IBS_WIN_NOTIFY: Data structure with the elements required for activating the Notification function.

Structure elements: hWnd The Windows handle specifies to which Windows box
the Windows message is to be directed.

msg Code which the user has to assign to the message
FirstParam First optional parameter
secondParam Second optional parameter

Positive
acknowledgment: ERR_OK (0000hex)

Meaning The function was executed successfully.

Negative
acknowledgment: General DDI error code

Cause See the description of the DDI error messages

Negative
acknowledgment: EROR_NODE_IN_USE (00B0hex)

Cause You attempted to activate the Notification Mode for a
node for which the Notification Mode had already been
activated.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

4-10

InterBus-S
Additions to the Driver Software for Windows

5086A

DDI_SetMsgNotification in the programming language "C"

Call syntax:
INT16 DDI_SetMsgNotification(
 INT16 nodeHd, /* IN: node handle*/
 T_IBS_WIN_NOTIFY FAR *notifyInfoPtr); /* IN: pointer to
 WIN notify
 structure */

Format of the structure T_IBS_WIN_NOTIFY:
typedef struct {
 HWND hWnd; /* handle of the message
 destination window */
 UINT msg; /* message code of the message*/
 WPARAM firstParam; /* first parameter (wParam) */
 LPARA MsecondParam; /* second parameter (lParam) */
} T_IBS_WIN_NOTIFY;

Assignment of the Windows procedure components to the components of the structure:
WndProc(
 HWND hWnd; /* HWND hWnd */
 WORD Message; /* UINT msg */
 WORD wParam; /* WPARAM firstParam */
 LONG lParam;) /* LPARA MsecondParam */

DDI_SetMsgNotification in the programming language Pascal

Call syntax:
DDI_SetMsgNotification(
 NodeHd : INT16; { IN: node handle }
 notifyInfoPtr : P_IBS_WIN_NOTIFY) { IN: pointer to
 WIN notify
 structure }
 :INT16;

Format of the structure T_IBS_WIN_NOTIFY:
type P_IBS_WIN_NOTIFY = ^T_IBS_WIN_NOTIFY;
 T_IBS_WIN_NOTIFY = record
 H_Wnd : HWND;
 msg : USIGN16;
 firstParam : USIGN16;
 secondParam : USIGN32;
 end;

Assignment of the Windows procedure components to the components of the structure:
WndProc(
 HWND hWnd; { HWND hWnd }
 WORD Message; { UINT msg }
 WORD wParam; { WPARAM firstParam }
 LONG lParam;) { LPARA MsecondParam }

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

InterBus-S
Notification Mode Management Functions

4-115086A

DDI_ClrMsgNotification

Task: This function deactivates the Notification Mode for a data channel.

Synopsis (C): INT16 DDI_ClrMsgNotification
(INT16 nodeHd, T_IBS_WIN_NOTIFY FAR *notifyInfoPtr)

Synopsis (Pascal): DDI_ClrMsgNotification
(NodeHd : INT16;notifyInfoPtr: P_IBS_WIN_NOTIFY):INT16;

Parameters: nodeHd The node handle is the logical number of a channel pre-
viously opened at the DDI.

*notifyInfoPtr: Pointer to a data structure of the type
T_IBS_WIN_NOTIFY (see below).

T_IBS_WIN_NOTIFY: Data structure with the elemetns required for deactivating the Notification
function.

Structure elements: hWnd As a check, enter the Windows box which you opened
for this data channel when activting the Notification Mo-
de.

msg Code which the user has to assign to the message
firstParam First optional parameter
seciondParam Second optional parameter

Positive
acknowledgment: ERR_OK (0000hex)

Meaning The function was executed successfully.

Negative
acknowledgment: General DDI error code

Cause See the description of the DDI error messages.

Negative
acknowledgment: ERR_INVLD_NODE_HD

Cause You specified a wrong node handle.

Negative
acknowledgment: ERR_INVLD_HWND

Cause You specified a wrong Windows handle.
Remedy When deactivating the Notification Mode, use the same

parameters (nodeHd, hWnd) as when the Notification
Mode is activated.

Comment When a wrong node or Windows handle is used, the No-
tification Mode is not deactivated. The parameters msg,
firstParam and secondParam are not checked.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

4-12

InterBus-S
Additions to the Driver Software for Windows

5086A

DDI_ClrMsgNotification in the programming language "C"

Call syntax:
INT16 DDI_ClrMsgNotification(
 INT16 nodeHd, /* IN: node handle*/
 T_IBS_WIN_NOTIFY FAR *notifyInfoPtr); /* IN: pointer to
 WIN notify
 structure */

Format of the structure T_IBS_WIN_NOTIFY:
typedef struct {
 HWND hWnd; /* handle of the message
 destination window */
 UINT msg; /* message code of the message*/
 WPARAM firstParam; /* first parameter (wParam) */
 LPARA MsecondParam; /* second parameter (lParam) */
} T_IBS_WIN_NOTIFY;

Assignment of the Windows procedure components to the components of the structure:
WndProc(
 HWND hWnd; /* HWND hWnd */
 WORD Message; /* UINT msg */
 WORD wParam; /* WPARAM firstParam */
 LONG lParam;) /* LPARA MsecondParam */

DDI_ClrMsgNotification in the programming language Pascal

Call syntax:
DDI_ClrMsgNotification(
 NodeHd : INT16; { IN: node handle }
 notifyInfoPtr : P_IBS_WIN_NOTIFY) { IN: pointer to
 WIN notify
 structure }
 :INT16;

Format of the structure T_IBS_WIN_NOTIFY:
type P_IBS_WIN_NOTIFY = ^T_IBS_WIN_NOTIFY;
 T_IBS_WIN_NOTIFY = record
 H_Wnd : HWND;
 msg : USIGN16;
 firstParam : USIGN16;
 secondParam : USIGN32;
 end;

Assignment of the Windows procedure components to the components of the structure:
WndProc(
 HWND hWnd; { HWND hWnd }
 WORD Message; { UINT msg }
 WORD wParam; { WPARAM firstParam }
 LONG lParam;) { LPARA MsecondParam }

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

InterBus-S
Hardware Control Functions

4-135086A

4.7.3 Hardware Control Functions

For hardware control, the functions described under DOS are also available,
with the exception of the watchdog function.

Declaration of the control functions available for Microsoft Windows®

In contrast to the driver software for DOS, the DDI functions of the driver
software for Microsoft Windows® are declared in the DLL IBSPCCB.DLL as FAR
PASCAL, to allow the use of this DLL with different programming languages.
The functions for Microsoft Windows® are declared as follows:

INT16 FAR PASCAL GetDIPSwitch(USIGN16 boardNumber, USIGN16 FAR *dataPtr)
INT16 FAR PASCAL GetSysFailRegister(USIGN16 boardNumber, USIGN16 FAR *sysFailRegPtr)
INT16 FAR PASCAL GetIBSDiagnostic(USIGN16 boardNumber, T_IBS_DIAG FAR *infoPtr)

These functions are, with the exception of the declaration, identical with the
driver software for DOS and are described in Section 2 (C) and Section 3
(Pascal). The parameters to be transferred are in accordance with the
descriptions given there.

As under Windows it cannot be ensured, even when it is running without errors,
that the watchdog is triggered at sufficiently short intervals (<146ms), the
watchdog functions (EnableWatchDog, TriggerWatchDog, ClearWatchDog and
GetWatchDogState) were not implemented.

The incorporation of the above functions in a separate program can be carried
out via the import list in the DEF file of the application program, or via the
supplied import library (IBSPCCB.LIB). The entries required in the DEF file are:

IMPORTS
DDI_DevOpenNode=ibspccb.2
DDI_DevCloseNode=ibspccb.3
DDI_DTI_WriteData=ibspccb.4
DDI_DTI_ReadData=ibspccb.5
DDI_MXI_SndMessage=ibspccb.6
DDI_MXI_RcvMessage=ibspccb.7
DDI_SetMsgNotification=ibspccb.8
DDI_ClrMsgNotification=ibspccb.9
GetIBSDiagnostic=ibspccb.10
GetSysFailRegister=ibspccb.11
GetDIPSwitch=ibspccb.12

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

4-14

InterBus-S
Additions to the Driver Software for Windows

5086A

4.8 Use of the Driver Software with C++

The driver software for Windows can also be used with C++. You only need to
ensure that the include files are incorporated with extern "C" . Otherwise, the
application cannot be linked.

Example:

extern "C" {
#include ibs_win.h"
}

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

5-15086A

Additions to the Driver Software for OS/2®

This section provides information on

- the implementation of the device driver interface and the device drivers for
OS/2;

- the functions to be used.

Section 5

5 Additions to the Driver Software for OS/2 5-3

5.1 Structure of the Driver Software on the Host (PC) 5-3
5.2 Notification Mode Under OS/2 5-3
5.3 Library and Include Files for OS/2 5-5
5.4 CONFIG.SYS Under OS/2 5-6
5.5 Compiler Options 5-7
5.6 Functions for OS/2 5-8
5.6.1 Device Driver Interface Functions 5-8
5.6.2 Blocked Mode Management Functions 5-10
5.6.3 Hardware Control Functions 5-13
5.7 Use of the Driver Software with C++ 5-14

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

5-2 5086A

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

InterBus-S
Additions to the Driver Software for OS/2

5-35086A

5 Additions to the Driver Software for OS/2

5.1 Structure of the Driver Software on the Host (PC)

The device driver interface for IBM OS/2® is a Dynamic Link Library (DLL)
(IBSPCCB.DLL). Under OS/2, the device drivers are implemented as OS/2
device drivers.

Figure 5-1: IBS driver software for IBM OS/2®

An OS/2 device driver must be installed for each controller board! This requires
an entry in the CONFIG.SYS file of your OS/2 system for each. The device driver
installation is described in the IBS PC CB UM E manual (Order No. 27 54 75 2),
in Section 4 (Installation and Parameterization).

5.2 Notification Mode Under OS/2

Under OS/2, the Blocked Mode can be used as Notification Mode. The Blocked
Mode makes it possible to have a thread wait for the arrival of a message (e.g.
IBS master board message). While it is waiting, the thread is in the Sleep state
(Blocked Mode), i.e. no processor time is "wasted". This means for a thread
which cyclically calls the DDI_MXI_RcvMessage function that, while in the
Block Mode, it is in the Sleep state if there is no message in the MPM.

5086A501

Application program

MACOPMACOP MACOPMACOP

OS/2 API

OS/2 kernel

OS/2
Device driver

OS/2
Device driver

OS/2
Device driver

Dynamic Link Library

OS/2
Device driver

MPM MPMMPMMPM

PC

Blocked Mode

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

5-4

InterBus-S
Additions to the Driver Software for OS/2

5086A

Figure 5-2: Blocked Mode under OS/2®

Mode of operation of the Blocked Mode under OS/2®:
1 The application program starts a thread with the DDI_MXI_RcvMessage

function. If there is currently no message in the MPM, the thread goes into
the Sleep state and does not keep the processor busy.

2 The IBS master board (MA) or the coprocessor board (COP) place a
message in the multi-port memory (MPM).

3 The arrival of the message in the MPM causes an interrupt which "wakes up"
the "sleeping" thread and places it back in the Run state.

4 Using the DDI_MXI_RcvMessage function, the thread fetches the message
from the MPM.

5 The thread returns with the message.

After accepting the message, the application program immediately restarts the
thread. Thus, the thread fetches all available messages from the MPM using the
DDI_MXI_RcvMessage function. As soon as there are no more messages, the
thread returns to the Sleep state.

The Blocked Mode is activated with the DDI_SetMsgNotification function,
whereas the DDI_ClrMsgNotification function deactivates it. You can activate
and deactivate the Blocked Mode separately for each MPM node.

Should you try to terminate a process while a thread of this process still is in the
Sleep state, your application program will get hung at this point. To prevent this,
first deactivate the Blocked Mode for this node using the function
DDI_ClrMsgNotification (see function description). The thread will return without

Application program

MPM

IBS controller board

5086A502

(Multi-port memory)

MA/COP

1

3

PC

Thread (Sleep)

2

4

Thread (Run)

5

M
e
s
s
a
g

e

M
e
s
s
a
g

e

M
e
s
s
a
g

e

Application program

MPM

IBS controller board

5086A502

(Multi-port memory)

MA/COP

1

3

PC

Thread (Sleep)

2

4

Thread (Run)

5

M
e
s
s
a
g

e

M
e
s
s
a
g

e

M
e
s
s
a
g

e

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

InterBus-S
Library and Include Files for OS/2

5-55086A

a message, but with the error ERR_NO_MSG. It will be restarted immediately
afterwards. As this start does not take place in the Blocked Mode, the thread will
not "go to sleep" again when there is no message in the MPM!

Terminate the thread to ensure that it does not keep polling cyclically for arrived
messages after the Blocked Mode has been deactivated.

5.3 Library and Include Files for OS/2

Running the controller board under IBM OS/2 requires only a Dynamic Link
Library (DLL). This 32-bit DLL (IBSPCCB.DLL) declares the same DDI functions
as provided by the driver software for DOS. In addition, two functions to indicate
the arrival of messages were integrated in the mailbox interface
(DDI_SetMsgNotification, DDI_ClrMsgNotification).

You can include the IBSPCCB.DLL functions via the IMPORTS list in the DEF
file or via the supplied IMPORT library in the application program. The DEF file
entries of an OS/2 program are as follows:

IMPORTS
IBSPCCB.DDI_DevOpenNode
IBSPCCB.DDI_DevCloseNode
IBSPCCB.DDI_DTI_WriteData
IBSPCCB.DDI_DTI_ReadData
IBSPCCB.DDI_MXI_SndMessage
IBSPCCB.DDI_MXI_RcvMessage
IBSPCCB.DDI_SetMsgNotification
IBSPCCB.DDI_ClrMsgNotification
IBSPCCB.GetIBSDiagnostic
IBSPCCB.GetDIPSwitch
IBSPCCB.GetSysFailRegister

Using the customary OS/2 copy procedure, copy IBSPCCB.DLL to the directory
where your application program is located, or to the OS2/DLL directory.

To keep the handling of the include files easy, driver software version 0.9
requires only to incorporate include file IBS_OS2.H. However, you can also call
the individual required files separately.

In addition, when the include file IBS_OS2.H is used it is not required to
manually enter compiler switches in the program or in the compiler command
line. The required constant declaration (IBS_OS2_DRV) then takes place within
IBS_OS2.H.

Include file

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

5-6

InterBus-S
Additions to the Driver Software for OS/2

5086A

The include file DDI_MACR.H allows the use of the macro functions described
in Section 6. The macros are defined in this file.

If you do not want to use IBS_OS2.H but call the required include files
individually, insert the instruction #define IBS_OS2_DRV before incorporating
the include files. This can be done either in the program text or as a compiler
option.

Examples:

#define IBS_OS2_DRV
#include "stdtypes.h"
#include "ddi_usr.h"
...

or

icc /C+ /O+ /DIBS_OS2_DRV ...

5.4 CONFIG.SYS Under OS/2

The OS/2 device drivers for the controller boards must be loaded when the host
is started. To ensure this, enter for each controller board (max. four) an OS/2
device driver in the CONFIG.SYS file of your host.

If there are several host controller boards (3 in our example), the examples, for
instance, may be as follows:

DEVICE=OS2_IBS.DRV
DEVICE=OS2_IBS.DRV BN= 2 IO=120 MPM=D100 IRQ=11
DEVICE=OS2_IBS.DRV BN= 3 IO=120 MPM=D200 IRQ=12

As no parameters are specified for the first driver in this example, the following
standard values will be used as default:

DEVICE=OS2_IBS.DRV BN= 1 IO=120 MPM=D000 IRQ=15

The parameter values used are indicated when the driver is loaded.

Table 5-1: Library and include files

DLL Include file

IBSPCCB.DLL IBS_OS2.H
(calls up STDTYPES.H, COMPILER.H, IBS_CM.H, DDI_USR.H,
DDI_ERR.H, DDI_LIB.H, PC_UTIL.H and DDI_MACR.H)

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

InterBus-S
Compiler Options

5-75086A

The individual parameters have the following meanings:

OS2_IBS.DRV: This is the name of the actual driver. Specify the complete
driver if the driver is not in the OS/2 root directory.

BN=1: The board number (BN) specifies for which controller board
the driver is to be loaded. The default value is 1, i.e. if the
driver for the controller board no.1 (settable with DIP switch) is
to be loaded, the parameter BN=1 does not need to be
specified. Valid values for the board number are 1, 2, 3 and 4.

IO=120: This parameter stands for the I/O address under which the
controller board can be accessed in the I/O address area of
the PC. Set the I/O address also on the DIP switches. If the
address set there does not match the specified address, the
initialization of the board is aborted, and an error message is
output. The default value is 120hex. Refer to the IBS PC CB
UM E manual for information on alternative I/O addresses.

MPM=D000: This parameter stands for the address in the memory area of
the PC where the controller board is to be found. The
controller board occupies an address area of 4 kbytes. Ensure
that this area is not already used by other boards. A check
does not take place. The default value is D000hex. Refer to the
IBS PC CB UM E manual for information on alternative
addresses.

IRQ=15: Assign a free PC interrupt to each controller board.
OS/2 does not allow on the ISA bus that an interrupt is used
by more than one controller board. Ensure that the interrupt
used has not already been otherwise assigned, or else the
initialization will be aborted and an error message (Error at
SetIRQ) will be output. The default value for the interrupt is 15.
Refer to the IBS PC CB UM E manual for information on
alternative interrupts.

If you do not enter a parameter, the default value will be used for this parameter.

5.5 Compiler Options

When using the DDI functions and the utility functions, ensure that the DLL
IBSPCCB.DLL was compiled with the compiler option /Sp1 (byte alignment)
after its creation. All compiler options relevant for the user are listed in the
following:

/Gm+ Use multithread libraries
/Se Allow all c Set/2 language extensions except migrations
/Sp1 Byte alignment
/Mp Use optlink linkage for functions

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

5-8

InterBus-S
Additions to the Driver Software for OS/2

5086A

5.6 Functions for OS/2

* These are functions for the coprocessor board. They are defined exclusively
for use under the DOS-compatible operating systems (RTXDOS, TDOS) of
the coprocessor board, and are described in Section 2.

5.6.1 Device Driver Interface Functions

The DDI function for operation under IBM OS/2® are not basically different from
those used for the operation under DOS. They have the same functionality and
use the same parameters. Differences result from the fact that under OS/2 it is
possible to make a thread of the application program wait for the arrival of a
message. The Blocked Mode and special functions are used for this purpose.

Table 5-2: Overview of the DDI functions for OS/2

Function Task Page

DDI_DevOpenNode Opens a data channel to a node 5-9

DDI_DevCloseNode Closes a data channel to a node 5-9

DDI_MXI_SndMessage Writes a message to the MPM 5-9

DDI_MXI_RcvMessage Reads a message from the MPM 5-9

DDI_DTI_ReadData Reads data from the MPM 5-9

DDI_DTI_WriteData Writes data to the MPM 5-9

DDI_SetMsgNotification Activates the Blocked Mode for OS/2 5-10

DDI_ClrMsgNotification Deactivates the Blocked Mode for OS/2 5-12

Table 5-3: Overview of the hardware control functions

Function Task Page

COP_WriteStaticRAM Writes a number of bytes to the SRAM of the COP *

COP_ReadStaticRAM Reads a number of bytes from the SRAM of the COP *

GetDIPSwitch Reads out the settings of the DIP switches used for setting the
boot configuration

5-13

GetSysFailRegister Reads out the contents of the SysFail register 5-13

EnableWatchDog Enables a watchdog 5-13

TriggerWatchDog Triggers a watchdog 5-13

GetWatchDogState Reads out the state of a watchdog 5-13

ClearWatchDog Resets the state of a watchdog 5-13

GetIBSDiagnostic Evaluates the IBS master board state 5-13

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

InterBus-S
Device Driver Interface Functions

5-95086A

Declaration of the DDI functions available for IBM OS/2®

The DDI functions of the driver software for OS/2 are declared in the DLL
IBSPCCB.DLL in the same way as in the driver software for DOS. The only
difference is that under OS/2 you do not need to enter memory models (e.g.
FAR).

INT16 DDI_DevOpenNode(CHAR *devName, INT16 perm, INT16 *nodeHd)
INT16 DDI_DevCloseNode(INT16 nodeHd)
INT16 DDI_DTI_WriteData(INT16 nodeHd, T_DDI_DTI_ACCESS *dtiAcc)
INT16 DDI_DTI_ReadData(INT16 nodeHd, T_DDI_DTI_ACCESS *dtiAcc)
INT16 DDI_MXI_SndMessage(INT16 nodeHd, T_DDI_MXI_ACCESS *mxiAcc)
INT16 DDI_MXI_RcvMessage(INT16 nodeHd, T_DDI_MXI_ACCESS *mxiAcc)

These functions are, with the exception of the declaration, identical with the
driver software for DOS and are described in Section 2. The parameters to be
transferred conform to the descriptions in Section 2.

Example:

void threadRcvMessage(void *ulp)
{
 T_MXI_ACC mxiAcc;

 mxiAcc.msgLength = sizeof(rcvBuf);
 mxiAcc.msgBlk = rcvBuffer;

/* Read messages until it is signaled from the outside that */
/* no more messages are to be fetched. */

 while (stopRcvMsg == FALSE)
 {
 mxiAcc.msgLength = sizeof(rcvBuf);
 if ((ret = DDI_MXI_RcvMessage(nodeHd, &mxiAcc)) == ERR_OK)
 {

 /* Evaluate received message at this point */
 /* and initiate further processing. */
 . . .
 }
 else
 {
 /* Error when receiving the message */
 . . .
 }
 }
 _endthread();
}

Enter the length of the receive buffer available in the msgLength component of
the T_MXI_ACC structure! The driver checks by means of operating system
calls whether the receive buffer memory is valid and belongs to the calling
process. If this is not the case, the program is terminated with an OS/2 General
Protection Fault.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

5-10

InterBus-S
Additions to the Driver Software for OS/2

5086A

5.6.2 Blocked Mode Management Functions

In addition, there are two functions for activating and deactivating the Blocked
Mode:

DDI_SetMsgNotification

Task: The function activates the Blocked Mode for one data channel.

Prerequisite: The node handle (nodeHd) also transferred to the function must belong to an
opened data channel of the mailbox interface; otherwise a general DDI error
message will be output.

Synopsis: DDI_SetMsgNotification(INT16 nodeHd, T_IBS_OS2_NOTIFY *infoPtr):

Parameters: nodeHd The node handle is the logical number of a channel
previously opened at the DDI.

*infoPtr Pointer to a data structure of the type
T_IBS_OS2_NOTIFY (see below).

T_IBS_OS2_NOTIFY: Data structure with the elements required for activating the Blocked Mode

Structural elements: msgNotifyMode Initialize the structure element
msgNotifyMode with the value IBS_BLOCKED_MODE
to activate the Blocked Mode. Other values are currently
not permissible.

processId The structure element processId contains the process
identifier of the process activating the Blocked Mode.
The process identifier must have the same value for
activation and deactivation. An exception is the value
zero (00000000hex) for deactivation. In this case the
Blocked Mode is deactivated for the respective node
without further checks.

timeout Enter in the structural element timeout the time which a
thread is to wait for a message (in milliseconds). If a
message arrives before this period of time elapses, the
thread will return with the message. Otherwise, the
thread will be terminated with the error message
ERR_BLOCK_TIMEOUT (00CBhex).

Positive
acknowledgment: ERR_OK (0000hex)

Meaning The function was executed successfully.

Negative
acknowledgment: General DDI error code:

Cause See the description of the DDI error messages

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

InterBus-S
Blocked Mode Management Functions

5-115086A

Call syntax:
DDI_SetMsgNotification(
 INT16 nodeHd, /* IN: node handle */
 T_IBS_OS2_NOTIFY *InfoPtr); /* IN: pointer to
 OS2 notify structure*/

Format of the data structure T_IBS_OS2_NOTIFY:
typedef struct {
 USIGN16 msgNotifyMode; /* blocked mode */
 USIGN32 processId; /* process identifier */
 USIGN32 timeout; /* timeout in milliseconds */
} T_IBS_OS2_NOTIFY;

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

5-12

InterBus-S
Additions to the Driver Software for OS/2

5086A

DDI_ClrMsgNotification

Task: This function deactivates the Blocked Mode for a data channel.

Synopsis: DDI_ClrMsgNotification(INT16 nodeHd, T_IBS_OS2_NOTIFY *infoPtr):

Parameters: Node handle This parameter is the logical number of a channel
opened at the DDI before.

*infoPtr Pointer to a data structure of the type
T_IBS_OS2_NOTIFY (see below).

T_IBS_OS2_NOTIFY: Data structure with the elements required for deactivating the Blocked Mode.

Structural elements: MsgNotifyMode Initialize the structure element msgNotifyMode with the
value IBS_BLOCKED_MODE to deactivate the Blocked
Mode. Other values are currently not permissible.

ProcessId The structure element processId contains the process
identifier of the process deactivating the Blocked Mode.
The process identifier must have the same value for
activation and deactivation. An exception is the value
zero (00000000hex) for deactivation. In this case the
Blocked Mode will be deactivated for the respective
node without further checks.

Timeout This parameter is irrelevant for the function
DDI_ClrMsgNotification and is not evaluated.

Positive
acknowledgment: ERR_OK (0000hex)

Meaning The function was executed successfully.

Negative
acknowledgment: General DDI error code

Cause See the description of the DDI error messages

Negative
acknowledgment: ERR_INVLD_NODE_HD (0085hex)

Cause You specified an incorrect node handle.

Negative
acknowledgment: ERR_INVLD_process identifier (00C0hex)

Cause You specified a wrong process identifier.
Remedy When deactivating the Blocked Mode, use the same

parameters (nodeHd, process identifier) as for activating
the Blocked Mode.

Comment When a wrong node handle or process identifier is
specified, the Blocked Mode will not be deactivated.

Call syntax:
DDI_ClrMsgNotification(
 INT16 nodeHd, /* IN: node handle */
 T_IBS_OS2_NOTIFY *notifyInfoPtr);/* IN: pointer to
 OS2 notify structure*/

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

InterBus-S
Hardware Control Functions

5-135086A

Format of the data structure T_IBS_OS2_NOTIFY :
typedef struct {
 USIGN16 msgNotifyMode; /* Blocked Mode */
 USIGN32 processId; /* process identifier */
 USIGN32 timeout; /* timeout in milliseconds */
} T_IBS_OS2_NOTIFY;

5.6.3 Hardware Control Functions

For hardware control, too, the functions described under DOS are available. The
only difference is that no memory models (e.g. FAR) need to be specified under
OS/2®.

Declaration of the control functions available for IBM OS/2®

INT16 GetIBSDiagnostic(USIGN16 boardNumber, T_IBS_DIAG *infoPtr)
INT16 GetDIPSwitch(USIGN16 boardNumber, USIGN16 *dataPtr)
INT16 GetSysFailRegister(USIGN16 boardNumber, USIGN16 *sysFailRegPtr)
INT16 EnableWatchDog(USIGN16 boardNumber)
INT16 TriggerWatchDog(USIGN16 boardNumber)
INT16 GetWatchDogState(USIGN16 boardNumber)
INT16 ClearWatchDog (USIGN16 boardNumber)
INT16 ClearWatchDog (USIGN16 boardNumber)

With the exception of the declarations, these functions are identical with the
driver software for DOS; they are described in Section 2 (C). The parameters to
be transferred conform to the descriptions in that section.

For OS/2, the functions for using the watchdogs will only supported from driver
version 0.91 onwards.

The inclusion of the above functions in a separate program can take place by
means of the import list in the DEF file of the application program or the supplied
import library (IBSPCCB.LIB). The entries required in the DEF file are:

IMPORTS
DDI_DevOpenNode=ibspccb.2
DDI_DevCloseNode=ibspccb.3
DDI_DTI_WriteData=ibspccb.4
DDI_DTI_ReadData=ibspccb.5
DDI_MXI_SndMessage=ibspccb.6
DDI_MXI_RcvMessage=ibspccb.7
DDI_SetMsgNotification=ibspccb.8
DDI_ClrMsgNotification=ibspccb.9
GetIBSDiagnostic=ibspccb.10
GetSysFailRegister=ibspccb.11
GetDIPSwitch=ibspccb.12

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

5-14

InterBus-S
Additions to the Driver Software for OS/2

5086A

5.7 Use of the Driver Software with C++

The driver software for OS/2 can also be used with C++. Only make sure that
the include files are included with extern "C". Otherwise the application cannot
be linked.

Example:

extern "C" {
#include ibs_OS2.h"
}

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

6-15086A

Macros for Programming Support

This section provides information on macros

- which simplify the exchange of data records between the IBS master board
(InterBus-S master protocol chip) and the host or coprocessor board (Intel
processor).

Section 6

6 Macros for Programming Support . 6-3

6.1 Data Conversion Macros 6-3
6.1.1 Macros for Converting the Data Block of a Command 6-5
6.1.2 Macros for Converting the Data Block of a Message 6-7
6.1.3 Macros for Converting Input Data 6-8
6.1.4 Macros for Converting Output Data 6-10

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

6-2 5086A

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

InterBus-S
Macros for Programming Support

6-35086A

6 Macros for Programming Support

6.1 Data Conversion Macros

The following macros (for Pascal: macro functions) simplify the transfer of data
(commands, messages, process data) between the host or the coprocessor
board on the one side and the IBS master board on the other side.

- The InterBus-S Master Protocol Chip (IPMS) of the host controller board uses
the Motorola format (68xxx family) when placing its data in the MPM, and
expects this format also when reading.

- The host and COP processors process data in the Intel format, which is
typical for IBM-compatible PCs.

The Motorola format and the Intel format use opposite orders of numbering of
words and bytes within a data field. The macros convert the data between the
Motorola format and the Intel format, and write it to the specified buffer; this
allows you to set up a process image in the Intel format.

Figure 6-1: Use of the data conversion macros

5086A701

Controller boardHost/coprocessor board

 Input
 buffer

 Send
 buffer

Buffer for
commands
and
messages

Process
 image

 Receive
 buffer

 Output
 buffer

MPM

 INTEL
 format

 INTEL
 format

MOTOROLA
 format

MOTOROLA
 format

MOTOROLA
 format

MOTOROLA
 format

MOTOROLA
 format

IBS
master board

Application program

DDI_MXI_
SndMessage

DDI_MXI_
RCVMessage

DDI_DTI_
WriteData

DDI_DTI_
ReadData

 Macros for
commands

Macros for
messages

 Macros for
 output data

 Macros for
 input data

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

6-4

InterBus-S
Macros for Programming Support

5086A

Table 6-1: Overview of the data conversion macros

Macro Task Page

IB_SetCmdCode Enters the command code (16 bits) in the specified send buf-
fer

6-5

IB_SetParaCnt Enters the parameter count (16 bits) in the specified send
buffer

6-5

IB_SetParaN Enters a parameter (16 bits) in the specified send buffer 6-6

IB_SetParaNHiByte Enters the high byte (bits 8 to 15) of a parameter in the spe-
cified send buffer

6-6

IB_SetParaNLoByte Enters the low byte (bits 0 to 7) of a parameter in the speci-
fied send buffer

6-8

IB_SetBytePtrHiByte Returns the address of a parameter entry, starting at the
high byte (bits 8 to 15)

6-6

IB_SetBytePtrLoByte Returns the address of a parameter entry, starting at the low
byte (bits 0 to 7)

6-6

IB_GetMsgCode Reads a message code (16 bits) from the specified receive
buffer

6-7

IB_GetParaCnt Reads the parameter count (16 bits) from the specified
receive buffer

6-7

IB_GetParaN Reads a parameter (16 bits) from the specified receive buffer 6-7

IB_GetParaNHiByte Reads the high byte (bits 8 to 15) of a parameter from the
specified receive buffer

6-7

IB_GetParaNLoByte Reads the low byte (bits 0 to 7) of a parameter from the spe-
cified receive buffer

6-8

IB_GetBytePtrHiByte Returns the address of a parameter address, starting at the
high byte (bits 8 to 15) of a parameter entry

6-8

IB_GetBytePtrLoByte Returns the address of a parameter entry, starting at the low
byte (bits 0 to 7) of a parameter entry

6-8

IB_PD_GetLongDataN Reads at the specified position a long-word (32 bits) from the
input buffer

6-8

IB_PD_GetDataN Reads at the specified position a word (16 bits) from the
input buffer

6-9

IB_PD_GetDataNHiByte Reads the high byte (bits 8 to 15) of a word from the input
buffer

6-9

IB_PD_GetDataNLoByte Reads the low byte (bits 0 to 7) of a word from the input buf-
fer

6-9

IB_PD_GetBytePtrHiByte Returns the address of a word, starting at the high byte (bits
8 to 15).

6-9

IB_PD_GetBytePtrLoByte Returns the address of a word, starting at the low byte (bits 0
to 7)

6-9

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

InterBus-S
Macros for Converting the Data Block of a Command

6-55086A

The macros are so defined in the device driver interfaces for the various
operating systems and compilers that they can be universally used.

The include files and libraries or units required for the use of the macros are
described in Sections 2, 3, 4, and 5.

6.1.1 Macros for Converting the Data Block of a Command

IB_SetCmdCode(n, m)

Task: This macro converts a command code (16 bits) into the Motorola format and
enters it in the send buffer.

Parameters: n(USIGN8 FAR *): Pointer to the send buffer
m(USIGN16): Command code to be entered

IB_SetParaCnt(n, m)

Task: This macro converts the parameter count (16 bits) to the Motorola format and
enters it in the specified send buffer. The call is required only for commands with
parameters. The parameter count specifies the number of subsequent
parameters in words.

Parameters: n(USIGN8 FAR *): Pointer to the send buffer
m(USIGN16): Parameter count to be entered

IB_PD_SetLongDataN Writes a long-word (32 bits) to the output buffer 6-10

IB_PD_SetDataN Writes a word (16 bits) to the output buffer 6-10

IB_PD_SetDataNHiByte Writes the high byte (bits 8 to 15) of a word to the output buf-
fer

6-10

IB_PD_SetDataNLoByte Writes the low byte (bits 0 to 7) of a word to the output buffer 6-10

IB_PD_SetBytePtrHiByte Returns the address of a word, starting at the high byte (bits
8 to 15).

6-11

IB_PD_SetBytePtrLoByte Returns the address of a word, starting at the low byte (bits 0
to 7).

6-11

Table 6-1: Overview of the data conversion macros

Macro Task Page

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

6-6

InterBus-S
Macros for Programming Support

5086A

IB_SetParaN(n, m, o)

Task: This macro converts a parameter (16 bits) into the Motorola format and enters it
in the send buffer. The call is only required for commands with parameters.

Parameters: n(USIGN8 FAR *): Pointer to the send buffer
m(USIGN16): Parameter no. (word no.)
o(USIGN16): Parameter value to be entered

IB_SetParaNHiByte(n, m, o)

Task: This macro converts the high byte (bits 8 to 15) of a parameter into the Motorola
format and enters it in the specified send buffer (see also IB_SetParaN).

Parameters: n(USIGN8 FAR *): Pointer to the send buffer
m(USIGN16): Parameter no. (word no.)
o(USIGN8): Parameter to be entered (byte)

IB_SetParaNLoByte(n, m, o)

Task: This macro converts the low byte (bits 0 to 7) of a parameter into the Motorola
format and enters it in the specified buffer (see also IB_SetParaN).

Parameters: n(USIGN8 FAR *): Pointer to the send buffer
m(USIGN16): Parameter no. (word no.)
o(USIGN8): Parameter to be entered (byte)

IB_SetBytePtrHiByte(n, m)

Task: This macro returns the address of a parameter entry, starting at the high byte
(bits 8 to 15). The data type of the address is USIGN8 FAR *.

Parameters: n(USIGN8 FAR *): Pointer to the send buffer
m(USIGN16): Parameter no. (word no.)

Return value: (USIGN8 FAR *): Address of the high byte of the parameter in the send
buffer.

IB_SetBytePtrLoByte(n, m)

Task: This macro returns the address of a parameter entry, starting at the low byte
(bits 0 to 7) of a parameter entry. The data type of the address is USIGN8 FAR *.

Parameters: n(USIGN8 FAR *): Pointer to send buffer
m(USIGN16): Parameter no. (word no.)

Return value: (USIGN8 FAR *): Address of the low byte of the parameter in the send buf-
fer

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

InterBus-S
Macros for Converting the Data Block of a Message

6-75086A

6.1.2 Macros for Converting the Data Block of a Message

IB_GetMsgCode(n)

Task: This macro reads a message code (16 bits) from a receive buffer and converts
it into the Intel format.

Parameter: n(USIGN8 FAR *): Pointer to the receive buffer

return value: (USIGN16): Message code

IB_GetParaCnt(n)

Task: This macro reads the parameter count (16 bits) from the data block of the
message and converts it into the Intel format. The parameter count specifies the
number of subsequent parameters in words.

Parameter: n(USIGN8 FAR *): Pointer to the receive buffer

Return value: (USIGN16): Parameter count

Comment: Read out the parameter count only for the messages which really have
parameters.

IB_GetParaN(n, m)

Task: This macro reads a parameter value (16 bits) from the data block of the
message and converts it into the Intel format.

Parameters: n(USIGN8 FAR *): Pointer to the receive buffer
m(USIGN16): Parameter no. (word no.)

Return value: (USIGN16): Parameter value

Comment: Read out parameters only for the messages which really have parameters.

IB_GetParaNHiByte(n, m)

Task: This macro reads the high byte (bits 8 to 15) of a parameter from a receive buffer
and converts it into the Intel format.

Parameters: n(USIGN8 FAR *): Pointer to the receive buffer
m(USIGN16): Parameter no. (word no.)

Return value: (USIGN8): Parameter value (byte)

Comment: Read out parameters only for the messages which really have parameters.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

6-8

InterBus-S
Macros for Programming Support

5086A

IB_GetParaNLoByte(n, m)

Task: This macro reads the low byte (0 to 7) of a parameter from the specified receive
buffer and converts it into the Intel format.

Parameters: n(USIGN8 FAR *): Pointer to the receive buffer
m(USIGN16): Parameter no. (word no.)

Return value: (USIGN8): Parameter value (byte)

Comment: Read out parameters only for the messages which really have parameters.

IB_GetBytePtrHiByte(n, m)

Task: This macro returns the address of a parameter entry, starting at the high byte
(bits 8 to 15).

The data type of the address is USIGN8 FAR *.

Parameters: n(USIGN8 FAR *): Pointer to the receive buffer
m(USIGN16): Parameter no. (word no.)

Return value: (USIGN8 FAR *): Address of the high byte of a parameter in the receive buffer.

IB_GetBytePtrLoByte(n, m)

Task: This macro returns the address of a parameter entry, starting at the low byte
(bits 0 to 7).

The data type of the address is USIGN8 FAR *.

Parameters: n(USIGN8 FAR *): Pointer to the receive buffer
m(USIGN16): Parameter no. (word no.)

Return value: (USIGN8 FAR *): Address of the low byte of a parameter in the receive buffer.

6.1.3 Macros for Converting Input Data

Macros for converting long-words, words and bytes from the Motorola format to
the Intel format are available in the IBS_MACR.H file. Addressing is always
word-oriented.

IB_PD_GetLongDataN(n, m, o)

Task: This macro reads at the specified position a long-word from the input buffer and
converts it into the Intel format. The word index in the input buffer is used for the
position. Therefore, the macro reads the long-word by reading two words from
the specified address onwards.

Parameters: n (USIGN8 FAR *) Pointer to the input buffer
m (USIGN16) Parameter no. (word no.)
o (USIGN32) Process data item (32 bits)

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

InterBus-S
Macros for Converting Input Data

6-95086A

IB_PD_GetDataN(n, m)

Task: This macro reads at the specified position a word (16 bits) from the input buffer,
and converts it into the Intel format.

Parameters: n(USIGN8 FAR *): Pointer to the input buffer
m(USIGN16): Parameter no. (word no.)

Return value: (USIGN8): Process data item (16 bits)

IB_PD_GetDataNHiByte(n, m)

Task: This macro reads the high byte (bits 8 to 15) of a word from the input buffer and
converts it into the Intel format.

Parameters: n(USIGN8 FAR *): Pointer to the input buffer
m(USIGN16): Parameter no. (word no.)

Return value: (USIGN8): Process data item (8 bits)

IB_PD_GetDataNLoByte(n, m)

Task: This macro reads the low byte (bits 0 to 7) of a word from the input buffer and
converts it into the Intel format.

Parameters: n(USIGN8 FAR *): Pointer to the input buffer
m(USIGN16): Parameter no. (word no.)

Return value: (USIGN8): Process data item (8 bits)

IB_PD_GetBytePtrHiByte(n, m)

Task: This macro returns the address of a word, starting at the high byte.

Parameters: n(USIGN8 FAR *): Pointer to the input buffer
m(USIGN16): Parameter no. (word no.)

Return value: (USIGN8 FAR *): Address of the high byte of a word in the input buffer.

IB_PD_GetBytePtrLoByte(n, m)

Task: This macro returns the address of a word, starting at the low byte (bits 0 to 7).

Parameter: n(USIGN8 FAR *): Pointer to the input buffer
m(USIGN16): Parameter no. (word no.)

Return value: (USIGN8 FAR *): Address of the low byte of a word in the input buffer.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

6-10

InterBus-S
Macros for Programming Support

5086A

6.1.4 Macros for Converting Output Data

Macros for converting long-words, words and bytes from the Intel format to the
Motorola format are available in the IBS_MACR.H file. The addressing is always
word-oriented.

IB_PD_SetLongDataN(n, m, o)

Task: This macro converts a long-word (32 bits) into the Motorola format and writes it
at the specified position to the output buffer. The word index in the output buffer
is used for the position. Therefore, the macro writes the long-word by writing two
words from the specified address onwards.

Parameters : n (USIGN8 FAR *) Pointer to the output buffer
m (USIGN16) Parameter no. (word no.)
o (USIGN32) Process data item (32 bits)

IB_PD_SetDataN(n, m, o)

Task: This macro converts a word (16 bits) into the Motorola format and writes it at the
specified position into the output buffer.

Parameters: n(USIGN8 FAR *): Pointer to the output buffer
m(USIGN16): Parameter no. (word no.)
o(USIGN16): Process data item (16 bits)

IB_PD_SetDataNHiByte(n, m, o)

Task: This macro converts the high byte (bits 8 to 15) of a word into the Motorola
format and writes it at the specified position it into the output buffer.

Parameters: n(USIGN8 FAR *): Pointer to the output buffer
m(USIGN16): Parameter no. (word no.)
o(USIGN8): Process data item (8 bits)

IB_PD_SetDataNLoByte(n, m, o)

Task: This macro converts the low byte (bits 0 to 7) of a word into the Motorola format
and writes it at the specified position into the output buffer.

Parameters: n(USIGN8 FAR *): Pointer to the output buffer
m(USIGN16): Parameter no. (word no.)
o(USIGN8): Process data item (8 bits)

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

InterBus-S
Macros for Converting Output Data

6-115086A

IB_PD_SetBytePtrHiByte(n, m)

Task: This macro returns the address of a word, starting at the high byte (bits 8 to 15).

Parameter: n(USIGN8 FAR *): Pointer to the output buffer
m(USIGN16): Parameter no. (word no.)

Return value: (USIGN8 FAR *): Address of the high byte of a word in the output buffer.

IB_PD_SetBytePtrLoByte(n, m)

Task: This macro returns the address of a word, starting at the low byte (bits 0 to 7).

Parameters: n(USIGN8 FAR *): Pointer to the output buffer
m(USIGN16): Parameter no. (word no.)

Return value: (USIGN8 FAR *): Address of the low byte of a word in the output buffer.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

6-12

InterBus-S
Macros for Programming Support

5086A

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

7-15086A

Driver Software Diagnostics

This section provides information on the driver software messages and error
messages.

- Meaning
- Causes
- Remedy

Section 7

7 Driver Software Diagnostics. . 7-3

7.1 DDI Messages 7-4
7.2 DDI Error Messages 7-4
7.2.1 Controller Board Initialization Error Messages 7-4
7.2.2 General Error Messages 7-6
7.2.3 Error Messages when Opening a Data Channel 7-7
7.2.4 Message/Command Transfer Error Messages 7-8
7.2.5 Process Data Transfer Error Messages 7-10
7.2.6 Error Messages Under DOS 7-10
7.2.7 Error Messages Under Microsoft Windows 7-11
7.2.8 Error Messages Under OS/2 7-12

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

7-2 5086A

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

InterBus-S
Driver Software Diagnostics

7-35086A

7 Driver Software Diagnostics

Table 7-1: Overview of the DDI error messages

Code Error message Cause Page

0000hex ERR_OK The function was executed successfully 7-4

0080hex ERR_INVLD_BOARD_NUM Invalid board number 7-4

0081hex ERR_INVLD_IO_ADDR Invalid I/O address 7-4

0082hex ERR_INVLD_MPM_ADDR Invalid address for the MPM window 7-5

0083hex ERR_INVLD_INTR_NUM Illegal interrupt 7-5

0084hex ERR_INVLD_CARD_CODE Incorrect board code 7-5

0085hex ERR_INVLD_NODE_HD Invalid node handle specified 7-6

0086hex ERR_INVLD_NODE_STATE Node handle of an already closed data
channel specified

7-6

0087hex ERR_NODE_NOT_READY Selected node not ready 7-6

0088hex ERR_WRONG_DEV_TYP Wrong node handle 7-6

0089hex ERR_DEV_NOT_READY IBS master board not yet ready 7-6

008Ahex ERR_INVLD_PERM Invalid channel access type 7-6

008Bhex ERR_TSR_NOT_LOADED Device driver not loaded 7-10

008Chex ERR_INVLD_CMD Utility functions not supported by driver ver-
sion 0.9

7-7

008Dhex ERR_INVLD_PARAM 7-7

0090hex ERR_NODE_NOT_PRES Node does not exist 7-7

0091hex ERR_INVLD_DEV_NAME Unknown device name used 7-7

0092hex ERR_NO_MORE_HNDL Device driver out of resources 7-7

0096hex ERR_AREA_EXCDED The access exceeds the boundary of the
selected data area

7-10

0097hex ERR_INVLD_DATA_CONS Specified data consistency is invalid 7-10

0099hex ERR_MPM_NOT_AVALBL Access to the MPM not possible 7-6

009Ahex ERR_MSG_TO_LONG Message or command contains too many
parameters

7-8

009Bhex ERR_NO_MSG No message available 7-8

009Chex ERR_NO_MORE_MAILBOX No free mailbox of the required size 7-8

009Dhex ERR_SVR_IN_USE Send vector register in use 7-8

009Ehex ERR_SVR_TIMEOUT Invalid node called 7-8

009Fhex ERR_AVR_TIMEOUT Invalid node called 7-9

00A0hex ERR_COP_USES_MA IBS master bord control not enabled for PC 7-9

00A1hex ERR_PC_USES_MA IBS master board control not enabled for the
COP

7-9

00B0hex ERR_NODE_IN_USE Notification Mode activated twice for one
node (Windows)

7-11

00C0hex ERR_INVLD_Process-
Identifier

Invalid process identifier specified 7-11

00C1hex ERR_BLK_MODE_IS_ENBLD Blocked Mode already enabled 7-12

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

7-4

InterBus-S
Driver Software Diagnostics

5086A

7.1 DDI Messages

ERR_OK 0000hex

Meaning: The driver software generates this message as a positive acknowledgment after
a function has been executed successfully.

Cause: No error occurred when this function was executed. If a function was not
executed successfully, the driver software causes one of the error messages
below.

7.2 DDI Error Messages

If the device driver interface generates one of the following error messages as
a negative acknowledgment, the function called before could not be executed
successfully.

7.2.1 Controller Board Initialization Error Messages

ERR_INVLD_BOARD_NUM 0080hex

Cause: An invalid board number was used.

Remedy: Enter a valid board number. Valid board numbers are 1, 2, 3, and 4.

ERR_INVLD_IO_ADDR0081hex

Cause: The I/O address entered for the controller board is invalid.

Remedy: Enter one of the valid I/O addresses. The following I/O addresses are valid:
100hex, 120hex, 140hex, 160hex, 180hex, 1A0hex, 200hex, 220hex, 240hex, 280hex,
2A0hex, 300hex, 320hex, 340hex, 380hex, 3A0hex

(see also Section 4.1 of the IBS PC CB UM E manual)

00C2hex ERR_THREAD_IS_WAITING Another thread is already using the Notifica-
tion Mode for this node

7-12

00C9hex ERR_INVLD_MEMORY Invalid receive buffer 7-12

00CAhex ERR_INVLD_NOTIFY_MODE Invalid Notification Mode 7-12

00CBhex ERR_BLOCK_TIMEOUT Waiting time for a message exceeded 7-12

00D1hex ERR_INVLD_HWND Invalid Windows handle 7-11

00D2hex ERR_BOARD_NOT_PRES Board not entered in IBSPCCB.INI 7-11

00D3hex ERR_INVLD_INI_PARAM Invalid parameter in IBSPCCB.INI 7-11

Table 7-1: Overview of the DDI error messages

Code Error message Cause Page

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

InterBus-S
Controller Board Initialization Error Messages

7-55086A

ERR_INVLD_MPM_ADDR 0082hex

Cause: The base address for the 4 kbyte MPM window (MPM address), which is speci-
fied in the PC memory area, is outside the range supported by the controller
board.

Remedy: Use an MPM address inside the range supported by the controller board
(C0000hex to FF000hex).

The controller board occupies an address area of 4 kbytes from this base
address onwards. Ensure that this area is not already used by other boards. An
automatic check does not take place. As in practice this memory area is already
in use to a great extent (BIOS etc.), the address range available is as a rule
limited to parts of the address segments D and E (addresses from D0000hex to
EFFFFhex). The default value is D0000hex (see Section 4.6 in the
IBS PC CB UM E manual).

ERR_INVLD_INTR_NUM0083hex

Cause: The specified interrupt is invalid.

Remedy: Valid interrupts are IRQ3, IRQ5, IRQ7, IRQ9, IRQ10, IRQ11, IRQ12, and
IRQ15.

If several controller boards are used in one host, every installed controller board
must use a different interrupt. On most standard PCs the interrupts IRQ10,
IRQ11, IRQ12 and IRQ15 are not assigned and, therefore, can be used for the
device drivers. The other interrupts are often used by standard PC components
(serial ports COM1 and COM2, network adapters, etc.), and should not be used
for the host controller boards.

ERR_INVLD_CARD_CODE 0084hex

Cause: The status register of the controller board contains an unknown board code.
(The driver for IBS PC CB/.../I-T expects the board code 2Dhex)

Remedy: Have the controller board checked.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

7-6

InterBus-S
Driver Software Diagnostics

5086A

7.2.2 General Error Messages

These error messages may occur when any of the DDI functions is called.

ERR_MPM_NOT_AVALBL0099hex

Cause: The MPM cannot be accessed. A reset (reset key on the board) may have been
initiated on the controller board.

Remedy: De-install the driver and restart it.

ERR_INVLD_NODE_HD0085hex

Cause: An invalid node handle was used when the function was called.

Remedy: Use the permissible node handle of a successfully opened data channel.

ERR_INVLD_NODE_STATE0086hex

Cause: An invalid node handle was used when the function was called. The invalid node
handle was the handle of an already closed data channel.

Remedy: Open the closed data channel or use a data channel that had already been
closed.

ERR_NODE_NOT_READY 0087hex

Cause: The node with which you want to work has not yet reported "ready", i.e. the
node-ready bit in the MPM status register has not been set. The cause may be,
for example, a hardware fault.

Remedy: - Check whether the controller board startup has been completed
- Reset of the PC

ERR_WRONG_DEV_TYP 0088hex

Cause: Wrong node handle. It was attempted to access the mailbox interface with a
node handle for the data interface.

ERR_DEV_NOT_READY 0089hex

Cause: The IBS master board was accessed although it was not ready (Ready LED).

Remedy: Following a reset of the IBS master board, inquire the ready bit in the status/
control register with the GetIBSDiagnostic() function. Only when this bit is set is
the IBS master board initialized and may be accessed.

ERR_INVLD_PERM008Ahex

Cause: An attempt was made to execute a function on a channel without previously
specifying the appropriate access rights when opening the channel. This error
occurs, when, for example, writing to the data interface is to take place, but only
read rights (DDI_READ constant) were specified when the channel was opened.

Remedy: Close the channel and open it again with changed access rights.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

InterBus-S
Error Messages when Opening a Data Channel

7-75086A

ERR_INVLD_CMD008Chex

Cause: This error message is issued when certain new help functions of the new
DDI_TSR.LIB are used with an earlier driver (version < 0.9).

Remedy: Use a newer driver (version ≥ 0.9).

ERR_INVLD_PARAM008Dhex

Cause: This error message is output when certain new help functions of the new
DDI_TSR.LIB are used with an earlier driver (version < 0.9).

Remedy: Use a newer driver (version ≥ 0.9).

7.2.3 Error Messages when Opening a Data Channel

ERR_NODE_NOT_PRES0090hex

Cause: An attempt was made to open a data channel to a node which does not exist.

Remedy: Select the right node.
Possible nodes:
IBS PC CB: Node 1 = IBS master
IBS PC CB/COP: Node 0 = PC, node 1 = IBS master, node 2 = COP

ERR_INVLD_DEV_NAME0091hex

Cause: An unknown device name was specified as parameter when a data channel was
opened.

Remedy: Select a correct device name according to Tables 5-2 to 5-5.

ERR_NO_MORE_HNDL0092hex

Cause: The device driver is out of resources. No further data channels can be opened.
If you terminate a program without closing the data channels used, they will
remain open. The next program start will open further data channels. After
several program starts, the maximum number of data channels that may be
simultaneously open will finally be reached, and no further channel will be
available.

Remedy: Close a data channel that is not required, or install the device driver anew. When
a program has been terminated, always close all data channels used by the
program.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

7-8

InterBus-S
Driver Software Diagnostics

5086A

7.2.4 Message/Command Transfer Error Messages

ERR_MSG_TO_LONG009Ahex

Cause: If the error message is output when a command is sent, the length of the
command exceeds the maximum permissible number of parameters.

Remedy: Reduce the number of parameters.

Cause: If the error message is output on reception of a message, the message length
exceeds the length of the specified receive buffer.

Remedy: Extend the receive buffer length.

ERR_NO_MSG009Bhex

Cause: The message is output when an attempt is made to fetch a message with the
DDI_MXI_RCV_MESSAGE message, but there is no message from the node
specified by the node handle.

ERR_NO_MORE_MAILBOX009Chex

Cause: You requested too many mailboxes within a short time.

Remedy: Extend the interval between the individual mailbox requests and try again.

Cause: No free mailbox of the requested size is available. Observe the maximum
mailbox size that can be used (1020 bytes).

Remedy: Select a smaller mailbox or wait until there is a free mailbox of the required size.

Cause: You attempted to access the coprocessor board although it is faulty.

Remedy: Please consult Phoenix Contact.

ERR_SVR_IN_USE009Dhex

Cause: The send vector register for the node is in use.

Remedy: Access the register once more, or wait until the register is free again.

ERR_SVR_TIMEOUT009Ehex

Desription: When a message placed in the MPM by the IBS master board is not fetched by
the accessed MPM node, this node does not reset the acknowledge bit set by
the IBS master board; i.e. the accessed MPM node does not indicate Message
recognized. After a certain time (timeout), the IBS master board will generate the
error message ERR_SVR_TIMEOUT . If this error message occurs several
times in succession, this indicates that the accessed node is no longer ready to
accept the message.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

InterBus-S
Message/Command Transfer Error Messages

7-95086A

Cause: Call of an invalid node, e.g.:

You attempted to access the coprocessor board (COP), which, however, is
faulty.

Remedy: Please consult Phoenix Contact.

ERR_AVR_TIMEOUT009Fhex

Description: When a message is read, an acknowledge bit is set to indicate to the
communication partner that a message was processed and the mailbox is free
again. The communication partner must reset this bit to indicate that it has
recognized that the mailbox is free again. If the reset does not take place within
a specified time, this error message is generated.

Cause: Call of an invalid node, e.g.:

You attempted to access the coprocessor board (COP), which is defective or
does not exist.

Remedy: Please consult Phoenix Contact.

ERR_COP_USES_MA 00A0hex

Cause: The host PC attempted to send a command to the IBS master board although,
according to the position of the boot configuration switch, the IBS master board
was controlled by the coprocessor board.

Remedy: Take care that the host PC does not send commands to the IBS master board
when the IBS master board is controlled by the coprocessor board. Check the
setting of the boot configuration switch (see Section 4 in the IBS PC CB UM E
manual).

ERR_PC_USES_MA 00A100A1hex

Cause The coprocessor board attempted to send a command to the IBS master board
although, according to the setting of the boot configuration switch, the IBS
master board was controlled by the host PC.

Remedy: Take care that the coprocessor board does not send commands to the IBS
master board when the IBS master board is controlled by the host PC. Check
the setting of the boot configuration switch (see Section 4 in the IBS PC CB UM
E manual).

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

7-10

InterBus-S
Driver Software Diagnostics

5086A

7.2.5 Process Data Transfer Error Messages

These errors occur only when the data interface (DTI) is accessed.

ERR_AREA_EXCDED0096hex

Meaning: The access exceeds the boundary of the selected data area.

Cause: The data record to be read or written is too long. The function can read a maxi-
mum of 4 kbytes in one call.

Remedy: Read or write only data records with a maximum size of 4 kbytes.

Cause: The upper area boundary (4 kbytes above the beginning of the node area) has
been exceeded.

Remedy: Ensure that the total of the address offset, relative address and data length to
be read does not exceed the upper area boundary. The node and data areas are
described in Section 5 of the manual IBS PC CB UM E under Segmentation of
the MPM.

ERR_INVLD_DATA_CONS0097hex

Cause: An invalid value (1, 2, 4 or 6 bytes) was specified for the data consistency.

Remedy: Define a valid data consistency by specifying one of the following constants:
DTI_DATA_BYTE : Byte data consistency (1 byte)
DTI_DATA_WORD : Word data consistency(2 bytes)
DTI_DATA_LWORD : Long-word data consistency (4 bytes)
DTI_DATA_48 Bit : 48-bit data consistency (6 bytes)

7.2.6 Error Messages Under DOS

ERR_TSR_NOT_LOADED008Bhex

Cause: It was attempted to call a device driver function although the device driver had
not been loaded.

Remedy: Load the TSR program IBSPCCB.EXE on the host, or the TSR program
IBSCOP.EXE on the coprocessor board.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

InterBus-S
Error Messages Under Microsoft Windows®

7-115086A

7.2.7 Error Messages Under Microsoft Windows®

ERR_NODE_IN_USE 00B0hex

Cause: You attempted under Windows to activate the Notification Mode for a node for
which the Notification Mode had already been enabled.

ERR_INVLD_HWND00D1hex

Cause: You used an invalid Windows handle (hWnd).

Cause: The Windows handle used is not identical with the one used on enabling the No-
tification Mode.

Remedy: Use the correct Windows handle.

Comment: When a wrong Windows or node handle is specified, the notification mode is not
disabled.

ERR_BOARD_NOT_PRES00D2hex

Cause: When opening or closing a data channel (function DDI_DevOpenNode or
DDI_DevCloseNode) with the parameter device name, an invalid board number
was selected. According to the entry BoardInUseFlag=False in the file IBSPC-
CB.INI there is no controller board with this board number.

Remedy: Check whether there is a controller board with the board number which you ac-
cessed. If this is the case, correct the entry to BoardInUseFlag=True in the IB-
SPCCB.INI file.

ERR_INVLD_INI_PARAM00D3hex

Cause: A parameter in the IBSPCCB.INI file is not valid.

Remedy: Check the entries in the IBSPCCB.INI file.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

7-12

InterBus-S
Driver Software Diagnostics

5086A

7.2.8 Error Messages Under OS/2

ERR_INVLD_PID00C0hex

Cause: You specified a wrong process identifier.

Remedy: When disabling the Notification Mode, use the same parameters (nodeHd,
processId) as for enabling the Notification Mode.

ERR_BLK_MODE_IS_ENBLD00C1hex

Cause: The Blocked Mode has already been enabled for this node.

Remedy: The function DDI_ClrMsgNotification must be called before a new process can
log on.

ERR_THREAD_IS_WAITING00C2hex

Cause: Another thread is already waiting for messages from this node and is in the sleep
mode. While a thread is waiting for messages from a node, generally no other
thread can read from this node.

Remedy: If necessary, terminate the Notification Mode for the thread which has been
waiting longer.

ERR_INVLD_MEMORY00C9hex

Cause: The receive buffer transferred to the function DDI_MXI_RcvMessage is not
valid, i.e. it cannot be used for storing a message. Otherwise, OS/2 indicates an
integrity violation.

Remedy: Check the memory area provided for the receive buffer.

ERR_INVLD_NOTIFY_MODE00CAhex

Cause: An attempt was made to enable an invalid Notification Mode. The driver soft-
ware versions 0.9 and 0.91 support only the Blocked Mode.

Remedy: Use a Notification Mode supported by your driver software.

ERR_BLOCK_TIMEOUT00CBhex

Cause: When enabling the Notification Mode for a thread, you entered in the structure
element timeout the maximum time which a thread is to wait for a message. As
no message was received within this time, the thread was terminated with the
error message ERR_BLOCK_TIMEOUT (00CBhex).

Remedy: Check the application program and the equipment to determine why an expec-
ted message has not arrived in time. If necessary, set a longer waiting time.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

A-15086A

Document Appendix

Appendix A

A Appendix . A-3

A.1 Figures . A-3
A.2 Tables. . A-4
A.3 Index . A-5

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

A-2 5086A

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

InterBus-S
Appendix

A-35086A

A Appendix

A.1 Figures

Chapter 2

Figure 2-1: IBS driver software for Microsoft-DOS for C 2-3

Figure 2-2: Driver software for C on the coprocessor board 2-3

Kapitel 3Chapter 3

Figure 3-1: IBS driver software under Microsoft-DOS for Pascal 3-3

Figure 3-2: IBS driver software for Pascal on the coprocessor board . . 3-3

Chapter 4

Figure 4-1: IBS driver software under Microsoft Windows 4-3

Figure 4-2: Notification Mode under Microsoft Windows 4-4

Figure 4-3: Examples of entries in the IBSPCCB.INI file 4-6

Chapter 5

Figure 5-1: IBS driver software for IBM OS/2 5-3

Figure 5-2: Blocked Mode under OS/2. 5-4

Chapter 6

Figure 6-1: Use of the data conversion macros 6-3

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

A-4

InterBus-S
Appendix

5086A

A.2 Tables

Chapter 1

Table 1-1: Operating systems 1-3

Table 1-2: Compilers . 1-3

Table 1-3: Compiler/operating system combinations on the host . . . 1-4

Table 1-4: Compiler/operating system combinations on the coprocessor
board . 1-4

Chapter 2

Table 2-1: Libraries and include files 2-4

Table 2-2: Overview of the DDI functions for DOS 2-5

Table 2-3: Overview of the hardware control functions 2-5

Kapitel 3Chapter 3

Table 3-4: Overview of the DDI functions for DOS 3-5

Table 3-5: Overview of the hardware control functions 3-5

Chapter 4

Table 4-1: Overview of the DDI functions for Microsoft Windows . . . 4-7

Table 4-2: Overview of the hardware control functions 4-7

Chapter 5

Table 5-1: Library and include files 5-6

Table 5-2: Overview of the DDI functions for OS/2 5-8

Table 5-3: Overview of the hardware control functions 5-8

Chapter 6

Table 6-1: Overview of the data conversion macros 6-4

Chapter 7

Table 7-1: Overview of the DDI error messages 7-3

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

A-55086A

InterBus-S
Index

A.3 Index

A
Access permission 2-6, 3-6

B
Blocked Mode 5-3, 5-10
Board code 7-5

C
Compiler option for OS/2 5-7
CONFIG.SYS for OS/2 5-6
Controller error 2-18, 3-18

D
Data channel 2-6, 3-6
Data consistency 3-10
Data interface 2-10, 3-10
Device name 2-6, 3-6
Diagnostic function 2-18, 3-18
DIP switch 2-13, 3-13
DTI address 2-10, 2-11, 3-10, 3-11
Dynamic Link Library for OS/2 5-5
Dynamic Link Library for Windows 4-5

E
Error messages of the DDI 7-3

G
GetIBSDiagnostic 2-18, 3-18

I
IBSPCCB.INI 4-6
Include files 2-4, 4-5
include files for DOS 2-4
Include files for OS/2 5-5
Include files for Windows 4-5
Intel format 6-3
IPMS 6-3

L
Library 2-4
Local bus error 2-18, 3-18

M
Macros 6-5
Macros for data conversion 6-3
Macros for the DDI 6-3
Memory model 2-4
Message block 2-8, 3-8
Message length 2-8, 3-8
Microsoft Windows 4-3
Module error 2-18, 3-18
Motorola format 6-3
MPM, data address 2-11

N
Node handle 2-6, 3-6
Notification Mode 4-3, 5-3
Notification Mode for OS/2 5-3
Notification Mode for Windows 4-3, 4-9

O
OS/2 5-3

P
Pascal interface 4-6
Process image 6-3

R
Remote bus error 2-18, 3-18

S
SRAM 3-14
SysFail register 2-14

T
TSR program 2-3, 3-3

U
Unit 3-4

W
Watchdog 2-16, 3-16
Windows handle 4-9
Windows message 4-3

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

A-6

InterBus-S
Appendix

5086A

http://www.onlinecomponents.com/

