
onlin
ec

om
ponen

ts
.co

m
Designation:

Order No.:

Driver Reference Manual
for G4-Based Controller Boards
Using PC Bus and Ethernet

IBS PC SC SWD UM E

27 45 17 2

User Manual

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

Designation:

Revision:

Order No.:

This manual is valid for:

© Phoenix Contact 01/2005

533305

IBS PC SC SWD UM E

05

27 45 17 2

Driver Reference Manual for G4-Based Controller Boards
Using PC Bus and Ethernet

INTERBUS PC controller boards

and

INTERBUS Ethernet gateways

see pages 1-5

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

533305

Please Observe the Following Notes

In order to guarantee the safe use of your device, we recommend that you
read this manual carefully. The following notes give you information on how
to use this manual.

Qualifications of the User Group

The products described in this manual should be installed/operated/
maintained only by qualified application programmers and software
engineers, who are familiar with automation safety concepts and applicable
national standards. Phoenix Contact assumes no liability for damage to
any products resulting from disregard of information contained in this
manual.

Explanation of Symbols Used

The attention symbol refers to an operating procedure which, if not
carefully followed, could result in damage to equipment or personal injury.

The note symbol informs you of conditions that must strictly be observed to
achieve error-free operation. It also gives you tips and advice on hardware
and software optimization to save you extra work.

The text symbol refers you to detailed sources of information (manuals,
data sheets, literature, etc.) on the subject matter, product, etc. This text
also provides helpful information for the orientation in the manual.

We Are Interested in Your Opinion

We are constantly striving to improve the quality of our documents.

Should you have any suggestions or recommendations for improving the
contents and layout of our documents, please send us your comments.
Please use the fax form at the end of the manual for this purpose.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

533305

General Terms and Conditions of Use for Technical Documentation

Phoenix Contact GmbH & Co. KG reserves the right to alter, correct, and/
or improve the technical documentation and the products described in the
technical documentation at its own discretion and without giving any notice.

The receipt of technical documentation (in particular data sheets,
installation instructions, manuals, etc.) does not constitute any further duty
on the part of Phoenix Contact GmbH & Co. KG to furnish information on
alterations to products and/or technical documentation.
Any other agreement shall only apply if expressly confirmed in writing by
Phoenix Contact GmbH & Co. KG.

Although Phoenix Contact GmbH & Co. KG makes every effort to ensure
that the information content is accurate, up-to-date and state-of-the-art,
technical inaccuracies and/or printing errors in the information cannot be
ruled out. Phoenix Contact GmbH & Co. KG does not offer any guarantees
as to the reliability, accuracy or completeness of the information appearing
on the Website. Phoenix Contact GmbH & Co. KG accepts no liability or
responsibility for errors or omissions in the content of the technical
documentation (in particular data sheets, installation instructions, manuals,
etc.).

As far as is permissible by applicable jurisdiction, no guarantee or claim for
liability for defects whatsoever shall be granted in conjunction with the
information available in the technical documentation, whether expressly
mentioned or implied. This information does not include any guarantees on
quality, does not describe any fair marketable quality and does not make
any claims as to quality guarantees or guarantees on the suitability for a
special purpose. Phoenix Contact GmbH & Co. KG reserves the right to
alter, correct, and/or improve the information and the products described in
the information at its own discretion and without giving any notice.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

533305

Statement of Legal Authority

This manual, including all illustrations contained herein, is copyright
protected. Use of this manual by any third party in departure from the
copyright provision is forbidden. Reproduction, translation and electronic or
photographic archiving or alteration requires the express written consent of
Phoenix Contact. Violators are liable for damages.

Phoenix Contact reserves the right to make any technical changes that
serve the purpose of technical progress.

Windows 3.x, Windows 95, Windows 98, Windows NT, Windows 2000 and
MS-DOS are trademarks of Microsoft Corporation.

Genesis for Windows is a trademark of ICONICS Inc.

All other product names used are trademarks of the respective
organizations.

Internet

You will find current information on products from Phoenix Contact on the
Internet at www.phoenixcontact.com.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

533305 1

Table of Contents

1 Overview ...1-3

1.1 General ...1-3

1.2 Other Software Interfaces ...1-3

1.2.1 High-Level Language Interface (HLI)1-4

1.2.2 INTERBUS OPC Server ...1-5

1.3 Other Operating Systems..1-5

1.4 Supported Controller Boards...1-6

1.5 Additional Documentation ...1-7

2 Basics of the Driver Functions ..2-3

2.1 Multi-Port Memory...2-3

2.2 Monitoring the Hardware...2-5

2.2.1 Watchdog for Host Monitoring2-5

2.2.2 The SysFail Signal ..2-6

2.3 Basic Information on Programming...2-7

2.4 Initialization Phase ..2-9

2.4.1 General Node Addressing ...2-11

2.4.2 Node Addressing for PC Controller Boards2-11

2.4.3 Node Addressing for TCP/IP Communication2-14

2.5 INTERBUS Startup ...2-16

2.6 Exchanging I/O and Diagnostic Data ..2-18

2.6.1 Reading Back Outputs ..2-20

2.6.2 Bit Access ...2-20

2.6.3 The XDTA Data Area ..2-23

2.6.4 Direct Inputs/Outputs ..2-24

2.6.5 INTERBUS Diagnostic Register2-25

2.7 Stopping Bus Operation and Aborting a Connection2-31

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

2 533305

3 Driver Basics ...3-3

3.1 Driver Overview...3-3

3.1.1 Headers ..3-4

3.1.2 Supported Programming Languages3-5

3.2 Drivers for the Operating System..3-6

3.2.1 Drivers for MS-DOS ..3-6

3.2.2 Drivers for Windows 95/98 ..3-7

3.2.3 Drivers for Windows NT 4.0 ..3-9

3.2.4 Drivers for Windows 2000/XP 3-12

3.3 Driver-Specific Information..3-15

3.3.1 Driver Functions of the ISA-MPM Driver3-15

3.3.2 Driver Functions of the PCI-MPM Driver3-16

3.3.3 Driver Functions of the PCCARD-DPM Driver3-17

3.3.4 Driver Functions of the ISA-DPM Driver3-19

3.3.5 Driver Functions of the PCI-DPM Driver3-20

3.3.6 Driver Functions of the TCPIP-ETH Driver3-20

4 Driver Functions ..4-3

4.1 Opening and Closing Communication Channels4-3

4.1.1 DDI_DevOpenNode ..4-3

4.1.2 DDI_DevCloseNode ..4-6

4.2 Reading and Writing I/O Data ...4-7

4.2.1 DDI_DTI_ReadData ..4-7

4.2.2 DDI_DTI_WriteData ..4-10

4.2.3 DDI_DTI_ReadWriteData ...4-13

4.3 Writing Commands and Reading Messages.............................4-14

4.3.1 DDI_MXI_SndMessage ..4-14

4.3.2 DDI_MXI_RcvMessage ...4-17

4.4 Diagnostic Functions...4-20

4.4.1 GetIBSDiagnostic ..4-20

4.4.2 GetIBSDiagnosticEx ...4-22

4.4.3 GetSlaveDiagnostic ..4-24

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

Table of Contents

533305 3

4.5 Watchdog Functions ...4-25

4.5.1 EnableWatchDog() ..4-25

4.5.2 TriggerWatchDog() ...4-25

4.5.3 GetWatchDogState() ...4-26

4.5.4 ClearWatchDog() ..4-27

4.5.5 SetWatchDogTimeout() ..4-27

4.5.6 GetWatchDogTimeout() ..4-29

4.5.7 EnableWatchDogEx() ...4-29

4.6 Driver Settings and Management..4-31

4.6.1 DDIGetInfo() ..4-31

4.6.2 ReadResetCounter() ...4-32

4.7 Controller Board Monitoring ..4-33

4.7.1 GetSysFailRegister() ...4-33

4.7.2 ClearSysFailSignal() ...4-34

4.7.3 SetSysFailSignal() ..4-34

4.8 Ethernet Communication Monitoring...4-35

4.8.1 ETH_SetNetFailMode() ...4-37

4.8.2 ETH_GetNetFailMode() ..4-38

4.8.3 ETH_SetHostChecking() ...4-39

4.8.4 ETH_ClearHostChecking() ...4-41

4.8.5 ETH_SetDTITimeoutCtrl() ...4-43

4.8.6 ETH_ClearDTITimeoutCtrl()4-44

4.8.7 ETH_SetNetFail() ..4-45

4.8.8 ETH_GetNetFailStatus() ...4-46

4.8.9 ETH_ClrNetFailStatus() ..4-48

4.9 Other Ethernet Settings...4-50

4.9.1 ETH_InitiateManagement() ...4-50

4.9.2 ETH_AbortManagement() ...4-50

4.9.3 ETH_HardwareReset() ...4-51

4.9.4 ETH_EnableHardwareReset()4-51

4.9.5 ETH_DisableHardwareReset()4-52

4.9.6 ETH_GetHardwareResetMode()4-52

4.9.7 ETH_SetTCPMode() ...4-53

4.9.8 ETH_GetTCPMode() ..4-56

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

4 533305

4.9.9 ETH_SetClientOptions() ...4-56

4.9.10 ETH_GetClientOptions() ...4-57

5 Programming Support Macros ..5-3

5.1 Macros for Process Data Conversion ...5-3

5.1.1 Macros for Converting the Data Block of a Command ..5-7

5.1.2 Macros for Converting the Data Block of a Message5-9

5.1.3 Macros for Converting Input Data5-12

5.1.4 Macros for Converting Output Data5-14

6 Diagnostics for Driver Software ..6-3

6.1 Overview of DDI Messages...6-3

6.2 Positive DDI Message...6-7

6.3 DDI Error Messages..6-8

6.3.1 Error Messages When Initializing the Controller Board 6-8

6.3.2 General Error Messages ...6-9

6.3.3 Error Messages When Opening a Data Channel6-12

6.3.4 Error Messages Relating to the Transfer
of Messages/Commands ..6-13

6.3.5 Error Messages Relating to Process Data Transfer ...6-15

6.3.6 Error Messages Under DOS6-18

6.3.7 Error Messages Under Microsoft Windows6-18

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

Section 1

533305 1-1

This section informs you about

– the content of this user manual.

Overview...1-3

1.1 General ...1-3

1.2 Other Software Interfaces ...1-3

1.2.1 High-Level Language Interface (HLI).............................1-4

1.2.2 INTERBUS OPC Server ..1-5

1.3 Other Operating Systems..1-5

1.4 Supported Controller Boards...1-6

1.5 Additional Documentation ...1-7

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

1-2 533305

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

Overview

533305 1-3

1 Overview

1.1 General

This user manual is a reference manual for drivers of INTERBUS controller
boards for PC bus (PCI, ISA, etc.) and Ethernet (TCP/IP protocol). It
contains descriptions for all function calls and the corresponding error
messages.

All figures, tables, and abbreviations are listed in the Appendices. The
index in the Appendix makes it easier to search for specific key terms and
descriptions.

1.2 Other Software Interfaces

Figure 1-1 Structure

� �

� � � �
� � � � 	
 � � 	 � � � � � � � � �

� � � 	
 � � � � 	 � � � � � � � � � � � �

� � � � � � � �
 � � � � � � � � � ! � � � �

� � � � � � � �

� � � � � � � " � �

� � � 	
 � � � � � � � �
� � � � � � � � �
� �
 � � 	 � � � � � �

� � � � � � � � � �
 � � � � 	 � �
� � � 	
 � � � �
� � � � � � � � � � � � � � � �

� �
 � � � �
 � � � � 	 � �
� � � 	
 � � �
� � � � � � � � � � �

� � � 	
 � � � � 	 � � � � � � � � # �
 �

� $ � �

� � � � 	
 � � 	 � � � � � � � � �

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

1-4 533305

The driver software consists of two parts:

1. The Device Driver Interface (DDI), a compiler-specific interface to the
application program.

2. The operating system-specific Device Driver (DD).
The device driver establishes the connection between the host (PC)
and the INTERBUS master or slave via the MPM.

A device driver must be installed for each controller board. The Device
Driver Interface manages and controls all device drivers.

The V.24 (RS-232) driver is not included in this user manual.

The DDI is used by other software interfaces for programming. The
following interfaces are available:

1.2.1 High-Level Language Interface (HLI)

Advantages of the High-Level Language Interface:

– Direct configuration with CMD

– Hardware-independent access to INTERBUS for Windows 32-bit
operating systems

– Supports C/C++, Visual Basic, and Delphi programming languages

– Faster and easier data exchange using variable names

Table 1-1 Described drivers

Driver Designation Description

PCI-DPM PCI driver for controller boards with dual-port
memory

PCI-MPM PCI driver for controller boards with multi-port
memory

ISA-DPM ISA driver for controller boards with dual-port
memory

ISA-MPM ISA driver for controller boards with multi-port
memory

PCCARD-DPM PC card (PCMCIA) driver

TCPIP-ETH Ethernet driver based on TCP/IP protocol

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

Overview

533305 1-5

– Integrated bus and error management

– Identical access to all controller boards (IBS... SC)

– Automatic PCP communication establishment and monitoring

For additional information, please refer to the HLI data sheet
(Designation: DB GB IBS PC SC HLI „High-Level Language Interface
Version 2.0“, Order No. 97 88 76 3).

1.2.2 INTERBUS OPC Server

An OPC server (Designation: IBS OPC SERVER, Order No. 27 29 12 7)
can also be used as a High-Level Language Interface or as an interface to
any visualization system. The OPC server can be used to access
INTERBUS data via a standardized software interface.

For additional information, please refer to the OPC server data sheet
(Designation: DB GB IBS OPC SERVER, Order No. 97 88 06 4).

1.3 Other Operating Systems

This user manual includes descriptions for DOS and Windows. For other
operating systems, such as VxWorks, a driver for individual porting is
available in the source code.

Table 1-2 Device Driver Development Kit

Driver Name Product Order No.

ISA-MPM IBS PC DEV KIT G4 28 36 17 5

PCI-MPM IBS PCI DDK 27 30 27 1

TCPIP-ETH IBS ETH DDI SWD 27 51 13 7

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

1-6 533305

1.4 Supported Controller Boards

This user manual is currently valid for:

Table 1-3 Supported hardware

Hardware Order No. Driver Name

IBS PC 104 SC-T 27 21 70 1 ISA-MPM

IBS PC ISA SC/I-T 27 19 23 4 ISA-MPM

IBS ISA SC/RI/RT/I-T 27 29 18 5 ISA-MPM

IBS ISA SC/RI/RT-LK 27 29 19 8 ISA-MPM

IBS ISA SC/486DX/I-T 27 23 94 5 ISA-MPM

IBS ISA FC/486DX/I-T 27 22 08 5 ISA-MPM

IBS ISA RI/I-T 27 23 07 1 ISA-DPM

IBS PCCARD SC/I-T 27 24 87 6 PCCARD-DPM

IBS PCI SC/I-T 27 25 26 0 PCI-MPM

IBS PCI RI /I-T 27 30 12 9 PCI-DPM

IBS PCI RI-LK 27 04 04 5 PCI-DPM

IBS PCI SC/RI-LK 27 30 18 7 PCI-MPM

IBS PCI SC/RI/I-T 27 30 08 0 PCI-MPM

FL IL 24 BK 28 31 05 7 ETH

FL IL 24 BK-B 28 33 00 0 ETH

FL IBS SC/I-T 28 31 06 0 ETH

FC 200 PCI 27 30 66 6 PCI-MPM

FC 350 PCI ETH 27 30 84 4 ETH

RFC 430 ETH-IB 27 30 19 0 ETH

RFC 450 ETH-IB 27 30 20 0 ETH

ILC 350 ETH 27 37 20 3 ETH

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

Overview

533305 1-7

1.5 Additional Documentation

Firmware Commands for Communicating With the Controller Board

The application program controls the controller board via firmware
commands (e.g., start bus system, read bus configuration). The controller
board operates the bus automatically after initialization and the start of the
data transmission and returns appropriate messages.

The IBS SYS FW G4 UM E firmware reference manual
(Order No. 27 45 18 5) describes commands, messages, and INTERBUS-
specific programming such as:

– The physical addressing of INTERBUS devices

– The logical addressing of INTERBUS devices

– Combining INTERBUS devices into groups

– Determining the cycle time

Communication via INTERBUS (PCP)

The parameter data channel with the Peripherals Communication Protocol
(PCP) is available for the transmission of parameterization data to
intelligent INTERBUS devices or for communicating with an INTERBUS
device with a V24 (RS-232) interface. PCP is a software interface based on
the basic protocol of INTERBUS and enables the transmission of large
non-time-critical data records without affecting the process data
transmission. PCP, like firmware commands, uses the mailbox interface of
the DDI.

The IBS SYS PCP G4 UM E user manual (Order No. 27 45 16 9) describes
the basics and the use of the Peripherals Communication Protocol.

Support

In the event of problems, please phone our 24-hour hotline on
+49 - 52 35 - 34 18 88.

Alternatively, you can contact our Support Department by e-mail:
interbus-support@phoenixcontact.com

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

1-8 533305

Training Courses

Our controller board training courses enable you to take advantage of the
full capabilities of the connected INTERBUS system. For details and dates,
please see our seminar brochure, which your local Phoenix Contact
representative will be happy to mail to you. You can also find up-to-date
information on the Internet at www.phoenixcontact.com.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

Section 2

533305 2-1

This section informs you about

– Interfaces between hardware and software

Basics of the Driver Functions ..2-3

2.1 Multi-Port Memory...2-3

2.2 Monitoring the Hardware...2-5

2.2.1 Watchdog for Host Monitoring2-5

2.2.2 The SysFail Signal ...2-6

2.3 Basic Information on Programming...2-7

2.4 Initialization Phase ..2-9

2.4.1 General Node Addressing..2-11

2.4.2 Node Addressing for PC Controller Boards2-11

2.4.3 Node Addressing for TCP/IP Communication..............2-14

2.5 INTERBUS Startup ...2-16

2.6 Exchanging I/O and Diagnostic Data ..2-18

2.6.1 Reading Back Outputs ...2-20

2.6.2 Bit Access ..2-20

2.6.3 The XDTA Data Area...2-23

2.6.4 Direct Inputs/Outputs ...2-24

2.6.5 INTERBUS Diagnostic Register...................................2-25

2.7 Stopping Bus Operation and Aborting a Connection2-31

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

2-2 533305

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

Basics of the Driver Functions

533305 2-3

2 Basics of the Driver Functions

2.1 Multi-Port Memory

The central interface of controller boards is the Multi-Port Memory (MPM).
The MPM is a memory on the controller board, which can be accessed by
all devices (PC and INTERBUS controller board). The MPM is provided in
PC card format (IBS PCCARD SC/I-T) as a Dual-Port Memory (DPM) for
INTERBUS slave controller boards and for the controller board). For
greater clarity, the term MPM is generally used throughout this manual.
MPM and DPM only differ in the number of ports (nodes) and the size of
the memory. The devices store all the data that is to be shared in the MPM.
The MPM is the only connection between the devices.

Figure 2-1 The MPM as the central interface of a controller board

� � � ! � " � "

� � � � # � � �

� � % � � � � � �

� � �
� � % � � �

& � &

� � � � � � �

 � � � � � � � � � ! � � � �

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

2-4 533305

The MPM may only be accessed using device driver functions. Direct
reading from or writing to the MPM is not permitted.

Table 2-1 Memory type (MPM/DPM) of controller boards

Hardware Memory Type Driver Name

IBS PC ISA SC/I-T
IBS PC 104 SC-T
IBS ISA SC/RI/RT/I-T
IBS ISA SC/RI/RT-LK
IBS ISA SC/486DX/I-T

MPM ISA-MPM

IBS PCI SC/I-T
IBS PCI SC/RI-LK
IBS PCI SC/RI/I-T

MPM PCI-MPM

IBS ISA RI/I-T DPM ISA-DPM

IBS PCI RI /I-T
IBS PCI RI-LK

DPM PCI-DPM

IBS PCCARD SC/I-T DPM PCCARD-DPM

FL IBS SC/I-T
IBS 24 ETH DSC/I-T
RFC 430 IB
RFC 450 IB

DPM TCP/IP-ETH

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

Basics of the Driver Functions

533305 2-5

2.2 Monitoring the Hardware

2.2.1 Watchdog for Host Monitoring

The motherboard of the controller board contains a watchdog circuit that
can be used to monitor your PC program (PC system crash, program
freeze). When the watchdog is triggered, the INTERBUS system is set to a
defined state (reset of all outputs).

The watchdog does not affect the host; a host reset, for example, is not
triggered.

If you wish to use the watchdog you must activate it from the application
program. It is not activated by default.

The host watchdog is activated by calling the EnableWatchDog () or
SetWatchDogTimeout () function. Once the watchdog has been activated,
it cannot be deactivated via the software and can only be deactivated by
switching off the host or resetting the hardware.

The watchdog can be configured to several timeout intervals. Within the set
time, the watchdog must be triggered in the application program by calling
the TriggerWatchDog () function. Otherwise, the watchdog causes an
INTERBUS system reset.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

2-6 533305

2.2.2 The SysFail Signal

The SysFail signal can be evaluated for increased safety requirements. It
is also available in the diagnostic status register. Each MPM device has its
own reserved area within the MPM. One of these status signals is the
SysFail (system failure) signal. It is set in the event of a system error at the
corresponding device, e.g., if its watchdog is triggered. With the
GetSysFailRegister function you can read the SysFail signal of any MPM
device.

Figure 2-2 The SysFail signal in the MPM

� " � � # � � �

� � % � � � � � � � � � � � � �

 � � � � � � � � � ! � � � �

$ �
 	 � � � �

& � &

% & � � � � � � # � � �
& � % � � �

$ �
 	 � � � �

% & � � � � � ' ()
� � �

$ �
 	 � � � �
% & � � � � �) '

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

Basics of the Driver Functions

533305 2-7

2.3 Basic Information on Programming

The driver software accesses the multi-port memory (MPM) or dual-port
memory (DPM) of the controller board via a memory window, which is in
the memory area of the PC. For this, the following functions are available:

– "Opening and Closing Communication Channels" on page 4-3

– "Reading and Writing I/O Data" on page 4-7

– "Writing Commands and Reading Messages" on page 4-14

– "Diagnostic Functions" on page 4-20

– "Watchdog Functions" on page 4-25

– "Driver Settings and Management" on page 4-31

– "Controller Board Monitoring" on page 4-33

– "Ethernet Communication Monitoring" on page 4-35

– "Other Ethernet Settings" on page 4-50

Every INTERBUS application program should be created according to the
following structure (Figure 2-3):

1. The initialization phase of the program and the INTERBUS system.
In the initialization phase the required include files are integrated in
the program. Global variables are provided, for example, as the receive
buffer for messages from the INTERBUS master and as the buffer for
input and output data in the process data area. In this phase the
communication connections to the INTERBUS master are also
initialized and channels for the mailbox and the data interface are
opened (Section 2.4).

2. The second part of INTERBUS startup includes the system
configuration check, the logical assignment of input and output
addresses, the definition of groups, the behavior of groups in the event
of an error, and INTERBUS data transmission (Section 2.5).

3. The third part of the application program is the cyclic program part. In
this cyclic program part, the system regularly checks for an INTERBUS
message. Diagnostic data is cyclically updated and made available.
The process image of the inputs is cyclically read, the input data is
linked, and the process image of the outputs is then cyclically written to
the bus. This part is processed until the program is exited (Section 2.6).

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

2-8 533305

4. In the fourth part, for example, bus operation is stopped and the
communication channels are closed again (Section 2.7).

Figure 2-3 General structure of an INTERBUS application program

This program structure is used in all example programs from
Phoenix Contact. These example programs are supplied with the controller
board driver software and can be downloaded from the Internet at
www.phoenixcontact.com.

� � � � �

� � �
 � � � � * �
 � � � � � �
� + + � � 	 �
 � � � � + � � � � � �
� � � � � , - . / 0 %

� , - . / 0 %

 � �
 � +

� , - . / 0 %
	 & 	 � � 	 �

� + + � � 	 �
 � � � � + � � � � � �

- � � 1

%
 � +
� , - . / 0 %

� �

2

,

� � � � / � � 3

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

Basics of the Driver Functions

533305 2-9

2.4 Initialization Phase

Global variables are provided in the initialization phase, for example, as
the receive buffer for messages from the INTERBUS master and as the
buffer for input and output data in the process data area. In this phase the
communication connections to the INTERBUS master are also initialized
and channels for the mailbox and data interface are opened.

When a channel is opened, a node handle is returned, which specifies the
channel in a similar way to the handle on a file access and which must be
specified when reading and writing data.

In this example, two node handles, one for the mailbox channel and one for
the channel, are requested for connection establishment via the driver.
These node handles must be specified every time the drivers are
accessed.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

2-10 533305

/***
* This function opens mailbox and channel for *
* board number 1, node number 1(INTERBUS) */

BOOL InitIBSBoard(USIGN16 BoardNo)
{

USIGN16 ret = 0;

/* The OpenString to the data interface for INTERBUS
/* plug-in board drivers is transferred to the driver
/* and the node handle received is stored in a global
/* variable */

ret = DDI_DevOpenNode("IBB1N1_D",DDI_RW, &NodeHdDTI);
if (ret != ERR_OK)
{

cprintf("Error 0x%04X opening DTI: Board No.:
%u \n",ret, BoardNo);

return (FALSE);
}

/* The OpenString to the mailbox interface for INTERBUS
/* plug-in board drivers is transferred to the driver /
*
/* and the node handle received is stored in a global
/* variable */

ret = DDI_DevOpenNode("IBB1N1_M",DDI_RW,&NodeHdMXI);
if (ret != ERR_OK)
{

cprintf("Error 0x%04X opening MXI: Board No.:
%u \n",ret, BoardNo);

return (FALSE);
}
return (TRUE);
}

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

Basics of the Driver Functions

533305 2-11

2.4.1 General Node Addressing

Node An MPM device with an associated device driver is referred to as a node.
The following nodes are used:

Node 0: Host PC with associated device driver

Node 1: INTERBUS controller board/slave controller
board

Node 2: Coprocessor board of the INTERBUS controller
board

Node 3: Reserved

Node handle A node handle identifies a channel open to a node.

Device name Name of the device to which a channel is to be opened. The name specifies
the controller board (board number 1 to 8) or the IP address for
communication with the controller board.

2.4.2 Node Addressing for PC Controller Boards

A string is provided to make operation easier when opening a mailbox/
channel for the device name parameter, which is used to assign the board
number and MPM device.

The device name parameter has the following structure: IBBxNy_z.

x Board number (1 to 8)

y Node (0, 1 or 2)

z (M) mailbox or (D) data interface

The device name parameter for accessing the master of controller board 3
via the data interface is "IBB3N1_D".

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

2-12 533305

The following tables show examples for different situations:

If a PCI master controller board and a PCI slave controller board are both
installed in a PC at the same time, the PCI slave controller board must be
addressed with the prefix "IBS...".

Table 2-2 Opening a channel from the host to the IBS master/slave

Controller Board
(Board Number)

MPM Device Interface String for the Device
Name Parameter
(devName)

Board 1 IBS master/slave Mailbox interface IBB1N1_M

Board 1 IBS master/slave Data interface IBB1N1_D

Board 2 IBS master/slave Mailbox interface IBB2N1_M

Board 2 IBS master/slave Data interface IBB2N1_D

....

Board 8 IBS master/slave Mailbox interface IBB8N1_M

Board 8 IBS master/slave Data interface IBB8N1_D

Table 2-3 Opening a channel from the host to the IBS slave (only when simultaneously using
PCI master controller boards and PCI slave controller boards)

Controller Board
(Board Number)

MPM Device Interface String for the Device
Name Parameter
(devName)

Board 1 IBS slave (only PCI) Mailbox interface IBS1N1_M

Board 1 IBS slave (only PCI) Data interface IBS1N1_D

Board 2 IBS slave (only PCI) Mailbox interface IBS2N1_M

Board 2 IBS slave (only PCI) Data interface IBS2N1_D

....

Board 4 IBS slave (only PCI) Mailbox interface IBS8N1_M

Board 4 IBS slave (only PCI) Data interface IBS8N1_D

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

Basics of the Driver Functions

533305 2-13

Table 2-4 Opening a channel from the host to the coprocessor board

Controller Board
(Board Number)

MPM Device Interface String for the Device
Name Parameter
(devName)

Board 1 Coprocessor board Mailbox interface IBB1N2_M

Board 1 Coprocessor board Data interface IBB1N2_D

Board 2 Coprocessor board Mailbox interface IBB2N2_M

Board 2 Coprocessor board Data interface IBB2N2_D

....

Board 8 Coprocessor board Mailbox interface IBB8N2_M

Board 8 Coprocessor board Data interface IBB8N2_D

Table 2-5 Opening a channel from the coprocessor board to the host PC

Controller Board
(Board Number)

MPM Device Interface String for the Device
Name Parameter
(devName)

Board 1 Host Mailbox interface IBB1N0_M

Data interface IBB1N0_D

Table 2-6 Opening a channel from the coprocessor board to the IBS master

Controller Board
(Board Number)

MPM Device Interface String for the Device
Name Parameter
(devName)

Board 1 IBS master Mailbox interface IBB1N1_M

Data interface IBB1N1_D

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

2-14 533305

2.4.3 Node Addressing for TCP/IP Communication

There are two forms of addressing for establishing a connection via a
TCP/IP connection:

Addressing via Registry

Here, a reference to a registry entry is transmitted to the driver. In this
example, it is the actual IP address.

The device name parameter has the following structure: IBETHxxNy_z.

xx Registry entry/controller number (0 to 99)

y Node (0, 1 or 2)

z (M) mailbox or (D) data interface

In DDI Version 1.20 or later, all services can be sent and received with an
open channel in order to reduce TCP/IP handles. No distinction is made
between the mailbox and data interface.

The IP address must be entered in the registry. This entry can be easily
modified using the "Comway.exe" tool.

Table 2-7 Opening an Ethernet communication channel via registry addressing

Controller Board
(Controller Number)

ETH Device Interface String for the Device
Name Parameter
(devName)

Controller 1 Master Mailbox interface IBETH01N1_M

Controller 1 Data interface IBETH01N1_D

....

Controller 99 Master Mailbox interface IBETH99N1_M

Controller 99 Data interface IBETH99N1_D

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

Basics of the Driver Functions

533305 2-15

The following registry entry is created as an example:
[HKEY_LOCAL_MACHINE\SOFTWARE\Phoenix
Contact\IBSETH\Parameters\1]
ConnectTimeout=08,00,00,00
DeviceNames=IBETH01N1_M IBETH01N0_M@01 IBETH01N1_D
IBETH01N0_D IBETH01N1_M@00 IBETH01N1_M@05
InUse=YES
ReceiveTimeout=08,00,00,00
IPAddress=192.168.36.205

Addressing via the IP Address

A string is provided to simplify operation when opening a mailbox/channel
for the device name parameter, which contains the IP address. Here, an IP
address and other communication parameters are transmitted to the driver.

The device name parameter has the following structure:
IBETHIP[IP address|connect timeout, receive timeout]Ny_z

IP address IP address without leading zeros (162.16.50.5)

Connect timeout Connect timeout in sec (optional)

Receive timeout Receive timeout in sec (optional)

y Node (0, 1 or 2)

z (M) mailbox or (D) data interface

Table 2-8 Opening a communication channel via the direct IP address

IP Address Interface String for the Device Name Parameter (devName)

162.16.50.1 Mailbox interface IBETHIP[162.16.50.1]N1_M

....

162.16.50.254 Data interface IBETHIP[162.16.50.254|30,30]N1_M

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

2-16 533305

2.5 INTERBUS Startup

The second part of INTERBUS startup includes the system configuration
check, the logical assignment of input and output addresses, the definition
of groups, the behavior of groups in the event of an error, and the actual
startup of INTERBUS.

This function is exchanged via the mailbox system. The mailbox interface
(MXI) is a protocol-oriented interface for transmitting messages between
MPM devices.
The DDI_ MXI_SendMessage and DDI_MXI_ReceiveMessage functions
use the mailbox interface. The description can be found in the firmware
user manual.

A detailed description of the services can be found in the "Firmware
Services and Error Messages" user manual
(Designation: IBS SYS FW G4 UM E, Order No. 27 45 18 5).

/***
* A transferred message buffer with all its contents*
* is packed in DDI-specific transfer *
* structures and transferred to the driver via macros*
* Handle: Node handle of the opened mailbox channel*
* MSG: Pointer to an array with the complete message*

IBDDIRET SendRequestResponse (USIGN16 Handle,
USIGN16 *Msg)

{
T_DDI_MXI_ACCESS req_res;
USIGN8 snd_buffer[1024];
INT16 ret;
USIGN16 i;

/* Command and parameter count are copied to the
local output buffer and simultaneously converted into
MOTOROLA format via macros*/

IB_SetCmdCode(snd_buffer,Msg[0]);
IB_SetParaCnt(snd_buffer,Msg[1]);

/*The n parameters of this message are attached*/
for (i=1;i<=Msg[1];i++)
{

IB_SetParaN(snd_buffer,i,Msg[i+1]);
}

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

Basics of the Driver Functions

533305 2-17

/* Transfer structure rq_res of type T_DDI_MXI_ACCESS
is
filled ...*/

req_res.msgType = 0;
req_res.DDIUserID = 0;
req_res.msgLength = (Msg[1]+2)*2;
req_res.msgBlk = snd_buffer;

/* ... and transferred to the driver*/
ret = DDI_MXI_SndMessage(Handle, &req_res);
return (ret);

}

/***
* A message is read from the driver and copied to *
* the transferred array *
* Handle: Node handle of the opened mailbox channel*
* MSG: Pointer to an array for the message received*
*/

IBDDIRET ReceiveConfirmationIndication(USIGN16 Handle,
USIGN16 *Msg)

{
T_DDI_MXI_ACCESS con_ind;
INT16 ret;
USIGN16 i;
USIGN8 rcv_buffer[1024];

/* Receive structure is pre-initialized */
con_ind.msgType = 0;
con_ind.DDIUserID = 0;
con_ind.msgLength = 1024;
con_ind.msgBlk = rcv_buffer;

/*A message is fetched from the driver ...*/
ret = DDI_MXI_RcvMessage(Handle, &con_ind);
if ((ret != ERR_NO_MSG) && (ret == ERR_OK))
{

/* ... Message code and parameter count are extracted
via macros */

Msg[0] = IB_GetMsgCode(rcv_buffer);
Msg[1] = IB_GetParaCnt(rcv_buffer);

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

2-18 533305

/* The parameters are copied to the transferred array
and
converted into INTEL format

for (i=1;i<=Msg[1];i++)
{

Msg[i+1] = IB_GetParaN(rcv_buffer,i);
 } //for

} //NO_MESSAGE
return(ret);

}

2.6 Exchanging I/O and Diagnostic Data

The third part of the application program is the cyclic program part. In this
program part, the system regularly checks for an INTERBUS message.
Diagnostic data is updated and made available. The process image of the
inputs is read, the input data is linked, and the process image of the outputs
is then written to the bus. This part is processed until the program is exited.

The data interface (DTI) is used to transfer I/O data between MPM devices.
Transmission takes place with no confirmation (acknowledgment).

Two functions (DDI_DTI_WriteData and DDI_DTI_ReadData) are provided
by the DDI driver for reading and writing data. In this way, the transfer
memory of the controller board can be accessed easily. In this example,
the data areas for inputs and outputs have a maximum length of 512 bytes.
Controller boards must be adapted specifically to the length of these data
areas.

Since the controller boards expect all data to be word-orientated in
Motorola format, the data is copied to the transfer buffer via completed
macros (see Section 5, "Programming Support Macros"). The following
program sequences explain how to access the controller boards.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

Basics of the Driver Functions

533305 2-19

/***
do
 {
 /* Evaluate diagnostics */
 DiagRegIBS();

 /* Any message from Controller? */
 if(ConfirmationIndication(NodeHdMXI_MA, buffer)

 == ERR_OK)
 {
 /* Process indication */
 ……….
 }
 }

 /* Read data from IBS */
 ReadData_M2I(NodeHdDTI_MA, 0, 1, InData);

 /* Application */
 ……..

 /* Check user keyboard actions */
 if (kbhit())
 {
 key = getch();
 switch (toupper(key))
 {
 case 'E' : /* Exit program */
 {

 end = TRUE;
 break;
 }

 case ……..

 } /* End of switch */
 }/* End of kbhit */

 /* Write output data to IBS */
 WriteData_I2M(NodeHdDTI_MA, 0, 1, OutData);

 } while (!end); /* End of cyclic program */
/***

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

2-20 533305

2.6.1 Reading Back Outputs

The written output data for the controller board can be read back in your
application program so that several program parts can access a data area
in order to assign information, for example. To do this, the
IB_TO_REMOTE_DTA flag is available in addition to the
DDI_DTI_ReadData function (see "DDI_DTI_ReadData" on page 4-7).

2.6.2 Bit Access

Bit access is available for accessing the data areas using
DDI_DTI_WriteData() and DDI_DTI_ReadData(), to gain access to bit
objects (4-bit, 2-bit).

The T_DDI_DTI_ACCESS structure functions are extended accordingly:

– The address element indicates the byte address to be copied

– The length element indicates the number of bits to be copied

– In the dataCons element, the bit position of the specified byte is
determined and the bit access itself.

In this way it is possible to either enter the corresponding constant or to
write the desired bit position in bits 0 - 2 of dataCons and to assign this
value using DDI_DATA_BIT.

The maximum length for bit access is limited to 16 bits.

Supported Drivers

All

Supported Drivers

PCI-MPM (Version 2.0 or later)

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

Basics of the Driver Functions

533305 2-21

Position of the Data in the IN Buffer (Element Data):

Length <= 8: Right-justified in the first byte of data

Figure 2-4 Bit access length <= 8

Length > 8: Right-justified from the second byte of data

Figure 2-5 Bit access length > 8

�4

� ' � � � (
� 	 � � � � % 	 � 	 � �)

$ � � � * � +

� � � � ' � � �

�4

� � � � , (-

� � � � ' � � �

� � � � , (-

� ' � � � .
� 	 � � � � % 	 � 	 � � /
$ � � � * � . (

� � � � , . -

�4

�4�4

�4

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

2-22 533305

Example Read/write four bits from address 25 starting from position 0:
address = 25
length = 4
dataCons = DDI_DATA_BIT_ADDR0 or dataCons =
(DDI_DATA_BIT | 0)

Read/write four bits from address 25 starting from position 4:
address = 25
length = 4
dataCons = DDI_DATA_BIT_ADDR4 or dataCons =
(DDI_DATA_BIT | 4)

Read/write one bit from address 12 starting from position 2:
address = 12
length = 1
dataCons = DDI_DATA_BIT_ADDR2 or dataCons =
(DDI_DATA_BIT | 2)

The constants are defined in the DDI_USR.H file.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

Basics of the Driver Functions

533305 2-23

2.6.3 The XDTA Data Area

When directly accessing data on Generation 4 Field Controllers, data can
be exchanged with the IEC 61131 runtime system via the multi-port
memory (MPM) of the controller board. The memory reserved for this
purpose in the MPM provides the same size in kbytes for both data
directions.

At present the following limitations exist:

– Only byte consistency can be ensured.

– For the length of the data area, please refer to the controller board
documentation.

The same Device Driver Interface (DDI) functions are used, which are also
available when accessing INTERBUS (DDI_DTI_WriteData,
DDI_DTI_ReadData). Please note that different nodes should be
addressed depending on the controller board and data direction:

Supported Drivers

PCI-MPM

ISA-MPM

TCP/IP-ETH

Table 2-9 Constants for XDTA access

Controller Board Read Write

Node Constant Node Constant

IBS ISA FC/I-T; FC 200 PCI 0 IB_NODE_0 1 IB_NODE_1

IBS ISA FC/486DX/I-T 2 IB_NODE_2 1 IB_NODE_1

RFC 430/450 IB 0 IB_NODE_0 1 IB_NODE_1

ILC 350 ETH 0 IB_NODE_0 1 IB_NODE_1

FC 350 PCI ETH 0 IB_NODE_0 1 IB_NODE_1

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

2-24 533305

Example /** process data write **/
dtiAcc.length = 1000; /* length in bytes */
dtiAcc.address = 0;
dtiAcc.dataCons =

(IB_EX_DTA | IB_NODE_1 | DTI_DATA_BYTE);
dtiAcc.data = (USIGN8 *) outBuffer;
ret = DDI_DTI_WriteData (dtiNodeHd1, &dtiAcc);

/** process data read **/
dtiAcc.dataCons =

(IB_EX_DTA | IB_NODE_0 | DTI_DATA_BYTE); //ETH
or dtiAcc.dataCons =

(IB_EX_DTA | IB_NODE_0 | DTI_DATA_BYTE); //FC
or dtiAcc.dataCons =

(IB_EX_DTA | IB_NODE_2 | DTI_DATA_BYTE); //COP
dtiAcc.data = (USIGN8 *) inBuffer;
ret = DDI_DTI_ReadData (dtiNodeHd1, &dtiAcc);
Sleep (10);

2.6.4 Direct Inputs/Outputs

This function only applies to PCI master controller boards.

Direct inputs/outputs are available in the hardware IO registers on
PCI-SC controller boards. They can be addressed from the control
program on the PC without parameterizing the INTERBUS master or
starting INTERBUS.

For the number of inputs/outputs, please refer to the corresponding
hardware data sheet.

This information is also exchanged via the DDI_DTI_ReadData or
DDI_DTI_WriteData DDI functions (see also Section 4.2).

Supported Drivers

PCI-MPM

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

Basics of the Driver Functions

533305 2-25

2.6.5 INTERBUS Diagnostic Register

The diagnostic data of the controller boards is read via the
GetIBSDiagnostic and GetIBSDiagnosticEx functions. The return
parameters display the following information:

INTERBUS Master Diagnostics

The controller board has three registers in the MPM for analyzing error
states using the application program:

– The diagnostic status register returns the operating and error states of
the controller board.

– The diagnostic parameter register provides additional information
about the type of error or the error location.

– The extended diagnostic parameter register provides channel-specific
information about the single-channel diagnostics.

Master diagnostic
status register

Each bit in the master diagnostic status register is assigned a controller
board state. The states in the error bits (USER, PF, BUS, CTRL) are
described in more detail using the diagnostic parameter register.
Whenever an error bit is set, the diagnostic parameter register is rewritten.
Otherwise, the diagnostic parameter register has the value 0000hex.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

2-26 533305

Table 2-10 The master diagnostic register

Bit Constant Meaning

0 USER_BIT Error in the application program.

1 PF_BIT
INTERBUS device has detected a peripheral
fault.

2 BUS_BIT Error in the remote bus or local bus.

3 CTRL_BIT Controller board has an internal error.

4 DETECT_BIT Error localization ("LOOK FOR FAIL").

5 RUN_BIT Data cycles are being exchanged.

6 ACTIVE_BIT Controller board is ACTIVE.

7 READY_BIT Controller board is READY, selftest is
complete.

8 BSA_BIT One or more bus segments are switched off.

9 BASP_BIT Controller board has activated the
"SysFail signal". Output data is reset.

10 RESULT_BIT The result of processing a service sent via
standard functions was negative.

11 SYNCHRON_
RESULT_BIT

INTERBUS master does not receive a
synchronization pulse. Only in synchronous
operation.

12 DATA_CYCLE_
RESULT_BIT

Data cycle error. Only in synchronous
operation.

13 WARN_BIT Bus warning time has elapsed (can be
parameterized).

14 QUALITY_BIT Bus quality has deteriorated (can be
parameterized).

15 SS_INFO_BIT Message in the standard signal interface.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

Basics of the Driver Functions

533305 2-27

Operating
indicators: READY,
ACTIVE, RUN

The READY, ACTIVE, and RUN operating indicators show the current
state of the INTERBUS system. The diagnostic parameter register is not
used.

After the selftest, the controller board is ready for operation. The READY
indicator bit is set (READY = 1).

If the controller board has been configured and the configuration frame
activated without errors, the system indicates it is active. The READY and
ACTIVE indicator bits are set (READY = 1, ACTIVE = 1).

In addition, the RUN indicator bit is set when data exchange is started
(READY = 1, ACTIVE = 1 and RUN = 1).

Error indicators:
DETECT, CTRL,
BUS, PF, USER

The DETECT error bit indicates that an error is preventing further operation
of the bus (DETECT = 1). The outputs fall back to the value ZERO. The
diagnostic routine searches for the error cause.

Once the error cause has been detected, the DETECT error bit is reset
(DETECT = 0) and the error is indicated in the USER, PF, BUS, and CTRL
bits. The diagnostic parameter register and the extended diagnostic
parameter register describe the cause of the error in more detail.

Table 2-11 Errors with bus disconnection

Error Bit/Location Contents of the Diagnostic
Parameter Register

CTRL = 1

Probably controller board/hardware error.

Error code

BUS = 1

Error on the remote bus or local bus
segment.

Error location

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

2-28 533305

Error location For located remote or local bus errors, the diagnostic parameter register
contains the error location:

5. Error on local bus: Device number of the device,
e.g., "1.3" for bus segment 1; device 3

6. Error on remote bus: Device number of the bus terminal module,
e.g., "1.0" for bus segment 1; device 0

Figure 2-6 Contents of the diagnostic parameter register (example)

The precise error location is only specified if there is no interface error
(bit 7 equals 0). If an interface error has occurred (bit 7 equals 1), for
example, the connected bus cannot be operated, only the faulty bus
segment is specified. Bit 0 indicates whether the error location is on the
outgoing remote bus interface (bit 0 equals 0) or on the branching remote
bus interface (bit 0 equals 1).

Table 2-12 Errors without bus disconnection

Error Bit/Location Contents of the Diagnostic
Parameter Register

PF = 1
Fault on the application side of an
INTERBUS device:
– Short circuit at the output
– Sensor/actuator supply not present

Error location

USER = 1
User error,
e.g., due to incorrect parameters

Error code

4 �

� � � � ' � � "

(0 + (

4 �

- � � � � � 	 � � �
� � � � � �
 � � � 1

4 �

(/ (.

4 �

 2 .

 2 .

% � � � � �
 � � � � � � �
� � � � � � � �
 � � 	 � 1

� 5 � 5 6 � � � 7 � 	 � � � � � � � � � � 5 �

) � �
 � � � � � � �
 � � � % � � � � �

� 5 � 5 6 � � � � � � � � 7 � � � � +

� � � � � � � � � 	 � � � � � # � � � � � �

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

Basics of the Driver Functions

533305 2-29

INTERBUS Extended Diagnostics

The extended diagnostic parameter register is used for single-channel
diagnostics. A distinction is made between a channel-specific and a group-
specific diagnostic message using bits 14 and 15 of the extended
diagnostic parameter register.

Extended diagnostic
parameter register

Channel-specific diagnostic message

Key:

C Channel number, encoded in bits 0 to 4

T = 0: Error removed
= 1: Error present

Group-specific diagnostic message

Key:

G1 to G4 Sensor supply to groups 1 to 4

G5 to G8 Sensor supply to groups 5 to 8

U1 to U4 Voltage supply U1 to U4

= 0: No error has occurred
= 1: Error has occurred

With the group-specific diagnostic message, each bit specifies the status
of a group.

Binary Code Meaning

01xx xxxx Channel-specific diagnostic message

10xx xxxx Group-specific diagnostic message

Bit 7 6 5 4 3 2 1 0

0 1 T C C C C C

Bit 7 6 5 4 3 2 1 0

1 0 0 0 G4 G3 G2 G1

1 0 0 1 G8 G7 G6 G5

1 0 1 0 U4 U3 U2 U1

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

2-30 533305

INTERBUS Slave Diagnostics

The slave diagnostic register indicates the status of the higher-level
INTERBUS system for slave controller boards and system couplers.

Slave diagnostic
status register

Figure 2-7 Slave diagnostic status register

Table 2-13 The slave diagnostic register

Bit Constant Meaning

0
SD_SLAVE_DATA

_TRANSFER
A data exchange takes place with the
slave controller board.

1 SD_FAIL
A peripheral fault has occurred on the
slave controller board.

2
SD_SLAVE_
INITIALIZED

The controller board initialization is
complete.

3 SD_POWER_ON The supply voltage is present.

4 SD_READY
The slave controller board is in the
"READY" state.

5 to 15 Reserved -

����"�!4

% � � 7 � � � �
 � �
 � � � � � �

� � � �

% � � 7 � � � � �
 � � � � * � �

) � 8 � � � � �

� � � � � � � 	 � � � % � 	
 � % � � � 3 % � � � � 	 % � � �

93� �� �� �� �� "� �

. � � � &

. � � � 7 � �

! � " ! # � � �

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

Basics of the Driver Functions

533305 2-31

2.7 Stopping Bus Operation and Aborting a
Connection

In the fourth part, for example, bus operation is stopped and the
communication channels are closed again.

// Stop INTERBUS
 RequestResponse(NodeHdMXI_MA, ALARM_STOP);
 Verify_CNF(0x1303);

// Close nodes
// Close DTI (data interface) nodes
 DDI_DevCloseNode(D_Handle);

// Close MXI (mailbox interface) nodes
 DDI_DevCloseNode(D_Handle);

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

2-32 533305

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

Section 3

533305 3-1

This section informs you about

– the operating systems supported by the drivers

Driver Basics...3-3

3.1 Driver Overview...3-3

3.1.1 Headers ...3-4

3.1.2 Supported Programming Languages.............................3-5

3.2 Drivers for the Operating System..3-6

3.2.1 Drivers for MS-DOS...3-6

3.2.2 Drivers for Windows 95/98...3-7

3.2.3 Drivers for Windows NT 4.0 ...3-9

3.2.4 Drivers for Windows 2000/XP3-12

3.3 Driver-Specific Information..3-15

3.3.1 Driver Functions of the ISA-MPM Driver......................3-15

3.3.2 Driver Functions of the PCI-MPM Driver......................3-16

3.3.3 Driver Functions of the PCCARD-DPM Driver.............3-17

3.3.4 Driver Functions of the ISA-DPM Driver3-19

3.3.5 Driver Functions of the PCI-DPM Driver3-20

3.3.6 Driver Functions of the TCPIP-ETH Driver3-20

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

3-2 533305

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

Driver Basics

533305 3-3

3 Driver Basics

3.1 Driver Overview

The following table shows which operating systems and hardware are
supported by drivers:

Table 3-1 Driver support of operating systems

Hardware
(Examples)

Driver MS-
DOS

Windows
95/98

Windows
NT 4.0

Windows
2000

Windows
XP

IBS PC ISA SC/I-T
IBS PC 104 SC-T
IBS ISA SC/RI/RT/I-T
IBS ISA SC/RI/RT-LK

ISA-
MPM -

IBS ISA SC/486DX/I-T
- - -

IBS PCCARD SC/I-T PCCARD
-DPM - -

IBS ISA RI/I-T ISA-DPM
- -

IBS PCI RI-LK
IBS PCI RI/I-T

PCI-DPM
- -

IBS PCI SC/I-T
IBS PCI SC/RI-LK
IBS PCI SC/RI/I-T

PCI-
MPM - -

FL IBS SC/I-T
FL IL 24 BK
IBS 24 ETH DSC/I-T

TCP/
IP-ETH -

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

3-4 533305

3.1.1 Headers

Various headers and libraries are provided to simplify programming.

IBS_DOS.H This file is linked to the following libraries:

#include <STDTYPES.H>

#include <DDI_USR.H>

#include <DDI_ERR.H>

#include <DDI_MACR.H>

#include <IBS_UTIL.H>

#include <IBS_CM.H>

For Windows, instead of "IBS_DOS.H", "IBS_WIN.H" contains additional
"DDI_WIN".H" libraries.

STDTYPES.H This file contains standard types for programs from Phoenix Contact.

DTI_USER.H All prototypes that belong to DTI driver functions are declared in this file.

DTI_ERR.H This file contains the definitions of error codes that return driver functions.
They are defined as symbolic constants here.

DTI_MACR.H This file contains the macros for converting Intel format to Motorola format
or for converting from Motorola format to standard Intel format used on the
PC.

IBS_ULIT.H This file contains prototypes and declarations for the diagnostics,
watchdog, and static RAM utility functions.

IBS_CM.H The file contains definitions of symbolic constants for INTERBUS
commands and INTERBUS messages.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

Driver Basics

533305 3-5

3.1.2 Supported Programming Languages

The drivers provide interfaces for various programming languages. The
supported programming languages depend on the operating system used:

Only the driver syntax for "C" is described in this user manual. A description
of the syntax and the interfaces for other supported programming
languages can be found in the directory of corresponding libraries or units.

Table 3-2 Supported programming languages

MS-
DOS

Windows 95/98 Windows NT 4.0 Windows 2000 Windows
XP

C, C++

Pascal
- -

Delphi
-

Visual Basic
-

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

3-6 533305

3.2 Drivers for the Operating System

3.2.1 Drivers for MS-DOS

The ISA-MPM and ISA-DPM drivers cannot be used at the same time
under MS-DOS.

Structure of the ISA-MPM/ISA-DPM Driver Software

The Device Driver Interface must be linked to your application program in
the form of a library. The device driver for DOS is implemented as a TSR
program. If it is to be started on every system startup, the "autoexec.bat"
file should be adapted accordingly.

A device driver, i.e., a TSR program, must be installed for every controller
board.

Libraries and Include Files

Libraries The DDI and help functions are combined in one library. The library is
available in the large model (Microsoft C, Version 7.0 or later and
Borland C++ Version 3.0 or later).

The driver libraries are compatible with Microsoft C. You can also use the
driver libraries with Borland C by converting them to a Borland-compatible
format. This can be done, for example, using the Borland IMPLIB and
IMPDEV tools.

Include files To simplify the handling of include files, the IBS_DOS.H include file must
be attached. All other required include files are called from this include file.
However, you can also call the required include files individually.

Table 3-3 Drivers for MS-DOS

Driver Library Controller Boards

ISA-MPM IBSISA.EXE LDDI_TSR.LIB 8

ISA-DPM IBDPMDRV.EXE DPMDRVTL.LIB 4

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

Driver Basics

533305 3-7

3.2.2 Drivers for Windows 95/98

Copy the IBDDIW95.DLL and VIBSSCD.VXD files, as normal under
Windows, to the directory that contains your application program or to the
Windows root directory.

Structure of the ISA-MPM Driver Software

The driver software for Microsoft Windows 95/98 is executed as a Dynamic
Link Library (DLL) using a virtual device driver (VxD). The DLL
(IBDDIW95.DLL) contains the Device Driver Interface. This DLL calls the
virtual device driver (VIBSSCD.VXD) during runtime.

The device drivers for eight controller boards are integrated in the
VIBSSCD.VXD file, which must be entered in the Windows registry
database and parameterized. These entries, which are usually
automatically executed by a driver setup, can also be modified using the
Windows 95/98 registry editor, if required.

The path in the registry is: HKEY_LOCAL_MACHINES\System\
CurrentControlSet\Services\VxD\IBSISASC. This contains a subkey
(Parameters) in which there is another subkey for every controller board
(1, 2, ... 8) (see Figure 3-1). All the parameters required to initialize the
controller board are entered in this other subkey.

Table 3-4 Libraries and include files

Memory Model Library Include File

Large LDDI_TSR.LIB IBS_DOS.H

Medium MDTI_TSR.LIB IBS_DOS.H

Table 3-5 Drivers for Windows 95/98

Driver Library Controller
Boards

ISA-MPM VIBSSCD.VXD IBDDIW95.DLL 8

TCP/IP-ETH IBSETHETH.DLL IBDDIW95.DLL 256

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

3-8 533305

Figure 3-1 Path for parameter setting in the
Windows 95/98 registry database

Structure of the ETH Driver Software

With TCP/IP-based access via Ethernet, the DDI directly accesses the
TCP/IP sockets of the operating system. The reference to the current
IP address is either stored in the registry or can be transmitted directly via
the DDI.

Library Under Windows 95/98

Only one Dynamic Link Library is required to operate the controller boards
under Microsoft Windows® IBDDIW95.DLL).

VxD

IBSISASC

Parameters

1

2
3

8
...

IOAddress=120
MPMAddress=D0000
Interrupt=15
UseBoard=YES

5333A013

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

Driver Basics

533305 3-9

3.2.3 Drivers for Windows NT 4.0

* The maximum number of controller boards may be lower depending on
the resources of the corresponding system. Should a resource conflict
occur when the driver is started, the number of controller boards for this
system is too high.

When using different drivers under Windows NT, different board numbers
must be specified for each controller board so that every controller board
can be clearly identified.

Administrator rights are required to install the kernel mode driver for
Windows NT.

Structure of the ISA-MPM/PCI-MPM/PCCARD-DPM/ISA-DPM Driver
Software

The driver software for Microsoft Windows NT is executed as a Dynamic
Link Library (DLL) using a kernel mode driver. The DLL (IBDDIWNT.DLL)
contains the Device Driver Interface. This DLL calls the kernel mode driver
during runtime.

Structure of the PCI-DPM Driver Software

The driver software for Microsoft Windows NT is executed as a Dynamic
Link Library (DLL) using a kernel mode driver. The DLL (IBDDIWNT.DLL)
contains the Device Driver Interface. This DLL calls an interface DLL
(IBPCIDPM.DLL). This interface DLL accesses a hardware communication
DLL (CIF32DLL.DLL), which corresponds to the kernel mode driver
(CIFDRV.SYS).

Table 3-6 Drivers for Windows NT 4.0

Driver Library Controller Boards

ISA-MPM IBSISASC.SYS IBDDIWNT.DLL 8*

PCI-MPM IBPCIMPM.SYS IBDDIWNT.DLL 8*

PCCARD-DPM IBPCCARD.SYS IBDDIWNT.DLL 1*

ISA-DPM IBDPMDRV.SYS IBDDIWNT.DLL 4*

TCP/IP-ETH IBSETHETH.DLL IBDDIWNT.DLL 256

PCI-DPM IBPCIDPM.DLL
CIF32DLL.DLL
CIFDRV.SYS

IBDDIWNT.DLL 4*

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

3-10 533305

The device drivers must be entered in the Windows NT registry database
and parameterized. These entries in the Windows NT registry database are
automatically executed by a driver setup and can be modified by executing
the driver setup again or using the Windows NT registry editor, if required.

The path in the registry is:
HKEY_LOCAL_MACHINES\System\CurrentControlSet\Services\IB... .
This contains a subkey (Parameters) in which there is another subkey for
every controller board (1, 2, ... 8). All the parameters required to initialize
the controller board are entered in this other subkey.

Structure of the ETH Driver Software

With TCP/IP-based access via Ethernet, the DDI directly accesses the
TCP/IP sockets of the operating system. The reference to the current IP
address is either stored in the registry or can be transmitted directly via the
DDI.

Event Display Functions

The drivers for INTERBUS controller boards are started automatically on
every system startup. The Windows NT Event Display provides information
about driver startup and messages concerning errors starting the driver.
The Event Display can be found in the Start menu under
Programs/Management (General)/Event Display.

The following diagram shows the event details: The driver for controller
board 1 has been loaded successfully.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

Driver Basics

533305 3-11

Figure 3-2 Example of the Event Display

Driver Settings and Diagnostics

If the IBDRVCFG DDI driver diagnostics control has been installed on your
system, the "INTERBUS Driver" driver diagnostic tool can be found in the
Control Panel.
This tool can be used to check and adjust the main registry settings. For
more detailed information, please refer to the relevant online help.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

3-12 533305

3.2.4 Drivers for Windows 2000/XP

* The maximum number of controller boards may be lower depending on
the resources of the corresponding system. Should a resource conflict
occur when the driver is started, the number of controller boards for this
system is too high.

When using different drivers under Windows 2000/XP, different board
numbers must be specified for each controller board so that every
controller board can be clearly identified.

Administrator rights are required to install the kernel mode driver for
Windows 2000/XP.

Structure of the ISA-MPM/PCI-MPM/PCCARD-DPM/ISA-DPM Driver
Software

The driver software for Microsoft Windows NT is executed as a Dynamic
Link Library (DLL) using a kernel mode driver. The DLL (IBDDIWNT.DLL)
contains the Device Driver Interface. This DLL calls the kernel mode driver
during runtime. The kernel mode driver is designed as a WDM driver.

Table 3-7 Drivers for Windows 2000/XP

Driver Library Controller Boards
(2000/XP)

ISA-MPM IBSISASC.SYS IBDDIWNT.DLL 8/-*

PCI-MPM IBPCIMPM.SYS IBDDIWNT.DLL 8/8*

ISA-DPM IBDPMDRV.SYS IBDDIWNT.DLL 4/-*

PC CARD IBPCCARD.SYS IBDDIWNT.DLL 1/1

TCP/IP-ETH IBSETH.DLL IBDDIWNT.DLL 16/16

PCI-DPM IBPCIDPM.DLL IBDDIWNT.DLL 4/4*

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

Driver Basics

533305 3-13

Structure of the PCI-DPM Driver Software

The driver software for Microsoft Windows NT is executed as a Dynamic
Link Library (DLL) using a kernel mode driver. The DLL (IBDDIWNT.DLL)
contains the Device Driver Interface. This DLL calls an interface DLL
(IBPCIDPM.DLL). This interface DLL accesses a hardware communication
DLL (CIF32.DLL), which corresponds to the kernel mode driver
(CIFDRV.SYS). The kernel mode driver is designed as a WDM driver.

As the PCI-MPM driver for Windows 2000/XP is installed with the aid of the
Found New Hardware Wizard, the include and header files must be copied
manually from the "[Drive:\install\driver\win2000\ddi]" directory, for
example, to an appropriate directory.

Structure of the ETH Driver Software

With TCP/IP-based access via Ethernet, the DDI directly accesses the
TCP/IP sockets of the operating system. The reference to the current IP
address is either stored in the registry or can be transmitted directly via the
DDI.

Event Display Functions

The drivers for INTERBUS controller boards are started automatically on
every system startup. Information about driver startup and messages
concerning errors starting the driver can be displayed in the Event Display.
For example, in Windows 2000/XP, the Event Display can be found in the
control panel under "Administrative Tools".

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

3-14 533305

Figure 3-3 Example of the Event Display

Driver Settings and Diagnostics

If the IBDRVCFG DDI driver diagnostics control has been installed on your
system, the "INTERBUS Driver" driver diagnostic tool can be found in the
control panel.
This tool can be used to check and adjust the main registry settings. For
more detailed information, please refer to the relevant online help.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

Driver Basics

533305 3-15

3.3 Driver-Specific Information

3.3.1 Driver Functions of the ISA-MPM Driver

The following table shows which driver functions are supported by the
controller boards. It also indicates the driver version from which the driver
function is available.

Table 3-8 Driver functions of the ISA-MPM driver

MS-DOS
as of

Version

Windows 95/98
as of Version

Windows NT
as of

Version

Windows
2000/XP

as of Version

P.

DDI_DevOpenNode 1.00 1.00 1.00 1.15 4-3

DDI_DevCloseNode 1.00 1.00 1.00 1.15 4-6

DDI_DTI_ReadData 1.00 1.00 1.00 1.15 4-7

DDI_DTI_WriteData 1.00 1.00 1.00 1.15 4-10

DDI_MXI_SndMessage 1.00 1.00 1.00 1.15 4-14

DDI_MXI_RcvMessage 1.00 1.00 1.00 1.15 4-17

GetIBSDiagnostic 1.00 1.00 1.00 1.15 4-20

GetIBSDiagnosticEx 1.04 - 1.06 1.15 4-22

EnableWatchDog 1.00 1.00 1.00 1.15 4-25

TriggerWatchDog 1.00 1.00 1.00 1.15 4-25

GetWatchDogState 1.00 1.00 1.00 1.15 4-26

ClearWatchDog 1.00 1.00 1.00 1.15 4-27

SetWatchDogTimeout 1.00 1.00 1.00 1.15 4-27

GetWatchDogTimeout 1.00 1.00 1.00 1.15 4-29

EnableWatchDogEx 1.05 - 1.04 1.15 4-29

DDIGetInfo 1.02 - 1.04 1.15 4-31

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

3-16 533305

3.3.2 Driver Functions of the PCI-MPM Driver

The following table shows which driver functions are supported by the
controller boards. It also indicates the driver version from which the driver
function is available.

GetSysFailRegister 1.00 1.00 1.00 1.15 4-33

ClearSysFailSignal 1.03 - - - 4-34

SetSysFailSignal 1.03 - - - 4-34

Table 3-8 Driver functions of the ISA-MPM driver

MS-DOS
as of

Version

Windows 95/98
as of Version

Windows NT
as of

Version

Windows
2000/XP

as of Version

P.

Table 3-9 Driver functions of the PCI-MPM driver

Windows NT
as of Version

Windows 2000/XP
as of Version

Page

DDI_DevOpenNode 2.0 2.0 4-3

DDI_DevCloseNode 2.0 2.0 4-6

DDI_DTI_ReadData 2.0 2.0 4-7

DDI_DTI_WriteData 2.0 2.0 4-10

DDI_MXI_SndMessage 2.0 2.0 4-14

DDI_MXI_RcvMessage 2.0 2.0 4-17

GetIBSDiagnostic 2.0 2.0 4-20

GetIBSDiagnosticEx 2.0 2.0 4-22

GetSlaveDiagnostic 2.0 2.0 4-24

EnableWatchDog 2.0 2.0 4-25

TriggerWatchDog 2.0 2.0 4-25

GetWatchDogState 2.0 2.0 4-26

ClearWatchDog 1.05 1.08 4-27

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

Driver Basics

533305 3-17

3.3.3 Driver Functions of the PCCARD-DPM Driver

The following table shows which driver functions are supported by the
controller board. It also indicates the driver version from which the driver
function is available.

SetWatchDogTimeout 1.05 1.08 4-27

GetWatchDogTimeout 1.05 1.08 4-29

EnableWatchDogEx 1.05 1.08 4-29

DDIGetInfo 1.05 1.08 4-31

GetSysFailRegister 1.05 1.08 4-33

ReadResetCounter 1.05 1.08 4-32

Table 3-9 Driver functions of the PCI-MPM driver

Windows NT
as of Version

Windows 2000/XP
as of Version

Page

Table 3-10 Driver functions of the PCCARD-DPM driver

Driver Functions Windows NT
as of Version

Windows 2000/XP
as of Version

Page

DDI_DevOpenNode 1.01 1.00 4-3

DDI_DevCloseNode 1.01 1.00 4-6

DDI_DTI_ReadData 1.01 1.00 4-7

DDI_DTI_WriteData 1.01 1.00 4-10

DDI_MXI_SndMessage 1.01 1.00 4-14

DDI_MXI_RcvMessage 1.01 1.00 4-17

GetIBSDiagnostic 1.01 1.00 4-20

GetIBSDiagnosticEx 1.01 1.00 4-22

EnableWatchDog 1.01 1.00 4-25

TriggerWatchDog 1.01 1.00 4-25

GetWatchDogState 1.01 1.00 4-26

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

3-18 533305

The signal interface bit is always set in the standard function register for
PCCARD-DPM driver mailbox access.

ClearWatchDog 1.01 1.00 4-27

SetWatchDogTimeout 1.01 1.00 4-27

GetWatchDogTimeout 1.01 1.00 4-29

EnableWatchDogEx 1.01 1.00 4-29

DDIGetInfo 1.01 1.00 4-31

GetSysFailRegister 1.01 1.00 4-33

Table 3-10 Driver functions of the PCCARD-DPM driver

Driver Functions Windows NT
as of Version

Windows 2000/XP
as of Version

Page

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

Driver Basics

533305 3-19

3.3.4 Driver Functions of the ISA-DPM Driver

The following table shows which driver functions are supported by the
ISA-DPM driver. It also indicates the driver version from which the driver
function is available.

Table 3-11 Driver functions of the ISA-DPM driver

MS-DOS
as of Version

Windows NT
as of Version

Windows 2000
as of Version

Page

DDI_DevOpenNode 1.04 1.04 1.04 4-3

DDI_DevCloseNode 1.04 1.04 1.04 4-6

DDI_DTI_ReadData 1.04 1.04 1.04 4-7

DDI_DTI_WriteData 1.04 1.04 1.04 4-10

DDI_MXI_SndMessage 1.04 1.04 1.04 4-14

DDI_MXI_RcvMessage 1.04 1.04 1.04 4-17

GetSlaveDiagnostic 1.04 1.04 1.04 4-24

EnableWatchDog 1.04 1.04 1.04 4-25

TriggerWatchDog 1.04 1.04 1.04 4-25

GetWatchDogState 1.04 1.04 1.04 4-26

ClearWatchDog 1.04 1.04 1.04 4-27

SetWatchDogTimeout 1.04 1.04 1.04 4-27

GetWatchDogTimeout 1.04 1.04 1.04 4-29

DDIGetInfo 1.04 1.04 1.04 4-31

GetSysFailRegister 1.04 1.04 1.04 4-33

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

3-20 533305

3.3.5 Driver Functions of the PCI-DPM Driver

The following table shows which driver functions are supported by the
PCI-DPM driver. It also indicates the driver version from which the driver
function is available.

3.3.6 Driver Functions of the TCPIP-ETH Driver

The TCPIP-ETH Ethernet driver Version 2.0 or later supports all the
commands in this user manual. For details of which particular services the
controller boards support, please refer to the corresponding controller
board documentation.

Table 3-12 Driver functions of the PCI-DPM driver

MS-DOS
as of Version

Windows NT
as of Version

Windows 2000/XP
as of Version

Page

DDI_DevOpenNode 1.01 1.01 1.01 4-3

DDI_DevCloseNode 1.01 1.01 1.01 4-6

DDI_DTI_ReadData 1.01 1.01 1.01 4-7

DDI_DTI_WriteData 1.01 1.01 1.01 4-10

DDI_MXI_SndMessage 1.01 1.01 1.01 4-14

DDI_MXI_RcvMessage 1.01 1.01 1.01 4-17

GetSlaveDiagnostic 1.01 1.01 1.01 4-24

EnableWatchDog 1.01 1.01 1.01 4-25

TriggerWatchDog 1.01 1.01 1.01 4-25

GetWatchDogState 1.01 1.01 1.01 4-26

ClearWatchDog 1.01 1.01 1.01 4-27

SetWatchDogTimeout 1.01 1.01 1.01 4-27

GetWatchDogTimeout 1.01 1.01 1.01 4-29

DDIGetInfo 1.01 1.01 1.01 4-31

GetSysFailRegister 1.01 1.01 1.01 4-33

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

Section 4

533305 4-1

This section informs you about

– driver functions

Driver Functions..4-3

4.1 Opening and Closing Communication Channels4-3

4.1.1 DDI_DevOpenNode...4-3

4.1.2 DDI_DevCloseNode...4-6

4.2 Reading and Writing I/O Data ...4-7

4.2.1 DDI_DTI_ReadData...4-7

4.2.2 DDI_DTI_WriteData ...4-10

4.2.3 DDI_DTI_ReadWriteData ..4-13

4.3 Writing Commands and Reading Messages.............................4-14

4.3.1 DDI_MXI_SndMessage ...4-14

4.3.2 DDI_MXI_RcvMessage..4-17

4.4 Diagnostic Functions...4-20

4.4.1 GetIBSDiagnostic...4-20

4.4.2 GetIBSDiagnosticEx ..4-22

4.4.3 GetSlaveDiagnostic ...4-24

4.5 Watchdog Functions ...4-25

4.5.1 EnableWatchDog()...4-25

4.5.2 TriggerWatchDog() ..4-25

4.5.3 GetWatchDogState()..4-26

4.5.4 ClearWatchDog() ...4-27

4.5.5 SetWatchDogTimeout() ...4-27

4.5.6 GetWatchDogTimeout() ...4-29

4.5.7 EnableWatchDogEx() ..4-29

4.6 Driver Settings and Management..4-31

4.6.1 DDIGetInfo()...4-31

4.6.2 ReadResetCounter()..4-32

4.7 Controller Board Monitoring ..4-33

4.7.1 GetSysFailRegister()..4-33

4.7.2 ClearSysFailSignal() ..4-34

4.7.3 SetSysFailSignal() ...4-34

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

4-2 533305

4.8 Ethernet Communication Monitoring...4-35

4.8.1 ETH_SetNetFailMode()..4-37

4.8.2 ETH_GetNetFailMode() ...4-38

4.8.3 ETH_SetHostChecking()..4-39

4.8.4 ETH_ClearHostChecking() ..4-41

4.8.5 ETH_SetDTITimeoutCtrl()..4-43

4.8.6 ETH_ClearDTITimeoutCtrl() ..4-44

4.8.7 ETH_SetNetFail()...4-45

4.8.8 ETH_GetNetFailStatus() ..4-46

4.8.9 ETH_ClrNetFailStatus() ...4-48

4.9 Other Ethernet Settings...4-50

4.9.1 ETH_InitiateManagement()..4-50

4.9.2 ETH_AbortManagement()..4-50

4.9.3 ETH_HardwareReset() ..4-51

4.9.4 ETH_EnableHardwareReset()4-51

4.9.5 ETH_DisableHardwareReset()4-52

4.9.6 ETH_GetHardwareResetMode()..................................4-52

4.9.7 ETH_SetTCPMode()..4-53

4.9.8 ETH_GetTCPMode() ...4-56

4.9.9 ETH_SetClientOptions() ..4-56

4.9.10 ETH_GetClientOptions() ..4-57

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

Driver Functions

533305 4-3

4 Driver Functions

The definitions of IBDDIRET, IBDDIFUNC, IBDDIHND, and IBPTR are in
the stdtypes.h header file. These constants have been introduced to make
converting the driver software to the environments of different operating
systems easier.

For other programming languages the definitions can be taken from
modules or units. These files can be found in the /COMMON/ directory of
the example program.

The driver libraries are compatible with Microsoft C. You can also use the
driver libraries with Borland C by converting them to a Borland-compatible
format. This can be done, for example, using the Borland IMPLIB and
IMPDEV tools.

4.1 Opening and Closing Communication
Channels

Please note that not every function is supported by every controller board.
For additional information, please refer to 3.3 "Driver-Specific Information".

4.1.1 DDI_DevOpenNode

Task: The DDI_DevOpenNode function opens a data channel to the controller
board specified by the device name or to a node.

The function receives the device name, the desired access rights, and a
pointer to a variable for the node handle as arguments. If the function was
executed successfully, a handle is entered in the variable referenced by the
pointer, and this handle is used for all subsequent access to this data
channel. In the event of an error, a valid value is not entered in the variable.

An appropriate error code is instead returned by the DDI_DevOpenNode
function, which can be used to determine the cause of the error.

The node handle, which is returned to the application program is
automatically generated by the DDI or controller board. This node handle
has direct reference to an internal control structure, which contains all the
corresponding data for addressing the relevant controller board.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

4-4 533305

The local node handle is used to obtain all the necessary parameters for
addressing the controller board, such as the IP address, socket handle,
node handle on the controller board, etc. from this control structure when it
is subsequently accessed.

A control structure is occupied when the data channel is opened and is not
released until the DDI_DevCloseNode function has been executed or the
connection has been aborted. The maximum number of control structures
is determined when the library is compiled and cannot subsequently be
modified. In Windows NT/2000 there are 8 control structures per device,
with a maximum of 256.

If all the control structures are occupied, another data channel cannot be
opened. In this case, if DDI_DevOpenNode is called, it is rejected locally
with the appropriate error message.

Call: DDI_DevOpenNode (devName, perm, nodeHd);

Parameters: devName CHAR IBPTR*
The device name is the name of the device to be
addressed. It specifies the controller board and
the MPM device (see Section 2.4).

perm INT16
The access permission specifies with what
access rights the data channel may be
accessed. A distinction is made between read,
write, and read/write access.

Constants for access rights:

DDI_READ: Read only access

DDI_WRITE: Write only access

DDI_RW: Read and write access

nodeHd IBDDIHND*
The node handle is a pointer to a variable in
which the node handle is entered. The node
handle is a value assigned by the DDI, which is
used to find an assignment to the open node in
all other functions.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

Driver Functions

533305 4-5

Positive
acknowledgment:

ERR_OK (0000hex)

Negative
acknowledgment:

DDI error code Specifies details of errors found when opening a
data channel to a node (see Section 6.3 "DDI
Error Messages").

Cause - Unknown device name
- Node not available

Declaration: IBDDIRET IBDDIFUNC DDI_DevOpenNode(
CHAR IBPTR *devName, // IN: device name
INT16 perm, // IN: access permission
IBDDIHND IBPTR *nodeHd); // OUT: address of node

handle

Example: // Declarations
// Node handle variables
IBDDIHND D_Handle;
IBDDIHND M_Handle;
...
void main(void)
{
// open DTI (data interface) nodes
ret = DDI_DevOpenNode("IBB1N1_D", DDI_RW, D_Handle);
 if (ret != ERR_OK)
 {
 // open MXI (mailbox interface) nodes
 ret = DDI_DevOpenNode("IBB1N1_M", DDI_RW,
M_Handle);
 }
...
}

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

4-6 533305

4.1.2 DDI_DevCloseNode

Task: This function closes a data channel or message channel to a node that was
previously opened using DDI_DevOpenNode(). After this function has
been successfully called, the device is no longer "connected" to the called
program and the node handle is no longer valid.

Call: DDI_DevCloseNode (nodeHd);

Parameters: nodeHd IBDDIHND*
The node handle specifies the node to be closed.

Positive
acknowledgment:

ERR_OK (0000hex)

Meaning The function has been executed successfully.

Negative
acknowledgment:

DDI error code Specifies details of errors that occurred when
calling the function (see Section 6.3 "DDI Error
Messages").

Cause - Invalid node handle

Example: // Declarations
// Node handle variables
IBDDIHND D_Handle;
IBDDIHND M_Handle;
IBDDIRET ret;
...
void main(void)
{
...
 // Close DTI (data interface) nodes
 ret = DDI_DevCloseNode(D_Handle);
 if (ret != ERR_OK)
 {
 // Close MXI (mailbox interface) nodes
 ret = DDI_DevCloseNode(M_Handle);
 }
}

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

Driver Functions

533305 4-7

4.2 Reading and Writing I/O Data

4.2.1 DDI_DTI_ReadData

Task: This function reads data from the MPM via the data interface. It places this
data in Motorola format in the specified buffer.

Bit objects (4-bit, 2-bit) can be accessed using bit access. The maximum
length for bit access is limited to 16 bits.

Before the data is processed further, macros should be used to convert the
input data. These macros convert the input data from Motorola to Intel
format (see Section 5).

Call: DDI_DTI_ReadData (node_Hd, ddi_dti_acc);

Parameters: nodeHd IBDDIHND*
The node handle specifies the IBDDIHND node
type.

ddi_dti_acc T_DDI_DTI_ACCESS*
Pointer to a T_DDI_DTI_ACCESS data structure
for reading process data.

T_DDI_DTI_ACCESS Structure elements:

length USIGN16 The length structure element contains the
number of bytes of data to be read. The
maximum number is 1024 bytes. Bit access:
The length element indicates the number of bits
that are to be copied.

address USIGN16 The address structure element specifies the DTI
address of a process data word in the MPM in
bytes. Bit access:
The address element indicates the byte address
from which data is to be copied.

dataCons USIGN16 The data consistency structure element
specifies the data consistency to be used for
access. The bit addressing, reading back of
outputs, and access to the XDTA are also
activated via additional bits.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

4-8 533305

data USIGN8 IBPTR* This structure element is a pointer to the buffer in
which the read data is to be stored.

Positive
acknowledgment:

ERR_OK (0000hex)

Meaning The function has been executed successfully.

Negative
acknowledgment:

DDI error code Specifies details of errors that occurred when
reading the process data (see Section 6.3 "DDI
Error Messages").

Cause - Invalid node handle
- Invalid parameters
- Limits of data area were exceeded

Table 4-1 Constants of the data consistency structure element

Constants Description

DTI_DATA_BYTE
DTI_DATA_WORD
DTI_DATA_LWORD
DTI_DATA_64BIT

Data consistency 8 bits
Data consistency 16 bits
Data consistency 32 bits
Data consistency 64 bits

IB_EX_DTA XDTA access
(see Section 2.6.3)

IB_TO_REMOTE_DTA Read back outputs
(see Section 2.6.1)

DDI_DATA_BIT Bit access (see Section 2.6.2). The bit
position of the specified byte is
determined in the dataCons element.

DTI_DATA_BIT_ADDR0
DTI_DATA_BIT_ADDR1
DTI_DATA_BIT_ADDR2
DTI_DATA_BIT_ADDR3
DTI_DATA_BIT_ADDR4
DTI_DATA_BIT_ADDR5
DTI_DATA_BIT_ADDR6
DTI_DATA_BIT_ADDR7

Bit position 0
Bit position 1
Bit position 2
Bit position 3
Bit position 4
Bit position 5
Bit position 6
Bit position 7

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

Driver Functions

533305 4-9

Declaration: IBDDIRET IBDDIFUNC DDI_DTI_ReadData(
IBDDIHND node_Hd, //IN: node handle
T_DDI_DTI_ACCESS IBPTR *ddi_dti_acc);

//IN: dti access
// structure

Example: // Declarations
// Data structure for reading process data
T_DDI_DTI_ACCESS p_daten;
// Node handle variables
IBDDIHND D_Handle;
IBDDIHND M_Handle;
// Process data array
static USIGN16 Data[256];
IBDDIRET ret;
USIGN8 B_InData[DTI_BYTESIZE];
USIGN16 i;
...
void main(void)
{
...
 // main loop
 do
 {
 ...
// start reading from address
p_daten.address = FromByteAddr;
// read number of input bytes
p_daten.length = (USIGN16)(2*nWords);
// data consistency: WORD
p_daten.dataCons = DTI_DATA_WORD;
// address IN data buffer
p_daten.data = B_InData;
 // read process data inputs
 if ((ret = DDI_DTI_ReadData(D_Handle, &p_daten)) ==
ERR_OK)
 {
 for (i=0; i<nWords ; i++)
 {
 Data[i] = (USIGN16)IB_PD_GetDataN(B_InData, i);
 }
 }
...

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

4-10 533305

 } while (...); // end of cyclic program
}

4.2.2 DDI_DTI_WriteData

Task: This function writes data to the MPM via the data interface. This function
requires data in Motorola format.

Bit objects (4-bit, 2-bit) can be accessed using bit access. The maximum
length for bit access is limited to 16 bits.

Macros should be used to convert the output data before writing data to the
MPM. These macros convert the output data from Intel to Motorola format
(see Section 5).

So that the outputs are reset in the event of an error on the network line
(e.g., faulty cable) or at the client (system crash or error in the TCP/IP
protocol stack), one of the monitoring mechanisms, connection monitoring
or data interface (DTI) monitoring, must be activated. If no monitoring
mechanisms are activated, the last process data item remains unchanged
in the event of an error.

Call: IBDDIRET IBDDIFUNC DDI_DTI_WriteData
(nodeHd, ddi_dti_acc);

Parameters: nodeHd IBDDIHND*
The node handle specifies the USIGN16 node
type.

ddi_dti_acc T_DDI_DTI_ACCESS IBPTR *
Pointer to a T_DDI_DTI_ACCESS data structure
for writing process data.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

Driver Functions

533305 4-11

T_DDI_DTI_ACCESS Structure elements:

length USIGN16 The length structure element contains the
number of bytes of data to be written. The
maximum number is 1024 bytes (1 kbyte).
Bit access: The length element indicates the
number of bits that are to be copied.

address USIGN16 The address structure element specifies the DTI
address of a process data word in the MPM in
bytes. Bit access:
The address element indicates the byte address
from which data is to be copied.

dataCons USIGN16 The data consistency structure element
specifies the data consistency to be used for
access. The bit addressing, reading back of
outputs, and access to the XDTA are also
activated via additional bits.

Table 4-2 Constants of the data consistency structure element

Constant Description

DTI_DATA_BYTE
DTI_DATA_WORD
DTI_DATA_LWORD
DTI_DATA_64BIT

Data consistency 8 bits
Data consistency 16 bits
Data consistency 32 bits
Data consistency 64 bits

IB_EX_DTA XDTA access
(see Section 2.6.3)

DDI_DATA_BIT Bit access (see Section 2.6.2). The bit
position of the specified byte is
determined in the dataCons element.

DDI_DATA_BIT_ADDR0
DDI_DATA_BIT_ADDR1
DDI_DATA_BIT_ADDR2
DDI_DATA_BIT_ADDR3
DDI_DATA_BIT_ADDR4
DDI_DATA_BIT_ADDR5
DDI_DATA_BIT_ADDR6
DDI_DATA_BIT_ADDR7

Bit position 0
Bit position 1
Bit position 2
Bit position 3
Bit position 4
Bit position 5
Bit position 6
Bit position 7

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

4-12 533305

data USIGN8 IBPTR* This structure element is a pointer to the buffer
from which the data to be written is taken.

Positive
acknowledgment:

ERR_OK (0000hex)

Meaning The function has been executed successfully.

Negative
acknowledgment:

DDI error code Specifies details of errors that occurred when
writing the process data (see Section 6.3 "DDI
Error Messages").

Cause - Invalid node handle
- Invalid parameters
- Limits of data area were exceeded

Declaration: IBDDIRET IBDDIFUNC DDI_DTI_WriteData(
IBDDIHND nodeHd, // IN: node handle
T_DDI_DTI_ACCESS IBPTR *ddi_dti_acc);

// IN: dti access
// structure

Example: // Declarations
// Data structure for reading process data
T_DDI_DTI_ACCESS p_daten;
// Node handle variables
IBDDIHND D_Handle;
IBDDIHND M_Handle;
// Process data array
static USIGN16 Data[256];
IBDDIRET ret;
USIGN8 B_OutData[DTI_BYTESIZE];
USIGN16 i;
...
void main(void)
{
...
 // main loop
 do
 {
 ...

// start writing at address
p_daten.address = AtByteAddr;
// write number of output bytes
p_daten.length = (USIGN16)(2*nWords);

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

Driver Functions

533305 4-13

// data consistency: WORD
p_daten.dataCons = DTI_DATA_WORD;
// address OUT data buffer
p_daten.data = B_OutData;
for (i=0; i<nWords ; i++)
{

 IB_PD_SetDataN(B_OutData, i, Data[i]);
}
// write process data outputs
ret = DDI_DTI_WriteData(D_Handle, &p_daten);

...
 } while (...); // end of cyclic program
}

4.2.3 DDI_DTI_ReadWriteData

Task: The DDI_DTI_ReadWriteData function is used to read and write process
data in one call. This function increases performance considerably,
especially when using process data services via the network, because
process data is read and written in a single sequence.

So that the outputs are reset in the event of an error on the network line
(e.g., faulty cable) or at the client (system crash or error in the TCP/IP
protocol stack), one of the monitoring mechanisms, connection monitoring
or data interface (DTI) monitoring, must be activated. If no monitoring
mechanisms are activated, the last process data item remains unchanged
in the event of an error.

The function is assigned the node handle and two pointers to
T_DDI_DTI_ACCESS data structures. One structure contains the
parameters for read access and the other structure contains the
parameters for write access. The T_DDI_DTI_ACCESS structure
corresponds to the general DDI specification. A plausibility check is not
carried out on the user side, which means that the parameters are
transmitted via the network just as they were transferred to the function.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

4-14 533305

The nodeHd parameter specifies the controller board in the network to
which the request is to be sent. The node handle must be assigned to a
process data channel, otherwise an appropriate error message is
generated by the controller board.

Syntax: DDI_DTI_ReadWriteData (nodeHd, writeDTIAcc, readDTIAcc);

Parameters: nodeHd IBDDIHND
Node handle (DTI) for the connection to which
data is to be written. The node handle also
determines the controller board that is to be
accessed.

writeDTIAcc T_DDI_DTI_ACCESS IBPTR*
Pointer to a T_DDI_DTI_ACCESS data structure
with the parameters for write access.

readDTIAcc T_DDI_DTI_ACCESS IBPTR*
Pointer to a T_DDI_DTI_ACCESS data structure
with the parameters for read access.

Return value: IBDDIRET If the function is executed successfully, the value
0 (ERR_OK) is returned. Otherwise the return
value is an error code.

4.3 Writing Commands and Reading Messages

4.3.1 DDI_MXI_SndMessage

Task: The DDI_MXI_SndMessage function is used to send a message
(INTERBUS command in mailbox syntax) to the controller board. The
function receives a node handle and a pointer to a T_DDI_MXI_ACCESS
data structure as parameters. The T_DDI_MXI_ACCESS structure
contains all the parameters that are needed to send the message.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

Driver Functions

533305 4-15

These parameters are transmitted to the controller board via the network
without a plausibility check, which means that invalid parameters are first
detected at the controller board and acknowledged with an error message.
The IBDDIHND nodeHd parameter specifies the controller board in the
network to which the request is to be sent.

The node handle must be assigned to a mailbox interface data channel,
otherwise an appropriate error message is generated by the controller
board.

Call: DDI_MXI_SndMessage (nodeHd, ddi_mxi_acc);

Parameters: nodeHd IBDDIHND*
The node handle is the logical number (handle)
of a previously opened channel on the DDI
interface.

ddi_mxi_acc T_DDI_MXI_ACCESS IBPTR*
Pointer to a T_DDI_MXI_ACCESS data
structure for sending a command.

T_DDI_MXI_ACCESS: Structure elements:

msgType The zero parameter is always assigned for an
order without confirmation (unconfirmed request
or unconfirmed indication).

msgLength The message length structure element contains
the total length of the message to be sent in
bytes. The maximum permissible length (see
below) is 1024.

DDIUserID Reserved

*msgBlk The *msgBlk structure element is a pointer to a
message block, which includes the message to
be sent in mailbox syntax.

Positive
acknowledgment:

ERR_OK (0000hex)

Meaning The function has been executed successfully.

Negative
acknowledgment:

DDI error code Specifies why the function could not be executed
(see "DDI Error Messages" on page 6-8).

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

4-16 533305

Cause Invalid node handle
No suitable mailbox found
The message exceeds the maximum mailbox
length that can be used (1020 bytes =
1024 bytes minus 2 bytes for command code
minus 2 bytes for parameter count).

Declaration: IBDDIRET IBDDIFUNC DDI_MXI_SndMessage(
IBDDIHND nodeHd, // IN: node handle
T_DDI_MXI_ACCESS IBPTR *ddi_mxi_acc);

// IN: pointer to
mailbox access

// structure

Format of the structure T_DDI_MXI_ACCESS:
typedef struct {

USIGN16 msgType // Message type
USIGN16 msgLength; // Message length
USIGN16 DDIUserID; // DDI_User_ID
USIGN8 IBPTR *msgBlk; // Pointer to array for

the message
} T_DDI_MXI_ACCESS;

Example: // Declarations
// Data structure for sending commands
T_DDI_MXI_ACCESS req_res;
// Node handle variables
IBDDIHND D_Handle;
IBDDIHND M_Handle;
// Firmware command
static USIGN16 Msg[] = {0x0710, //
CREATE_CONFIGRURATION_REQ
 0x0001, // Parameter counter
 0x0001};// Frame reference
// Transmit buffer
USIGN8 snd_buffer[1024];
IBDDIRET ret;
USIGN16 i;
...
void main(void)
{
...
 IB_SetCmdCode(snd_buffer, Msg[0]);
 IB_SetParaCnt(snd_buffer, Msg[1]);

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

Driver Functions

533305 4-17

 for (i=1 ; i<=Msg[1] ; i++)
 {
 IB_SetParaN(snd_buffer, i, Msg[i+1]);
 }
 req_res.msgType = 0;
 req_res.DDIUserID = 0;
 req_res.msgLength = (USIGN16)((Msg[1] + 2) * 2);
 req_res.msgBlk = snd_buffer;
 // Transmit firmware command
 ret = DDI_MXI_SndMessage(M_Handle, &req_res);
...
}

4.3.2 DDI_MXI_RcvMessage

Task: This function fetches a message from a mailbox. For example, it is used to
fetch a confirmation following a command. The confirmation is not
expected. If no confirmation is present, a corresponding message appears
in the DDI error code parameter.

The length of the available receive buffer must be entered in the
msgLength component of the T_DDI_MXI_ACCESS structure. Before
reading, the driver checks the size of the receive buffer and generates the
error message ERR_MSG_TOO_LONG (009Ahex) if the message
received is larger than the available memory space.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

4-18 533305

Call: IBDDIRET IBDDIFUNC DDI_MXI_RcvMessage
(nodeHd,ddi_ mxi_acc);

Parameters: nodeHd IBDDIHND
The node handle is the logical number of a
previously opened channel on the DDI interface.

ddi_mxi_acc T_DDI_MXI_ACCESS IBPTR*
Pointer to a T_DDI_MXI_ACCESS data
structure for receiving a message.

T_DDI_MXI_ACCESS Structure elements:

msgType The zero parameter is always assigned for an
order without confirmation (unconfirmed request
or unconfirmed indication).

msgLength The size of the available receive buffer should be
specified in bytes before calling the
DDI_MXI_RcvMessage function using the
message length structure element. After the
successful receipt of a message the message
length structure element includes the actual
length of the message in bytes.

DDIUserID The value of the DDI user ID is not relevant.

*msgBlk The *msgBlk structure element is a pointer to a
message block that contains the message
received in mailbox syntax.

Positive
acknowledgment:

ERR_OK (0000hex)

Meaning The function has been executed successfully.

Negative
acknowledgment:

DDI error code Specifies why the function could not be executed
(see "DDI Error Messages" on page 6-8).

Cause - Invalid node handle
- Receive buffer too small
- No message present

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

Driver Functions

533305 4-19

Declaration: IBDDIRET IBDDIFUNC DDI_MXI_RcvMessage(
IBDDIHND nodeHd, // IN: node handle
T_DDI_MXI_ACCESS IBPTR *ddi_ mxi_acc);

// OUT: pointer to
mailbox access

// structure

Format of the T_DDI_MXI_ACCESS structure:
typedef struct {

USIGN16 msgType; // Message type
USIGN16 msgLength; // Message length
USIGN16 DDIUserID; // DDI_User_ID
USIGN8 IBPTR *msgBlk; // Pointer to array for

// the message
} T_DDI_MXI_ACCESS;

Example: // Declarations
// Data structure for receiving messages
T_DDI_MXI_ACCESS con_ind;
// Node handle variables
IBDDIHND D_Handle;
IBDDIHND M_Handle;
IBDDIRET ret;
USIGN16 i;
USIGN8 rcv_buffer[1024];
...
void main(void)
{
...
 Msg[0] = 0; // set message code to "0"
 Msg[1] = 0; // set parameter count to "0"
 rcv_buffer[2] = 0; // set parameter count to "0"
 rcv_buffer[3] = 0; // set parameter count to "0"
 con_ind.msgType = 0;
 con_ind.DDIUserID = 0;
 con_ind.msgLength = 1024;
 con_ind.msgBlk = rcv_buffer;
 // Fetch message from the controller board
 ret = DDI_MXI_RcvMessage(M_Handle, &con_ind);
 if ((ret != ERR_NO_MSG) && (ret == ERR_OK))
 {
 Msg[0] = (USIGN16)IB_GetMsgCode(rcv_buffer);

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

4-20 533305

 Msg[1] = (USIGN16)IB_GetParaCnt(rcv_buffer);
 for (i=1 ; i<=Msg[1] ; i++)
 {
 Msg[i+1] = (USIGN16)IB_GetParaN(rcv_buffer, i);
 }
 } // NO_MESSAGE
...
}

4.4 Diagnostic Functions

4.4.1 GetIBSDiagnostic

Task: The GetIBSDiagnostic() function is used to evaluate the operating state of
the INTERBUS controller board and thus the operating state of the
INTERBUS system.
After the function has been called successfully, the structure components
contain the contents of the diagnostic status register and the diagnostic
parameter register in processed form.

Call: GetIBSDiagnostic (NodeHd, diagInfo);

Parameters: NodeHd IBDDIHND*
The node handle is the logical number (handle)
of a previously opened channel on the DDI
interface.

diagInfo T_IBS_DIAG IBPTR*
Pointer to a T_IBS_DIAG structure with error
details.

T_IBS_DIAG Structure elements:

state USIGN16 The bits of the state structure element describe
the state of the bus. The state of the INTERBUS
system can be evaluated by masking the state
structure element.

diagPara USIGN16 The contents of the diagPara structure element
depend on the contents of the state structure
element (see Section 2.6.5):

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

Driver Functions

533305 4-21

Format of the
T_IBS_DIAG
structure

typedef struct {
USIGN16 state;// Status of INTERBUS
USIGN16 diagPara;

// Type of error (controller,
user, etc.)

} T_IBS_DIAG;

Positive
acknowledgment:

ERR_OK (0000hex)

Meaning The function has been executed successfully.

Negative
acknowledgment:

DDI error code Specifies details of an error that has occurred.
Cause: Invalid node handle

The diagnostic information should only be evaluated if the function has
been executed successfully (positive acknowledgment ERR_OK
[0000hex]). If a negative acknowledgment is confirmed, no valid diagnostic
information is available.

Declaration: IBDDIRET IBDDIFUNC GetIBSDiagnostic(
IBDDIHND nodeHd, // IN: node handle
T_IBS_DIAG IBPTR *diagInfo);

// Pointer to the structure
// with error details

Example:

Program section to evaluate the state parameter using masking (AND
operation) with specified constants:

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

4-22 533305

Example: IBDDIRET ret;
// diagnostics structure
T_IBS_DIAG diagnostics;
...
void main(void)
{
...
 // main loop
 do
 {
 ...
 ret = GetIBSDiagnostic(NodeHdMXI, &diagnostics);
 if (ret == ERR_OK)
 {
 if (diagnostics.state & READY_BIT)
 {
 printf("IBS Ready")
 }
 if (diagnostics.state & RUN_BIT)
 {
 printf("IBS Run")
 }
 else
 {
 printf("IBS Stop!")
 }
 }
...
 } while (...); // end of cyclic program
}

4.4.2 GetIBSDiagnosticEx

Task: This function is used to read the operating state of the INTERBUS master
firmware and the operating state of INTERBUS. GetIBSDiagnostic has
been extended to include the extended diagnostic register.

Call GetIBSDiagnosticEx (NodeHd, diagInfo);

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

Driver Functions

533305 4-23

Parameters: NodeHd IBDDIHND*
The node handle is the logical number (handle)
of a previously opened channel on the DDI
interface.

diagInfo T_IBS_DIAG_EX IBPTR*
Pointer to a T_IBS_DIAG_EX data structure with
diagnostic data.

T_IBS_DIAG_EX Structure elements:

state The bits of the "state" structure element
correspond to the diagnostic bit register.

diagPara The "diagPara" structure element corresponds to
the diagnostic parameter register.

addInfo The "addInfo" structure element corresponds to
the Add_Error_Info parameter of the negative
messages of firmware commands.

Positive
acknowledgment:

ERR_OK (0000hex)

Meaning The function has been executed successfully.

Negative
acknowledgment:

DDI error code Specifies details of an error that occurred when
writing. Cause: Invalid node handle

Declaration: IBDDIRET IBDDIFUNC GetIBSDiagnosticEx(
IBDDIHND nodeHd, // IN: node handle
T_IBS_DIAG_EX IBPTR *diagInfo);

// Pointer to the structure
// with error details

Format of the T_IBS_DIAG_EX structure:
typedef struct {

USIGN16 state; // State of the bus:
// Ready, Run, etc.

USIGN16 diagPara; // Additional information,
// see parameter description
// on the previous page

USIGN16 diagPara; // Additional information,
// see parameter description
// on the previous page

} T_IBS_DIAG_EX;

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

4-24 533305

4.4.3 GetSlaveDiagnostic

Task: This function is used to read the operating state of the INTERBUS slave.

GetSlaveDiagnostic (NodeHd, diagInfo);

Parameters: NodeHd IBDDIHND*
The node handle is the logical number (handle)
of a previously opened channel on the DDI
interface.

diagInfo T_IBS_DIAG IBPTR*
Pointer to a T_IBS_DIAG data structure with
diagnostic data.

Typ T_IBS_DIAG Structure elements:

state The bits of the "state" structure element
correspond to the slave diagnostic status
register (see Section 2.6.5).

diagPara Reserved

Positive
acknowledgment:

ERR_OK (0000hex)

Meaning The function has been executed successfully.

Negative
acknowledgment

DDI error code Specifies details of an error that occurred when
writing.

Cause: Invalid node handle

Declaration: IBDDIRET IBDDIFUNC GetSlaveDiagnostic(
IBDDIHND nodeHd, // IN: node handle
T_IBS_DIAG IBPTR *diagInfo);

// Pointer to the structure
// with error details

Format of the structure T_IBS_DIAG:
typedef struct {

USIGN16 state; // State of the bus:
// Ready, Run, etc.

USIGN16 diagPara; // Reserved
} T_IBS_DIAG;

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

Driver Functions

533305 4-25

4.5 Watchdog Functions

Please note that not every function is supported by every controller board.
For additional information, please refer to 3.3 "Driver-Specific Information".

4.5.1 EnableWatchDog()

Task: This function activates the watchdog.

Call: EnableWatchDog (USIGN16 IBDDIHND NodeHd)

Parameters: NodeHd The node handle is the logical number (handle)
of a previously opened channel on the DDI
interface.

Positive
acknowledgment:

ERR_OK (0000hex)

Meaning The function has been executed successfully.

Negative
acknowledgment:

DDI error code Specifies details of an error that occurred when
writing.

Cause: Invalid node handle

A SysFail signal is only created locally for the ISA-DPM driver when a
watchdog is triggered, but no I/O fail signal is sent to the higher-level
master.

After the function has been called, the watchdog must be triggered at
regular intervals.

Declaration: IBDDIRET IBDDIFUNC EnableWatchDog(
IBDDIHND nodeHd, // IN: node handle

4.5.2 TriggerWatchDog()

Task: This function triggers the watchdog.

Call: TriggerWatchDog (USIGN16 IBDDIHND NodeHd)

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

4-26 533305

Parameters: NodeHd The node handle is the logical number (handle)
of a previously opened channel on the DDI
interface.

Positive
acknowledgment:

ERR_OK (0000hex)

Meaning The function has been executed successfully.

Negative
acknowledgment:

DDI error code Specifies details of an error that occurred when
writing. Cause: Invalid node handle

This call must be repeated at regular intervals so that the watchdog does
not trigger a reset.

Declaration: IBDDIRET IBDDIFUNC TriggerWatchDog(
IBDDIHND nodeHd, // IN: node handle

4.5.3 GetWatchDogState()

Task: This function can be used to determine from your application program
whether the corresponding host watchdog has triggered a reset. At the
same time, the watchdog is triggered.

Call: IBDDIRET IBDDIFUNC GetWatchDogState
(USIGN16 IBDDIHND NodeHd)

Parameters: NodeHd The node handle is the logical number (handle)
of a previously opened channel on the DDI
interface.

Positive
acknowledgment:

Return value:

Host watchdog status:
1 The host watchdog has triggered a reset.
0 The host watchdog has not triggered a reset.

Negative
acknowledgment:

DDI error code Specifies details of an error that occurred when
writing. Cause: Invalid node handle

Declaration: IBDDIRET IBDDIFUNC GetWatchDogState(
IBDDIHND nodeHd, // IN: node handle

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

Driver Functions

533305 4-27

4.5.4 ClearWatchDog()

Task: The function resets the watchdog status and simultaneously deactivates
the watchdog.

This function can only be used if the watchdog has been triggered.

Call: IBDDIRET IBDDIFUNC ClearWatchDog (USIGN16 IBDDIHND NodeHd)

Parameters: NodeHd The node handle is the logical number (handle)
of a previously opened channel on the DDI
interface.

Positive
acknowledgment:

ERR_OK (0000hex)

Meaning: The function has been executed successfully.

Negative
acknowledgment:

DDI error code Specifies details of an error that occurred when
writing. Cause: Invalid node handle

Declaration: IBDDIRET IBDDIFUNC ClearWatchDog(
IBDDIHND nodeHd, // IN: node handle

4.5.5 SetWatchDogTimeout()

Task: The function sets the watchdog timeout value and activates the watchdog.

This function can only be used when the watchdog is deactivated.

The watchdog must first be triggered to set the watchdog timeout. Next the
ClearWatchDog function must be used to reset the watchdog status and
deactivate the watchdog and the SetWatchDogTimeout function can then
be used to set the watchdog timeout.

Call: IBDDIRET IBDDIFUNC SetWatchDogTimeout (USIGN16
IBDDIHND NodeHd, USIGN16 IBPTR *dataPtr)

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

4-28 533305

Parameters: NodeHd The node handle is the logical number (handle)
of a previously opened channel on the DDI
interface.

*dataPtr Pointer to the variable with the new timeout
value.

With the PCI-DPM driver, only the preset monitoring times from the PCI
slave configurator can be accepted. Times cannot be set via the
SetWatchdogTimeout function.

Positive
acknowledgment:

ERR_OK (0000hex)

Meaning: The function has been executed successfully.

Negative
acknowledgment:

DDI error code Specifies details of an error that occurred when
writing. Cause: Invalid node handle

Declaration: IBDDIRET IBDDIFUNC SetWatchDogTimeout(
IBDDIHND nodeHd, // IN: node handle
IBPTR *dataPtr); // Pointer to a variable

Table 4-3 Variable values for different monitoring times

Monitoring Time Variable Value

8.2 ms 00hex

16.4 ms 04hex

32.8 ms 08hex

65.5 ms 0Chex

131.1 ms 10hex

262.1 ms 14hex

524.3 ms 18hex

1048.6 ms 1Chex

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

Driver Functions

533305 4-29

4.5.6 GetWatchDogTimeout()

Task: This function reads the current timeout value.

Call: IBDDIRET IBDDIFUNC GetWatchDogTimeout (USIGN16
IBDDIHND NodeHd, USIGN16 IBPTR *dataPtr)

Parameters: NodeHd The node handle is the logical number (handle)
of a previously opened channel on the DDI
interface.

*dataPtr Pointer to the variable with the current timeout
value.

Positive
acknowledgment:

ERR_OK (0000hex)

Meaning: The function has been executed successfully.

Negative
acknowledgment:

DDI error code Specifies details of an error that occurred when
writing. Cause: Invalid node handle

Declaration: IBDDIRET IBDDIFUNC GetWatchDogTimeout(
IBDDIHND nodeHd, // IN: node handle
IBPTR *dataPtr); // Pointer to a variable

4.5.7 EnableWatchDogEx()

Task: This function sets the watchdog timeout value and activates the watchdog.
After activation, the watchdog must be reset at regular intervals
(TriggerWatchDog).

Declaration: IBDDIRET IBDDIFUNC EnableWatchDogEx
(IBDDIHND NodeHd, USIGN16 IBPTR *dataPtr);

Parameters: NodeHd The node handle is the logical number (handle)
of a previously opened channel on the DDI
interface.

dataPtr Pointer to a variable, which contains the new
timeout value.

Possible values can be found in the SetWatchDogTimeout section.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

4-30 533305

Positive
acknowledgment:

ERR_OK (0000hex)

Meaning The function has been executed successfully.

Negative
acknowledgment:

DDI error code Specifies details of an error that occurred when
writing. Cause: Invalid node handle

Declaration: IBDDIRET IBDDIFUNC EnableWatchDogEx(
IBDDIHND nodeHd, // IN: node handle
IBPTR *dataPtr); // Pointer to a variable

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

Driver Functions

533305 4-31

4.6 Driver Settings and Management

Please note that not every function is supported by every controller board.
For additional information, please refer to 3.3 "Driver-Specific Information".

4.6.1 DDIGetInfo()

Task: This function can be used to read a version string from the driver and
Device Driver Interface (IBDDIWNT.DLL).

Call: IBDDIRET IBDDIFUNC DDI_GetInfo
(IBDDIHND NodeHd; USIGN16 cmd, VOID IBPTR *infoPtr)

Parameters: NodeHd The node handle is the logical number (handle)
of a previously opened channel on the DDI.

cmd Selects the source of the version information:

infoPtr Pointer to a T_DDI_VERSION_INFO data
structure (see below).

T_DDI_VERSION_
INFO

Structure elements:

vendor CHAR vendor[32];
Vendor name
"(c) Phoenix Contact Germany"

name CHAR name[48];
Name of the driver/interface
"Windows NT 4.0 Device Driver"
"Windows NT 4.0 Device Driver Interface"

revision CHAR revision[8];
Revision information as text "1.10"

Table 4-4 Constants of the cmd structure element

Constant Description

Version ID DDI_INFO_DDI_VERSION DDI version info

DDI_INFO_DRV_VERSION Driver version info

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

4-32 533305

dateTime CHAR dateTime[32];
Date and time stamp of creation
"Thu Jul 31 15:44:44 1997" created by compiler

revNumber INT16 revNumber;
Revision as integer value 110dec

Positive
acknowledgment:

ERR_OK (0000hex)

Meaning The function has been executed successfully.

Negative
acknowledgment:

DDI error code Specifies details of an error that occurred when
writing.

Cause:
- Invalid node handle
- Invalid parameters

4.6.2 ReadResetCounter()

Task: This function reads the reset count from the driver.

Call: IBDDIRET IBDDIFUNC ReadResetCounter
(IBDDIHND NodeHd, INT32 IBPTR *resetCount)

Parameters: NodeHd The node handle is the logical number (handle)
of a previously opened channel on the DDI
interface.

resetCount Pointer to the INT32 variable to read the reset
count.

Positive
acknowledgment:

ERR_OK (0000hex)

Meaning The function has been executed successfully.

Negative
acknowledgment:

DDI error code Specifies details of an error that occurred when
writing.

Cause: Invalid node handle

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

Driver Functions

533305 4-33

4.7 Controller Board Monitoring

4.7.1 GetSysFailRegister()

Task: The GetSysFailRegister function writes the contents of the SysFail register
using the variable referenced by sysFailRegPtr. Bits 4, 8, and 12 of the
register indicate whether the SysFail signal of the corresponding board
(PC and INTERBUS master) is activated or not. If a malfunction occurs in
an MPM device (e.g., watchdog triggered), the relevant bit is activated in
the SysFail register, i.e., set to one. This bit then remains set until the
malfunction is corrected. The individual bits of the register are assigned to
the MPM devices as follows:

Bit 4: Coprocessor board (COP)

Bit 8: INTERBUS slave controller board

Bit 12: Host (PC)

Call: IBDDIRET IBDDIFUNC GetSysFailRegister
(USIGN16 IBDDIHND NodeHd,USIGN16 IBPTR *sysFailRegPtr)

Parameters: NodeHd The node handle is the logical number (handle)
of a previously opened channel on the DDI
interface.

*sysFailRegPtr Pointer to a variable, in which the contents of the
SysFail register are entered.

Positive
acknowledgment:

ERR_OK (0000hex)

Meaning The function has been executed successfully.

Negative
acknowledgment:

ERR_INVALID_BOARD_NUM (0080hex)

Meaning An invalid board number has been specified.

ERR_TSR_NOT_LOADED (008Bhex)

Meaning The specified controller board is not available or
the driver required is not loaded.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

4-34 533305

4.7.2 ClearSysFailSignal()

Task: This function deletes the SysFail signal from the coprocessor board.

Call: IBDDIRET IBDDIFUNC ClearSysFailSignal
(USIGN16 IBDDIHND NodeHd)

Parameters: NodeHd The node handle is the logical number (handle)
of a previously opened channel on the DDI
interface.

Positive
acknowledgment:

ERR_OK (0000hex)

Meaning The function has been executed successfully.

Negative
acknowledgment:

DDI error code Specifies details of an error that occurred when
writing. Cause: Invalid node handle

Declaration: IBDDIRET IBDDIFUNC ClearSysFailSignal(
IBDDIHND nodeHd, // IN: node handle

4.7.3 SetSysFailSignal()

Task: This function sets the SysFail signal on the coprocessor board.

Call: IBDDIRET IBDDIFUNC SetSysFailSignal(USIGN16 IBDDIHND NodeHd)

Parameters: NodeHd The node handle is the logical number (handle)
of a previously opened channel on the
DDI interface.

Positive
acknowledgment:

ERR_OK (0000hex)

Meaning The function has been executed successfully.

Negative
acknowledgment:

DDI error code Specifies details of an error that occurred when
writing. Cause: Invalid node handle

Declaration: IBDDIRET IBDDIFUNC SetSysFailSignal(

IBDDIHND nodeHd,// IN: node handle

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

Driver Functions

533305 4-35

4.8 Ethernet Communication Monitoring

So that the outputs are reset in the event of an error on the network line
(e.g., faulty cable) or at the client (system crash or error in the TCP/IP
protocol stack), one of the monitoring mechanisms, connection monitoring
or data interface (DTI) monitoring, must be activated. If no monitoring
mechanisms are activated, the last process data item remains unchanged
in the event of an error.

Which monitoring function is used and when depends on the application
program and the safety requirements.

Monitoring Mechanisms
Monitoring mechanisms require a correctly operating network. To prevent
excessive network loads or to avoid using unreliable network operating
modes, operation in separate automation networks or connection to
another network via a firewall is recommended.

Connection Monitoring

Application Connection monitoring can be used to determine whether there is still a
connection between the bus coupler (server) and the computer (client) and
whether this computer responds to requests. This monitoring function can
also be used to detect the following error causes:

– Cable broken, not connected or short circuited.

– Transceiver faulty.

– Errors or faults in the Ethernet adapter of the bus coupler or in the
client.

– Client system crash (workstation).

– Error in the TCP/IP protocol stack.

Activating
monitoring

The ETH_SetHostChecking function activates the mode for monitoring the
connection and the status of the client. The function is assigned a valid
node handle (DTI or MXI data channel) and a pointer (time) to a variable
with the timeout time.

This mode can be activated for all clients (workstations) with a DDI
connection. A connection to a client, which only uses Ethernet
management cannot be monitored. If several connections to a client are
activated simultaneously, the client is only addressed once during a cycle.
If the connection no longer exists, monitoring is also reset.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

4-36 533305

Echo port Monitoring uses the echo port, which is provided on all systems that
support TCP/IP. Each data telegram to this port is sent back from the
receiver to the transmitter. The port is used for both connection-oriented
TCP and connectionless UDP. In the case of the bus coupler, the echo port
is used with UDP, to keep the resources used to a minimum.

Detecting an error Connection monitoring sends a short data telegram to a client every
500 ms. This interval is predefined and does not change according to the
number of clients to be addressed. This means that the frequency with
which each client is "addressed" decreases with the number of connected
clients. After the data telegram has been sent, the Inline bus coupler waits
for a user-defined time for the reply to be received. If the reply is not
received within this time, the bus coupler sends another data telegram to
the relevant client. This process is repeated a maximum of three times.
Connection monitoring then assumes that a serious error has occurred and
sets the SysFail signal (outputs are set to zero).

Deactivating
monitoring

If connection monitoring is no longer required, it can be deactivated using
the ETH_ClearHostChecking function. Monitoring is only deactivated for
the client and the connection that is specified by the node handle. If the
same client has additional DDI connections to the bus coupler and
connection monitoring was also activated for these connections, this client
is still monitored via the other connections.

If a DDI connection is closed using DDI_DevCloseNode, monitoring for this
client is also deactivated. Additional connections are treated as above; they
are not reset and monitoring for these connections is not deactivated.

On a PC with Windows as the operating system, an echo server is running
if the TCP/IP service has been installed. You will find these services under
...\Control Panel\Network\Services. The user must ensure that the echo
server responds within 500 ms in every operating state. The echo server
implemented by default in Windows 2000 does not meet these
requirements. For this reason, the user should use DTI monitoring for
connection monitoring.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

Driver Functions

533305 4-37

4.8.1 ETH_SetNetFailMode()

Task: The ETH_SetNetFailMode routine is used to change the behavior of the
controller board in the event of a NetFail. After startup, the controller board
is in standard mode (ETH_NF_STD_MODE), which means that in the
event of a NetFail, all outputs of the modules connected to the INTERBUS
system are set to zero and the bus continues to run. This behavior can be
changed by calling the routine. At present, the controller board supports
two different modes:

– Standard mode: The controller board behavior remains the same, i.e.,
the outputs are set to zero in the event of an error.

– Alarm stop mode: Not only are the outputs set to zero but an alarm stop
command is also sent to the controller board.

If the function is executed successfully, the routine returns the
return value 0 (ERR_OK). In the event of an error, the return value is an
error code (see DDI_ERR.H).

In alarm stop mode, a command is sent to the controller board but the
return value is not obtained. This means that an application program will
receive this message on its next read attempt.

Syntax: IBDDIRET IBDDIFUNC ETH_SetNetFailMode(IBDDIHND nodeHd,
T_ETH_NET_FAIL_MODE *netFailModeInfo);

The routine receives a valid node handle and a pointer to the structure
described below as parameters. In addition to a component in which the
mode to be set is entered, the structure contains a pointer to an optional
parameter block, the size of which is also entered in the structure. This
parameter block is purely optional and is not used for the modes that exist
at present. Thus, the numOfBytes structure component should be set to
zero.

Parameters: IBDDIHND nodeHd Node handle of a controller board for which the
NetFail mode is to be changed.

T_ETH_NET_FAIL_MODE *netFailModeInfo

Pointer to a T_ETH_NET_FAIL_MODE data
structure. This structure contains the parameters
for setting the NetFail mode and, if necessary,
optional parameters.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

4-38 533305

Format of the
T_ETH_NET_FAIL_
MODE data structure

typedef struct {
USIGN16 mode; /* NetFail mode */
USIGN16 numOfBytes; /* Size of the parameter

block in bytes */
VOID *miscParamPtr; /* Parameters for the

relevant NetFail mode */

} T_ETH_NET_FAIL_MODE;

The function prototypes, the type definition of the data structure, and the
symbolic constants can be found in the IOCTRL.H file.

4.8.2 ETH_GetNetFailMode()

Task: The ETH_GetNetFailMode function can be used to read the set
NetFail mode. The routine expects a valid node handle and a pointer to a
T_ETH_NET_FAIL_MODE data structure (see above) as parameters.
After the routine has been called successfully, the user can read the set
NetFail mode from the structure. If there are no additional parameters for
the set mode, this is indicated by the numOfBytes structure component,
which contains the value zero in this case.

Syntax: IBDDIRET IBDDIFUNC ETH_GetNetFailMode(IBDDIHND nodeHd,
T_ETH_NET_FAIL_MODE *netFailModeInfo)

Parameters: IBDDIHND nodeHd Node handle of a controller board from which
information about the set NetFail mode is to be
read.

T_ETH_NET_FAIL_MODE *netFailModeInfo

Pointer to a T_ETH_NET_FAIL_MODE data
structure. If the function is called successfully,
the parameters of the NetFail mode set on the
controller board as well as the mode itself are
entered in this structure.

Format of the
structure

typedef struct {
 USIGN16 mode; /* NetFail mode */
 USIGN16 numOfBytes; /* Size of the parameter

block in bytes */
 VOID *miscParamPtr; /* Parameters for the

relevant NetFail mode */
} T_ETH_NET_FAIL_MODE;

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

Driver Functions

533305 4-39

Constants of the
different NetFail
modes

#define ETH_NF_STD_MODE 0

#define ETH_NF_ALARMSTOP_MODE 1

The function prototypes, the type definition of the data structure, and the
symbolic constants can be found in the IOCTRL.H file.

4.8.3 ETH_SetHostChecking()

Task: After the ETH_SetHostChecking function has been called successfully, the
client (user workstation) is addressed by the bus coupler at regular
intervals.

If the client does not respond within the predefined time (timeout time),
three additional attempts are made to address the client. If there is still no
response, the SysFail signal is set and the TCP connection is aborted by
the bus coupler.

Syntax: IBDDIRET IBDDIFUNC ETH_SetHostChecking (IBDDIHND nodeHd,
USIGN16 *time);

Parameters: IBDDIHND nodeHd Node handle (MXI or DTI) for the bus coupler
that is to be monitored.

USIGN16 *time Pointer to a variable, which contains the desired
timeout time when called. If the function has
been called successfully, the actual timeout time
is then entered in this variable. The smallest
value for the timeout time is 330 ms, the largest
value for timeout time is 65535 ms. If a smaller
value is entered, the error code
ERR_INVLD_PARAM is returned and "Host
Checking" is not activated.

Return value: IBDDIRET If the function is executed successfully, the value
0 (ERR_OK) is returned. Otherwise the return
value is an error code.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

4-40 533305

Example Unix / Windows NT/2000

IBDDIHND ddiHnd;
{
void CAU00yxDlg::OnButtonSetHostCheckingOn()
{

IBDDIRET ddiRet;
USIGN16 hcTime = 1000;
.
.
.
{

ddiRet = ETH_SetHostChecking
(ddiHnd, &hcTime);
if (ddiRet == ERR_INVLD_PARAM)
{

// Selected hcTime is too short
//(330 ms, minimum)
.
.
.

}
}
UpdateData (FALSE)

}

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

Driver Functions

533305 4-41

4.8.4 ETH_ClearHostChecking()

Task: The ETH_ClearHostChecking function deactivates the node used to
monitor the client. This function only receives the node handle as a
parameter, which is also used to activate monitoring with
ETH_SetHostChecking. After the function has been called successfully,
monitoring via this channel and for this client is deactivated. Other
activated monitoring channels are not affected.

Syntax: IBDDIRET IBDDIFUNC ETH_ClearHostChecking (IBDDIHND nodeHd);

Parameters: IBDDIHND nodeHd Node handle (MXI or DTI) for the bus coupler for
which monitoring is to be deactivated. The same
node handle that was used for activating
monitoring must also be used here.

Return value: IBDDIRET If the function is executed successfully, the value
0 (ERR_OK) is returned. Otherwise the return
value is an error code.

Data Interface (DTI) Monitoring

Error detection and
response

Client monitoring using connection monitoring can only determine whether
a client can still be addressed. It is not possible to determine whether the
process that controls the bus coupler (application program) is still operating
correctly. An extremely serious error occurs when the controlling process
is no longer operating correctly, i.e., the bus coupler is no longer supplied
with up-to-date process data and as a result incorrect output data is sent to
the local bus devices.

DTI monitoring can detect if a message to the data interface of the bus
coupler has failed to arrive and the appropriate safety measures can be
implemented. In this case, the failure of the DTI data telegram sets the
SysFail signal and resets the output data for the local bus devices to zero.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

4-42 533305

Activating
monitoring

Data interface (DTI) monitoring is not activated immediately after the
ETH_SetDTITimeoutCtrl function has been called, but only after data is
written to or read from the DTI for the first time using the node handle,
which was also used when activating monitoring. Writing to or reading from
the DTI via a connection or a node handle for which no monitoring is set
does not therefore enable monitoring for another connection.

Once access has been enabled for the first time, all subsequent access
must be enabled within the set timeout time, otherwise the SysFail signal
is activated.

Deactivating
monitoring

Monitoring is deactivated by calling the ETH_ClearDTITimeoutCtrl function
or by closing the relevant DTI node using the DDI_DevCloseNode function.

If a connection is interrupted by the bus coupler as a result of DTI
monitoring, the monitoring mode for this connection is deactivated and the
corresponding DDI node is closed (see also "ETH_SetDTITimeoutCtrl()"
on page 4-43).

If the bus coupler detects that a connection has been interrupted without
the node having been closed, the SysFail signal is set. This applies
especially if the controlling process (application program) is closed with an
uncontrolled action (e.g., pressing Ctrl+C) and all the open data channels
are closed by the operating system.

Status of the SysFail
signal

The user can read the status of the SysFail signal using the
ETH_GetNetFailStatus function. In addition to the status of the SysFail
signal, a second parameter is returned, which indicates the reason if the
SysFail signal has been set. An additional function for the controlled setting
of the SysFail signal is provided for test purposes. This enables the
behavior of the system in the event of a SysFail to be tested, especially
during program development. The ETH_SetNetFail function only requires
a valid node handle as a parameter, so that the corresponding board can
be addressed in the network.

The SysFail signal can only be reset by calling the ETH_ClrSysFailStatus
function or by executing a reset on the bus coupler.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

Driver Functions

533305 4-43

4.8.5 ETH_SetDTITimeoutCtrl()

Task: The ETH_SetDTITimeoutCtrl function activates the node for monitoring the
DTI data channel specified by the node handle. After this function has been
called, the monitoring function checks whether process data is received
regularly. The function is assigned a valid node handle for a DTI data
channel and a pointer (*time) to a variable with the desired timeout time.
After the function has been called, the timeout time calculated by the bus
coupler can be found in the USIGN16 *time variable.

Syntax: IBDDIRET IBDDIFUNC ETH_SetDTITimeoutCtrl (IBDDIHND nodeHd,
USIGN16 *time);

Parameters: IBDDIHND nodeHd Node handle (DTI) for the bus coupler that is to
be monitored.

USIGN16 *time Pointer to a variable, which contains the desired
timeout time when called. If the function has
been called successfully, the actual timeout time
is then entered in this variable. The timeout time
can be set to a value in the range of 110 ms to
65535 ms.

Return value: IBDDIRET If the function is executed successfully, the value
0 (ERR_OK) is returned. Otherwise the return
value is an error code.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

4-44 533305

4.8.6 ETH_ClearDTITimeoutCtrl()

Task: The ETH_ClearDTITimeoutCtrl function deactivates the node for
monitoring process data activity. This function only receives the node
handle as a parameter, which is also used to activate monitoring. After the
function has been called successfully, monitoring via this channel and for
this client is deactivated. Other activated monitoring channels are not
affected.

Syntax: IBDDIRET IBDDIFUNC ETH_ClearDTITimeoutCtrl(IBDDIHND nodeHd);

Parameters: IBDDIHND nodeHd Node handle (DTI) for the bus coupler for which
monitoring is to be deactivated. The same node
handle that was used for activating monitoring
must also be used here.

Return value: IBDDIRET If the function is executed successfully, the value
0 (ERR_OK) is returned. Otherwise the return
value is an error code.

Example Unix / Windows NT/2000

IBDDIHND ddiHnd;
{

IBDDIRET ddiRet;
.
.
.
ddiRet = ETH_ClearDTITimeoutCtrl (ddiHnd);
.
.
.

}

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

Driver Functions

533305 4-45

Handling the SysFail Signal for the Ethernet/Inline Bus Coupler

The SysFail signal is set by writing a register to the coupling memory of the
bus coupler. As soon as this signal is detected by the bus coupler, all local
bus device outputs are reset and the PCP connections to the devices are
interrupted.

Once the SysFail signal has been set to zero, process data can be output
again. The SysFail signal is always set if the connection to the client is
interrupted, the bus coupler does not write data to the DTI within the
specified time or a general malfunction has been detected on the bus
coupler, which prevents safe operation.

The setting of the SysFail signal is indicated by setting the SysFail bit in the
control word of each data telegram, which is sent by the bus coupler. The
SysFail signal can be reset using the appropriate command or, if this is no
longer possible, by executing a power up.

4.8.7 ETH_SetNetFail()

Task: The ETH_SetNetFail function sets the SysFail signal on the bus coupler
and thus prevents the further output of process data to the local bus
devices. The function is assigned a node handle for a DTI or mailbox data
channel of the relevant bus coupler as a parameter.

Syntax: IBDDIRET IBDDIFUNC ETH_SetNetFail (IBDDIHND nodeHd);

Parameters: IBDDIHND nodeHd Node handle (MXI or DTI) for the bus coupler on
which the SysFail signal is to be executed.

Return value: IBDDIRET If the function is executed successfully, the value
0 (ERR_OK) is returned. Otherwise the return
value is an error code.

Example Unix / Windows NT/2000

IBDDIHND ddiHnd;
{

IBDDIRET ddiRet;

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

4-46 533305

.

.

.
ddiRet = ETH_SetNetFail (ddiHnd);
.
.
.

}

4.8.8 ETH_GetNetFailStatus()

Task: The ETH_GetNetFailStatus function sends the SysFail status to the user,
which is determined by the node handle of the bus coupler. The function is
assigned a node handle for an open DTI or MXI data channel and a pointer
to a T_ETH_NET_FAIL structure as parameters. After the function has
been called successfully, the structure components contain the status
(status) of the SysFail signal and an error code (reason) if the SysFail
signal has been set.

If the SysFail signal is not set, the status structure component has the
value 0. Otherwise status has the value 0xFFFF. The reason structure
component is only valid if the SysFail signal is set. The possible values for
reason can be found in the IOCTRL.H file or the list on page 4-48.

Syntax: IBDDIRET IBDDIFUNC ETH_GetNetFailStatus (IBDDIHND nodeHd,
T_ETH_NET_FAIL *netFailInfo);

Parameters: IBDDIHND nodeHd Node handle (MXI or DTI) for the bus coupler on
which the SysFail status is to be read.

T_ETH_NET_FAIL *netFailInfo
Pointer to a structure, which contains the SysFail
status and the reason for the SysFail, if
applicable.

Return value: IBDDIRET If the function is executed successfully, the
value 0 (ERR_OK) is returned. Otherwise the
return value is an error code.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

Driver Functions

533305 4-47

Format of the
T_ETH_NET_FAIL
structure

typedef struct {
USIGN16 status; /* SysFail status */
USIGN16 reason; /* Reason for the SysFail */

} T_ETH_NET_FAIL;

Possible values for
the status structure
component:

ETH_NET_FAIL_ACTIVE 0xFFFF
/* SysFail signal triggered */

ETH_NET_FAIL_INACTIVE 0x0000
/* SysFail signal not triggered */

Example Unix/Windows NT/2000

IBDDIHND ddiHnd;
{

IBDDIRET ddiRet;

T_ETH_NET_FAIL netFailInfo
USIGN16 nfStatus;
USIGN16 nfReason;
.
.
.
ddiRet = ETH_GetNetFailStatus (ddiHnd,
&netFailInfo);

if (ddiRet == ERR_OK)
{

nfStatus = netFailInfo.status
nfReason = netFailInfo.reason;

}
.
.
.

}

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

4-48 533305

Possible values for
the reason structure
component:

ETH_NF_NO_ERR 0x0000
/* No error */

ETH_NF_TASK_CREAT_ERR 0x0001
/* Error when starting a task */

ETH_NF_LISTENER_ERR 0x0002
/* Listener task error */

ETH_NF_RECEIVER_ERR 0x0003
/* Receiver task error */

ETH_NF_ACCEPT_ERR 0x0004
/* Accept error */

ETH_NF_ECHO_SERVER_ERR 0x0005
/* Echo server task error */

ETH_NF_HOST_CONTROL_ERR 0x0006
/* Workstation controller task error */

ETH_NF_DTI_TIMEOUT 0x0007
/* DTI timeout occurred */

ETH_NF_HOST_TIMEOUT 0x0008
/* Workstation timeout occurred */

ETH_NF_USER_TEST 0x0009
/* Set by user */

ETH_NF_CONN_ABORT 0x000A
/* Connection aborted */

ETH_NF_INIT_ERR 0x000B
/* Initialization error */

4.8.9 ETH_ClrNetFailStatus()

Task: The ETH_ClrNetFailStatus function resets the SysFail signal. This means
that process data can be output again and the status of the SysFail signal
is set to 0. The function is assigned a valid node handle for a DTI or MXI
data channel as a parameter.

Syntax: IBDDIRET IBDDIFUNC ETH_ClrNetFailStatus (IBDDIHND nodeHd);

Parameters: IBDDIHND nodeHd Node handle (MXI or DTI) for the bus coupler on
which the SysFail status is to be reset.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

Driver Functions

533305 4-49

Return value: IBDDIRET If the function is executed successfully, the
value 0 (ERR_OK) is returned. Otherwise the
return value is an error code.

Example Unix / Windows NT/2000

IBDDIHND ddiHnd;
{
IBDDIRET ddiRet;
.
.
.
ddiRet = ETH_ClrNetFailStatus (ddiHnd);
.
.
.
}

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

4-50 533305

4.9 Other Ethernet Settings

4.9.1 ETH_InitiateManagement()

Task: The ETH_InitiateManagement function establishes an Ethernet
management connection to an Ethernet controller board. An Ethernet
management connection is used to set and request specific controller
board modes and parameters. An Ethernet controller board can have only
one Ethernet management connection open at any one time.

Syntax: IBDDIRET IBDDIFUNC ETH_InitiateManagement(CHAR *server,
IBDDIHND *hnd)

Parameters: CHAR *server Pointer to a string with the host name or
IP address.

IBDDIHND *hnd Pointer to a variable in which the node handle of
the management connection is entered if the
function is called successfully.

Return value: IBDDIRET If the function is executed successfully, the
value 0 (ERR_OK) is returned. Otherwise the
return value is an error code.

4.9.2 ETH_AbortManagement()

Task: The ETH_AbortManagement function aborts an existing Ethernet
management connection.

Syntax: IBDDIRET IBDDIFUNC ETH_InitiateManagement(IBDDIHND hnd)

Parameters: IBDDIHND hnd Handle of the management connection that is to
be aborted.

Return value: IBDDIRET If the function is executed successfully, the
value 0 (ERR_OK) is returned. Otherwise the
return value is an error code.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

Driver Functions

533305 4-51

4.9.3 ETH_HardwareReset()

Task: The ETH_HardwareReset function triggers a hardware reset of the entire
controller board. However, a hardware reset can only be executed if the
hardware reset is enabled on the controller board. If the hardware reset is
not enabled, the reset will not be executed and the function will return an
error message.

Syntax: IBDDIRET IBDDIFUNC ETH_HardwareReset(IBDDIHND hnd)

Parameters: IBDDIHND hnd Handle of a controller board management
connection that is to be reset by a hardware
reset.

4.9.4 ETH_EnableHardwareReset()

Task: The ETH_EnableHardwareReset function can be used to enable the
hardware reset via TCP/IP, i.e., the controller board can then execute a
hardware reset using a function call.

The function does not have to be re-enabled after each reset, as the enable
is stored permanently in the controller board and is not lost, even in the
event of voltage failure.

The function expects a valid node handle of a management connection as
a parameter.

If the function is executed successfully, the value 0 (ERR_OK) is returned.
Otherwise the return value is an error code.

Syntax: INT32 IBDDIFUNC ETH_EnableHardwareReset(IBDDIHND hnd)

The function prototype can be found in the ETH_MNG.H file.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

4-52 533305

4.9.5 ETH_DisableHardwareReset()

Task: The ETH_DisableHardwareReset function acts as a counterpart to the
ETH_EnableHardwareReset routine. As the name indicates, this function
can be used to reverse a hardware reset enable via TCP/IP, i.e., the
hardware reset via TCP/IP is disabled again. The routine requires a valid
handle for a management connection as a parameter.

If the function is executed successfully, the value 0 (ERR_OK) is returned.
Otherwise the return value is an error code.

Syntax: IBDDIRET IBDDIFUNC ETH_DisableHardwareReset(IBDDIHND hnd)

The function prototype can be found in the ETH_MNG.H file.

4.9.6 ETH_GetHardwareResetMode()

Task: The ETH_GetHardwareResetMode function can be used to determine
whether the hardware reset via TCP/IP is enabled or disabled.

The function expects a valid node handle of a management connection as
a parameter.

If the function is executed successfully, the value 0 (ERR_OK) is returned.
Otherwise the return value is an error code.

Syntax: INT32 IBDDIFUNC ETH_GetHardwareResetMode (IBDDIHND hnd,
USIGN16 *modePtr)

The function prototype can be found in the ETH_MNG.H file.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

Driver Functions

533305 4-53

4.9.7 ETH_SetTCPMode()

Task: The ETH_SetTCPMode function modifies the time response of the TCP
(Transmission Control Protocol) in the event of an error. The behavior in
the event of a lost data packet is also modified.

If the time response of the TCP is modified, stable communication
operation may become impossible. The settings on the controller board
must be compatible with the settings of the operating system.

TCP brief display: TCP is a transport layer protocol that provides connection-oriented
protected data transfer. One example of a data protection method used by
TCP is that received data packets are acknowledged positively by the
receiver. This means that for every data packet received, a corresponding
acknowledge message is sent by the receiver. The transmitter can use the
acknowledge message to determine whether and which packet has been
correctly received.

If no acknowledge message is received within a specified time, the
retransmit time, the transmitter repeats the lost packet. In standard TCP
implementations, the retransmit time is determined from the runtime of data
packets and dynamically adjusted to changing transmission paths. The
retransmit time is also increased in the event of consecutive timeouts
following a fixed algorithm. The time between the individual repetitions thus
increases.

If an acknowledge message has still not been received following a specific
number of repetitions, the TCP connection is aborted. However, this
standard behavior does not always meet the requirements to exchange
process data from the controller board via Ethernet and to process the data
on a workstation. Under some circumstances, long repeat times prevent
this if a data packet is lost.

To meet the requirements of such applications, the TCP on the controller
board has been modified accordingly and extended to include two
additional modes. These modes can also be set and modified using the
ETH_SetTCPMode service.

Syntax: INT32 IBDDIFUNC ETH_SetTCPMode(IBDDIHND hnd, USIGN16 mode,
USIGN16 value)

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

4-54 533305

The value transfer parameter is only evaluated in mode 2 (see below). In
the other modes, the value entered in value is not used.

If the function is executed successfully, the value 0 (ERR_OK) is returned.
Otherwise the return value is an error code.

At present, the controller board recognizes three different TCP modes,
whose time response is very different in places. A corresponding symbolic
constant can be found in the ETH_MNG.H file for each of these modes.

Please note that after every change of mode a hardware reset must be
executed to activate the new mode.

Syntax: #define ETH_FIXED_FAST_TCP_MODE 1 /* TCP
retransmit time = 36 ms */
#define ETH_VAR_FAST_TCP_MODE 2 /* TCP
retransmit time variable */
#define ETH_STD_TCP_MODE 3 /* Standard */

Mode 1
(ETH_FIXED_FAST_
TCP_MODE)

This mode is the fastest mode possible and is designed for workstations
whose retransmit time can be modified to small values and is required by
the application to resend lost packets as quickly as possible. The
retransmit time for this mode is fixed to a value of 36 milliseconds
(35.15625 milliseconds to be precise), i.e., if no acknowledgment of a sent
data packet has been received within 36 milliseconds, the controller board
resends the lost data packet once this time has elapsed.
If the transmitter does not receive an acknowledgment of this data packet
either, the data packet is resent after 36 milliseconds. This process can be
repeated up to 48 times. The data packet can therefore be sent a total of
49 times.
If an acknowledge message has still not been received after the 49th
attempt, the TCP connection is aborted. Thus, the total maximum time from
the data packet first being sent until the connection is aborted is:
49 x 36 milliseconds = 1.764 seconds

The time between repetitions is constant and is not dynamically adjusted.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

Driver Functions

533305 4-55

Mode 2
(ETH_VAR_FAST_T
CP_MODE)

In mode 2, the retransmit time is not fixed to a time of 47 milliseconds, but
can be modified by the user in 12 ms steps. The smallest possible value for
the retransmit time is 47 milliseconds and the largest possible value is
3.01 seconds. The retransmit time is not transmitted in milliseconds, but
rather as an 8-bit value, which is converted accordingly in the controller
board.
The smallest valid value is 3 and the largest valid value is 255. If a value
(n) is transmitted that is smaller or larger than the permitted value, it is
automatically corrected to the smallest possible value (3) or the largest
possible value (255). The following equation can be used to calculate the
retransmit time in seconds:

Retransmit time in seconds = (3/256) x (n+1) with 3 ≤ n ≤ 255

As with mode 1, the retransmit time set by the user is fixed and is not
dynamically adjusted. Like mode 1, a data packet can be repeated a
maximum of 48 times.

Mode 3
(ETH_STD_TCP_MO
DE)

Mode 3 is the standard TCP mode and is thus implemented in the
TCP/IP implementation as standard. This means that the retransmit time is
calculated from the round trip time (RTT) and is dynamically adjusted to the
existing network. In addition, the retransmit time is doubled following each
consecutive failed retransmit attempt and kept at the current value after
seven failed retransmit attempts.
The TCP connection is automatically aborted after a total of 12 repetitions.
This mode is useful for all applications that have a slow network (modem)
or whose time constraints are not so critical. A particular disadvantage of
this mode is, for example, the long time before a faulty cable caused by a
connection abort after the maximum number of repetitions has been
exceeded is indicated to the user as an error.

TCP modes should only be modified if the user is aware of the
consequences of such a modification and is also familiar with the time
response in his or her network and host computer. For example, if the
retransmit time selected on the controller board is too short it may result in
sudden loss of connection.

Controller boards in TCP mode 2 are supplied with a retransmit time of
250 ms as standard. These settings are sufficient for most host computers
and networks. An adjustment is necessary if a modem connection is to be
used, for example. In this case, it is useful to set mode 3
(ETH_STD_TCP_MODE) so that the retransmit time is dynamically set.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

4-56 533305

4.9.8 ETH_GetTCPMode()

Task: The ETH_GetTCPMode function is used to read the TCP mode that is
currently set. The routines transmit pointers to variables, in which the
TCP mode and the retransmit time are entered, instead of the values for
the TCP mode and the retransmit time.

Syntax: INT32 IBDDIFUNC ETH_GetTCPMode(IBDDIHND hnd,
USIGN16 *modePtr, USIGN16 *valuePtr)

The TCP mode of the controller board is entered in the variable referenced
by modePtr. The values correspond to those that are used to set the
TCP mode (see ETH_SetTCPMode). The same applies for variables
referenced by valuePtr. The value in these variables is only valid if
TCP mode 2 is set. The retransmit time in seconds can then also be
calculated using the equation specified on page 4-55.

If the function is executed successfully, the value 0 (ERR_OK) is returned.
Otherwise the return value is an error code.

4.9.9 ETH_SetClientOptions()

Task: The ETH_SetClientOptions function can be used to set different options in
the driver library.

The changes made using this function are not saved. Please also note that
this function must be called before the first DDI or management connection
is opened.

The following options are available:

Syntax to activate: IBDDIRET IBDDIFUNC ETH_SetClientOptions(int cmd, char *arg,
int length)

Standard Value Constant for the Command Code

Receive timeout 3 seconds ETH_OPT_RCV_TIMEOUT

Connect timeout 3 seconds ETH_OPT_CON_TIMEOUT

Path specification of the
IBSETHA file

Current directory ETH_OPT_IBSETHA_PATH

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

Driver Functions

533305 4-57

Parameters: int cmd Command code

char *arg Pointer to command parameters

int *length Size of the parameters (in bytes)

Return values,
error messages:

ERR_OK 0x0000 Function executed successfully

ERR_OPT_INVLD_CMD 0x0200 Unknown command code

ERR_OPT_INVLD_PARAM 0x0201 Error in transfer parameter

Example: Set receive timeout to seven seconds:
int Timeout;
Timeout = 7
Error = ETH_SetClientOptions (ETH_OPT_RCV_TIMEOUT,
(char *)&Timeout, sizeof (Timeout));

4.9.10 ETH_GetClientOptions()

Task: The ETH_GetClientOptions function can be used to read the options in the
driver library.

The function can be called at any time.

The following options are available:

Syntax to activate: IBDDIRET IBDDIFUNC ETH_GetClientOptions(int cmd, char *arg, int
*length)

Parameters: int cmd Command code

char *arg Pointer to command parameters

int *length Size of the parameters (in bytes)

Constant for the Command Code

Receive timeout in seconds ETH_OPT_RCV_TIMEOUT

Connect timeout in seconds ETH_OPT_CON_TIMEOUT

Path specification of the IBSETHA file ETH_OPT_IBSETHA_PATH

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

4-58 533305

Return values,
error messages:

ERR_OK 0x0000 Function executed successfully

ERR_OPT_INVLD_CMD 0x0200 Unknown command code

ERR_OPT_INVLD_PARAM 0x0201 Error in transfer parameter

Example: Read back connect timeout:
int Value;
int sizeOfValue;
Error = ETH_GetClientOptions (ETH_OPT_CON_TIMEOUT,
(char *)&Value, &sizeOfValue);

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

Section 5

533305 5-1

This section informs you about

– programming support macros

Programming Support Macros..5-3

5.1 Macros for Process Data Conversion ...5-3

5.1.1 Macros for Converting the Data Block of a Command...5-7

5.1.2 Macros for Converting the Data Block of a Message.....5-9

5.1.3 Macros for Converting Input Data5-12

5.1.4 Macros for Converting Output Data5-14

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

5-2 533305

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

Programming Support Macros

533305 5-3

5 Programming Support Macros

5.1 Macros for Process Data Conversion

The following macros simplify the transmission of data (commands,
messages, process data) between the host and the INTERBUS controller
board.

– The INTERBUS master protocol chip (IPMS) of the controller board
stores its data in the MPM in Motorola format (68xxx range) and also
expects this format when reading.

– The host processor processes data in Intel format, which is typical for
IBM-compatible PCs.

The numbering of words and bytes within a data field is inverted for these
formats. The macros convert the data between Motorola and Intel format
and write it to the specified buffer so that a process image can be easily
created in Intel format, for example.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

5-4 533305

Figure 5-1 Using macros for process data conversion

� � + �

� � � � � �

(�
 + �
 �
� � � � � � �

� ((. (: #
� � � � � � � � �

� ((. (: #
� � � � � � � � �

) � � 	 �
� � � � �

� � , - :
� � � � �

 � � � � �

� � � � � � � �

� ((. (: #
� � � � � � � � �

. � 	 � � 7 �
� � � � � � � �

� ((. (: #
� � � � � � � � �

/ � � � � � � � � �
	 � � � � � � �
� � �
� � � � � �

� � , - :
� � � � �

� � � � # � � !

' � �
 � � � � � � � � � � � �; �
 � + � � 	 � � � � � � � � �

& � &
� ((. (: #
� � � � � � � � �

� � � � � � �

 � � � � � � � �

! � � � �

0 � � � 	
 � � 	 � � � � � � � � �

� � � < � � � <
. ' = � � � � �

� � � < � � <
$ � �
 � � �
 �

� � � < � � <
. � � � � �
 �

� & �
 � � % � # � �
�
 � � � � � %

& �
 � � % � # � �
� � % % � � � %

� � � & �
 � � % � # � �
� � � � 3 � � 3 � � � � � �

� � � & �
 � � % � # � �
� � � � 	 � 3 � � � � � �

� � � < � � � <
% � � � � � � �

Table 5-1 Overview of the macros for process data conversion

Macro Task Page

IB_SetCmdCode Enters the command code (16-bit) in the specified
transmit buffer

5-7

IB_SetParaCnt Enters the parameter count (16-bit) in the specified
transmit buffer

5-7

IB_SetParaN Enters a parameter (16-bit) in the specified transmit buffer 5-7

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

Programming Support Macros

533305 5-5

IB_SetParaNHiByte Enters the high byte (bit 8 to 15) of a parameter in the
specified transmit buffer

5-7

IB_SetParaNLoByte Enters the low byte (bit 0 to 7) of a parameter in the
specified transmit buffer

5-10

IB_SetBytePtrHiByte Returns the address of a parameter entry starting with the
high byte (bit 8 to 15)

5-8

IB_SetBytePtrLoByte Returns the address of a parameter entry starting with the
low byte (bit 0 to 7)

5-8

IB_GetMsgCode Reads a message code (16-bit) from the specified receive
buffer

5-9

IB_GetParaCnt Reads the parameter count (16-bit) from the specified
receive buffer

5-9

IB_GetParaN Reads a parameter (16-bit) from the specified receive
buffer

5-9

IB_GetParaNHiByte Reads the high byte (bit 8 to 15) of a parameter from the
specified receive buffer

5-10

IB_GetParaNLoByte Reads the low byte (bit 0 to 7) of a parameter from the
specified receive buffer

5-10

IB_GetBytePtrHiByte Returns the address of a parameter entry starting with the
high byte (bit 8 to 15)

5-10

IB_GetBytePtrLoByte Returns the address of a parameter entry starting with the
low byte (bit 0 to 7)

5-11

IB_PD_GetLongDataN Reads a long word (32-bit) from the specified position in
the input buffer

5-12

IB_PD_GetDataN Reads a word (16-bit) from the specified position in the
input buffer

5-12

IB_PD_GetDataNHiByte Reads the high byte (bit 8 to 15) of a word from the input
buffer

5-12

IB_PD_GetDataNLoByte Reads the low byte (bit 0 to 7) of a word from the input
buffer

5-12

Table 5-1 Overview of the macros for process data conversion

Macro Task Page

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

5-6 533305

The macros are defined for different operating systems and compilers in
the Device Driver Interface so that they can be used universally.

The include files, libraries, and units required to use macros are described
in Sections 2, 3, 4, and 5.

The first parameter no. (word no.) is always number 1.

IB_PD_GetBytePtrHiByte Returns the address of a word starting with the high byte
(bit 8 to 15)

5-13

IB_PD_GetBytePtrLoByte Returns the address of a word starting with the low byte
(bit 0 to 7)

5-13

IB_PD_SetLongDataN Writes a long word (32-bit) to the output buffer 5-14

IB_PD_SetDataN Writes a word (16-bit) to the output buffer 5-14

IB_PD_SetDataNHiByte Writes the high byte (bit 8 to 15) of a word to the output
buffer

5-14

IB_PD_SetDataNLoByte Writes the low byte (bit 0 to 7) of a word to the output
buffer

5-15

IB_PD_SetBytePtrHiByte Returns the address of a word starting with the high byte
(bit 8 to 15)

5-15

IB_PD_SetBytePtrLoByte Returns the address of a word starting with the low byte
(bit 0 to 7)

5-15

Table 5-1 Overview of the macros for process data conversion

Macro Task Page

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

Programming Support Macros

533305 5-7

5.1.1 Macros for Converting the Data Block of a
Command

IB_SetCmdCode (n, m)

Task: This macro converts a command code (16-bit) to Motorola format and
enters it in the specified transmit buffer.

Parameters: n(USIGN8 FAR *): Pointer to the transmit buffer

m(USIGN16): Command code to be entered

IB_SetParaCnt (n, m)

Task: This macro converts the parameter count (16-bit) to Motorola format and
enters it in the specified transmit buffer. The call is only required when
dealing with a command with parameters. The parameter count specifies
the number of subsequent parameters in words.

Parameters: n(USIGN8 FAR *): Pointer to the transmit buffer

m(USIGN16): Parameter count to be entered

IB_SetParaN (n, m, o)

Task: This macro converts a parameter (16-bit) to Motorola format and enters it
in the specified transmit buffer. The call is only required when dealing with
a command with parameters.

Parameters: n(USIGN8 FAR *): Pointer to the transmit buffer

m(USIGN16): Parameter no. (word no.)

o(USIGN16): Parameter value to be entered

IB_SetParaNHiByte (n, m, o)

Task: This macro converts the high byte (bit 8 to 15) of a parameter to Motorola
format and enters it in the specified transmit buffer (see also IB_SetParaN).

Parameters: n(USIGN8 FAR *): Pointer to the transmit buffer

m(USIGN16): Parameter no. (word no.)

o(USIGN8): Parameter to be entered (byte)

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

5-8 533305

IB_SetParaNLoByte(n, m, o)

Task: This macro converts the low byte (bit 0 to 7) of a parameter to Motorola
format and enters it in the specified transmit buffer (see also IB_SetParaN).

Parameters: n(USIGN8 FAR *): Pointer to the transmit buffer

m(USIGN16): Parameter no. (word no.)

o(USIGN8): Parameter to be entered (byte)

IB_SetBytePtrHiByte (n, m)

Task: This macro returns the address of a parameter entry starting with the high
byte (bit 8 to 15).
The address is a USIGN8 FAR * data type.

Parameters: n(USIGN8 FAR *): Pointer to the transmit buffer

m(USIGN16): Parameter no. (word no.)

Return value: (USIGN8 FAR *): Address of the high byte of the parameter in the
transmit buffer.

IB_SetBytePtrLoByte (n, m)

Task: This macro returns the address of a parameter entry starting with the low
byte (bit 0 to 7).
The address is a USIGN8 FAR * data type.

Parameters: n(USIGN8 FAR *): Pointer to the transmit buffer

m(USIGN16): Parameter no. (word no.)

Return value: (USIGN8 FAR *): Address of the low byte of the parameter in the
transmit buffer.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

Programming Support Macros

533305 5-9

5.1.2 Macros for Converting the Data Block of a
Message

IB_GetMsgCode (n)

Task: This macro reads the message code (16-bit) from the specified receive
buffer and converts it to Intel format.

Parameters: n(USIGN8 FAR *): Pointer to the receive buffer

Return value: (USIGN16): Message code

IB_GetParaCnt (n)

Task: This macro reads the parameter count (16-bit) from the data block of the
message and converts it to Intel format. The parameter count specifies the
number of subsequent parameters in words.

Parameters: n(USIGN8 FAR *): Pointer to the receive buffer

Return value: (USIGN16): Parameter count

Remark: This macro only reads the parameter count for messages that also have
parameters.

IB_GetParaN (n, m)

Task: This macro reads a parameter value (16-bit) from the data block of the
message and converts it to Intel format.

Parameters: n(USIGN8 FAR *): Pointer to the receive buffer

m(USIGN16): Parameter no. (word no.)

Return value: (USIGN16): Parameter value

Remark: This macro only reads the parameter count for messages that also have
parameters.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

5-10 533305

IB_GetParaNHiByte (n, m)

Task: This macro reads the high byte (bit 8 to 15) of a parameter from the
specified receive buffer and converts it to Intel format.

Parameters: n(USIGN8 FAR *): Pointer to the receive buffer

m(USIGN16): Parameter no. (word no.)

Return value: (USIGN8): Parameter value (byte)

Remark: This macro only reads the parameter count for messages that also have
parameters.

IB_GetParaNLoByte (n, m)

Task: This macro reads the low byte (bit 0 to 7) of a parameter from the specified
receive buffer and converts it to Intel format.

Parameters: n(USIGN8 FAR *): Pointer to the receive buffer

m(USIGN16): Parameter no. (word no.)

Return value: (USIGN8): Parameter value (byte)

Remark: This macro only reads the parameter count for messages that also have
parameters.

IB_GetBytePtrHiByte (n, m)

Task: This macro returns the address of a parameter entry starting with the high
byte (bit 8 to 15).

The address is a USIGN8 FAR * data type.

Parameters: n(USIGN8 FAR *): Pointer to the receive buffer

m(USIGN16): Parameter no. (word no.)

Return value: (USIGN8 FAR *): Address of the high byte of a parameter in the
receive buffer.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

Programming Support Macros

533305 5-11

IB_GetBytePtrLoByte (n, m)

Task: This macro returns the address of a parameter entry starting with the
low byte (bit 0 to 7).

The address is a USIGN8 FAR * data type.

Parameters: n(USIGN8 FAR *): Pointer to the receive buffer

m(USIGN16): Parameter no. (word no.)

Return value: (USIGN8 FAR *): Address of the low byte of a parameter in the
receive buffer.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

5-12 533305

5.1.3 Macros for Converting Input Data

Macros are provided in the IBS_MACR.H file for converting long words,
words, and bytes from Motorola format to Intel format. Addressing is
always word-oriented here.

IB_PD_GetLongDataN(n, m, o)

Task: This macro reads a long word (32-bit) from a specified position in the input
buffer and converts it to Intel format. The word index in the input buffer is
used as a position. The macro reads the long word starting from the
specified word address over two words.

Parameters: n (USIGN8 FAR *) Pointer to the input buffer

m (USIGN16) Parameter no. (word no.)

o (USIGN32) Process data item (32-bit)

IB_PD_GetDataN (n, m)

Task: This macro reads a word (16-bit) from a specified position in the input buffer
and converts it to Intel format.

Parameters: n(USIGN8 FAR *): Pointer to the input buffer

m(USIGN16): Parameter no. (word no.)

Return value: (USIGN8): Parameter data item (16-bit)

IB_PD_GetDataNHiByte (n, m)

Task: This macro reads the high byte (bit 8 to 15) of a word from the input buffer
and converts it to Intel format.

Parameters: n(USIGN8 FAR *): Pointer to the input buffer

m(USIGN16): Parameter no. (word no.)

Return value: (USIGN8): Parameter data item (8-bit)

IB_PD_GetDataNLoByte (n, m)

Task: This macro reads the low byte (bit 0 to 7) of a word from the input buffer
and converts it to Intel format.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

Programming Support Macros

533305 5-13

Parameters: n(USIGN8 FAR *): Pointer to the input buffer

m(USIGN16): Parameter no. (word no.)

Return value: (USIGN8): Parameter data item (8-bit)

IB_PD_GetBytePtrHiByte (n, m)

Task: This macro returns the address of a word starting with the high
byte (bit 8 to 15).

Parameters: n(USIGN8 FAR *): Pointer to the input buffer

m(USIGN16): Parameter no. (word no.)

Return value: (USIGN8 FAR*): Address of the high byte of a word in the input
buffer.

IB_PD_GetBytePtrLoByte (n, m)

Task: This macro returns the address of a word starting with the low byte
(bit 0 to 7).

Parameters: n(USIGN8 FAR *): Pointer to the input buffer

m(USIGN16): Parameter no. (word no.)

Return value: (USIGN8 FAR *): Address of the low byte of a word in the input
buffer.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

5-14 533305

5.1.4 Macros for Converting Output Data

Macros are provided in the IBS_MACR.H file for converting long words,
words, and bytes from Intel format to Motorola format. Addressing is
always word-oriented here.

IB_PD_SetLongDataN (n, m, o)

Task: This macro converts a long word (32-bit) to Motorola format and writes it to
the specified position in the output buffer. The word index in the output
buffer is used as a position. The macro writes the long word starting from
the specified word address over two words.

Parameters: n (USIGN8 FAR *) Pointer to the output buffer

m (USIGN16) Parameter no. (word no.)

o (USIGN32) Process data item (32-bit)

IB_PD_SetDataN (n, m, o)

Task: This macro converts a word (16-bit) to Motorola format and writes it to the
specified position in the output buffer.

Parameters: n(USIGN8 FAR *): Pointer to the output buffer

m(USIGN16): Parameter no. (word no.)

o(USIGN16): Process data item (16-bit)

IB_PD_SetDataNHiByte(n, m, o)

Task: This macro converts the high byte (bit 8 to 15) of a word to Motorola format
and writes it to the specified position in the output buffer.

Parameters: n(USIGN8 FAR *): Pointer to the output buffer

m(USIGN16): Parameter no. (word no.)

o(USIGN8): Process data item (8-bit)

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

Programming Support Macros

533305 5-15

IB_PD_SetDataNLoByte (n, m, o)

Task: This macro converts the low byte (bit 0 to 7) of a word to Motorola format
and writes it to the specified position in the output buffer.

Parameters: n(USIGN8 FAR *): Pointer to the output buffer

m(USIGN16): Parameter no. (word no.)

o(USIGN8): Process data item (8-bit)

IB_PD_SetBytePtrHiByte (n, m)

Task: This macro returns the address of a word starting with the high byte
(bit 8 to 15).

Parameters: n(USIGN8 FAR *): Pointer to the output buffer

m(USIGN16): Parameter no. (word no.)

Return value: (USIGN8 FAR*): Address of the high byte of a word in the output
buffer.

IB_PD_SetBytePtrLoByte (n, m)

Task: This macro returns the address of a word starting with the low byte
(bit 0 to 7).

Parameters: n(USIGN8 FAR *): Pointer to the output buffer

m(USIGN16): Parameter no. (word no.)

Return value: (USIGN8 FAR *): Address of the low byte of a word in the output
buffer.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

5-16 533305

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

Section 6

533305 6-1

This section informs you about

– diagnostics for driver software

Diagnostics for Driver Software ..6-3

6.1 Overview of DDI Messages...6-3

6.2 Positive DDI Message...6-7

6.3 DDI Error Messages..6-8

6.3.1 Error Messages When Initializing the Controller Board .6-8

6.3.2 General Error Messages..6-9

6.3.3 Error Messages When Opening a Data Channel.........6-12

6.3.4 Error Messages Relating to the Transfer
of Messages/Commands ...6-13

6.3.5 Error Messages Relating to Process Data Transfer6-15

6.3.6 Error Messages Under DOS..6-18

6.3.7 Error Messages Under Microsoft Windows..................6-18

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

6-2 533305

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

Diagnostics for Driver Software

533305 6-3

6 Diagnostics for Driver Software

The driver software diagnostics use error messages and error codes for the
individual functions. These error codes can be used to precisely define the
cause of an error. An operating system related offset (ERR_BASE) is
added to the codes listed here. This offset is already taken into
consideration when using error message definitions.

6.1 Overview of DDI Messages

Table 6-1 Overview of DDI messages

Code Constant Error Description Page

0000hex ERR_OK The function was executed successfully 6-7

0080hex ERR_INVLD_BOARD_NUM Non-permissible or invalid board number 6-8

0081hex ERR_INVLD_IO_ADDR Invalid I/O address 6-8

0082hex ERR_INVLD_MPM_ADDR Invalid address for the MPM window 6-8

0083hex ERR_INVLD_INTR_NUM Invalid interrupt 6-9

0084hex ERR_INVLD_CARD_CODE Invalid board code 6-9

0085hex ERR_INVLD_NODE_HD Invalid node handle specified 6-10

0086hex ERR_INVLD_NODE_STATE Node handle of a data channel that is
already closed specified

6-10

0087hex ERR_NODE_NOT_READY Desired node not ready 6-10

0088hex ERR_WRONG_DEV_TYP Incorrect node handle 6-10

0089hex ERR_DEV_NOT_READY Local bus master not ready yet 6-10

008Ahex ERR_INVLD_PERM Access type not enabled for channel 6-11

008Bhex ERR_TSR_NOT_LOADED Device driver not loaded 6-18

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

6-4 533305

008Chex ERR_INVLD_CMD Utility function is not supported by driver
Version 0.9

6-11

008Dhex ERR_INVLD_PARAM Command contains invalid parameter 6-11

0090hex ERR_NODE_NOT_PRES Node not available 6-12

0091hex ERR_INVLD_DEV_NAME Unknown device name used 6-12

0092hex ERR_NO_MORE_HNDL Device driver resources used up 6-12

0093hex ERR_NO_MORE_SUBNODE There are no handles available for this
subnode

6-12

0094hex ERR_SUBNODE_IN_USE Subnode is already in use 6-13

0095hex ERR_PARA_OUT_OF_RANGE The parameter has invalid values 6-13

0096hex ERR_AREA_EXCDED Access exceeds limit of selected data area 6-15

0097hex ERR_INVLD_DATA_CONS Specified data consistency is not permitted 6-15

0098hex ERR_DTA_NOT_PRESENT The selected data area is not available 6-9

0099hex ERR_MPM_NOT_AVALBL It is not possible to access the MPM 6-10

009Ahex ERR_MSG_TO_LONG Message or command contains too many
parameters

6-13

009Bhex ERR_NO_MSG No message present 6-13

009Chex ERR_NO_MORE_MAILBOX No further mailboxes of the required size
free

6-14

009Dhex ERR_SVR_IN_USE Send vector register in use

009Ehex ERR_SVR_TIMEOUT Invalid node called 6-14

009Fhex ERR_AVR_TIMEOUT Invalid node called 6-14

Table 6-1 Overview of DDI messages

Code Constant Error Description Page

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

Diagnostics for Driver Software

533305 6-5

00A2hex ERR_SYSFAIL SysFail warning is active,
however data has been exchanged

00A3hex ERR_MSG_EVENT_IN_USE The event description specified is already
in use.

00A4hex ERR_MSG_EVENT_ADDRESS The address specified is not in the
permitted area.

00A5hex ERR_MSG_EVENT_LENGTH The length specified is not permitted.
(0 or greater than the permitted area)

00A6hex ERR_MSG_EVENT_AREA The memory area to be monitored was
exceeded.

00A7hex ERR_MSG_EVENT_MAX_ITEM The number of event descriptions has
been exceeded.

00A9hex ERR_PLUG_PLAY Invalid write access to process data in plug
and play mode

00B0hex ERR_NODE_IN_USE Notification mode activated twice for one
node (Windows)

00C0hex ERR_INVLD_PID Incorrect process identifier specified

00C1hex ERR_BLK_MODE_IS_ENBLD Blocked mode is already enabled

00C2hex ERR_THREAD_IS_WAITING Another thread is already using the
notification mode of this node

00C8hex ERR_INVLD_NODE Invalid node number

00C9hex ERR_INVLD_MEMORY Invalid receive buffer

00CAhex ERR_INVLD_NOTIFY_MODE Invalid notification mode

00CBhex ERR_BLOCK_TIMEOUT Waiting time for a message exceeded

00CChex ERR_INVLD_NOTIFY_STATE Invalid notification status

00D1hex ERR_INVLD_HWND Invalid Windows handle

00D2hex ERR_BOARD_NOT_PRES Board not entered in IBDDIWIN.INI

00D3hex ERR_INVLD_INI_PARAM Invalid parameter in IBDDIWIN.INI

Table 6-1 Overview of DDI messages

Code Constant Error Description Page

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

6-6 533305

00E1hex ERR_WRONG_BOARD_REV The controller board does not support the
command used

00E2hex ERR_DRV_INVLD_FUNC Function not supported by the driver 6-11

00E3hex ERR_SEC_PERM_DENIED Access not permitted, incorrect password

00EBhex ERR_DTI_IN_USE DPM driver: The handshake for
exchanging process data is not yet
complete.
Remedy: Repeat access

00EChex ERR_DTI_NOT_RDY DPM driver: Error during handshake for
exchanging process data.
Remedy: Repeat access

0100hex ERR_STATE_CONFLICT This service is not permitted in the
selected operating mode of the controller

0101hex ERR_INVLD_CONN_TYPE Service called via an invalid connection

0102hex ERR_ACTIVATE_PD_CHK Process IN data monitoring could not be
activated

0103hex ERR_DATA_SIZE The data volume is too large

0110hex ERR_NUMBER_OF_DRIVERS
_EXCEEDED

Maximum number of drivers already
loaded (IBDDIWNT.DLL)

6-18

0111hex ERR_LOAD_DLL_FAILED Driver DLL could not be found
(IBDDIWNT.DLL)

6-18

0200hex ERR_OPT_INVLD_CMD Unknown command

0201hex ERR_OPT_INVLD_PARAM Invalid parameter

1010hex ERR_IBSETH_OPEN The IBSETHA file cannot be opened

1013hex ERR_IBSETH_READ The IBSETHA file cannot be read

1014hex ERR_IBSETH_NAME The device name cannot be found in the
file

1016hex ERR_IBSETH_INTERNET The system cannot read the computer
name/host address

Table 6-1 Overview of DDI messages

Code Constant Error Description Page

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

Diagnostics for Driver Software

533305 6-7

6.2 Positive DDI Message

ERR_OK 0000hex

Meaning: After successful execution of a function, the driver software generates this
message as a positive acknowledgment.

Cause: No errors occurred when executing the function. If a function is not
executed successfully, the driver software generates one of the following
listed error messages.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

6-8 533305

6.3 DDI Error Messages

If the Device Driver Interface generates one of the following error
messages as a negative acknowledgment, the function called previously
was not processed successfully.

6.3.1 Error Messages When Initializing the Controller
Board

ERR_INVLD_BOARD_NUM 0080hex

Cause: A non-permissible or invalid board number was used.

Remedy: Specify a valid board number. For example, 1, 2, 3 to 8 are permitted
depending on the driver used.

ERR_INVLD_IO_ADDR 0081hex

Cause: The I/O address specified for the controller board is not permitted.

Remedy: Specify a valid I/O address. The following values are permitted:
100hex, 108hex, 110hex, 118hex, ... , 3E8hex, 3F0hex, 3F8hex

ERR_INVLD_MPM_ADDR 0082hex

Cause: The base address specified in the memory area of the PC for the 4 kbyte
MPM window (MPM address) is outside the area supported by the
controller board.

Remedy: Specify an MPM address within the area supported by the controller board
(A0000hex to FF000hex).

The controller board uses an address area of 4 kbytes from this base
address onwards. Ensure that this area is not already being used by other
boards. An automatic check is not carried out. Since this memory area is
already used extensively (BIOS, etc.), in practice, the available address
area is usually limited to parts of address segments D and E (addresses
D0000hex to EFFFFhex). The standard value (default) is D0000hex.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

Diagnostics for Driver Software

533305 6-9

ERR_INVLD_INTR_NUM 0083hex

Cause: The specified interrupt is not permitted.

Remedy: Interrupts IRQ3, IRQ5, IRQ7, IRQ9, IRQ10, IRQ11, IRQ12, and IRQ15 are
permitted.

When several controller boards are used in one host, another interrupt
must be used for every installed controller board. Interrupts IRQ10, IRQ11,
and IRQ12 are not usually used on a standard PC and are thus available
for the device driver. The other interrupts are frequently used by standard
PC components (serial interfaces COM1 and COM2, network cards, etc.)
and therefore should not be used for controller boards.

ERR_INVLD_CARD_CODE 0084hex

Cause: An incorrect board number was detected for a controller board (for
example, PCCB).

Remedy: – Check the controller board hardware

6.3.2 General Error Messages

These error messages can occur when calling any DDI function.

ERR_DTA_NOT_PRESENT 0098hex

Cause: The specified data area does not exist. The area of a node was selected
that is not available.

Remedy: – Check the parameters entered

– Check that the selected node is actually available
(hardware)

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

6-10 533305

ERR_MPM_NOT_AVALBL 0099hex

Cause: It is not possible to access the MPM. A reset may have been triggered on
the controller board.

Remedy: Uninstall the driver and restart.

ERR_INVLD_NODE_HD 0085hex

Cause: An invalid node handle was used when calling the function.

Remedy: Use the valid node handle of a successfully opened data channel.

ERR_INVLD_NODE_STATE 0086hex

Cause: An invalid node handle was used when calling the function. This is the
handle of a data channel that has already been closed.

Remedy: Open the data channel or use one that is already open.

ERR_NODE_NOT_READY 0087hex

Cause: The node to be used has not yet indicated it is "Ready", i.e., the node ready
bit has not been set in the MPM status register. The cause of this can be,
e.g., a hardware fault.

Remedy: - Check that the controller board has been started
- Check whether the PC is in the reset state
- Check the BIOS settings; double-assigned IRQs

ERR_WRONG_DEV_TYPE 0088hex

Cause: Incorrect node handle. An attempt was made, e.g., to access the mailbox
interface with the node handle of the data interface.

ERR_DEV_NOT_READY 0089hex

Cause: The INTERBUS controller board was addressed, even though it was not
ready ("READY" LED).

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

Diagnostics for Driver Software

533305 6-11

ERR_INVLD_PERM 008Ahex

Cause: An attempt was made to execute a function on a channel for which the
relevant access rights were not logged in when opening the data channel.
This error occurs, e.g., if you attempt to write to the data interface, but read-
only rights were specified when opening the channel (DDI_READ
constant).

Remedy: Close the channel and open it again with modified access rights.

ERR_INVLD_CMD 008Chex

Cause: This error message is generated when certain new help functions of the
new LDDI_TSR.LIB are used with an old driver (Version < 0.9).

Remedy: Use a more up-to-date driver (Version ≥ 0.9).

ERR_INVLD_PARAM 008Dhex

Cause: This error message is generated when certain new help functions of the
new LDDI_TSR.LIB are used with an old driver (Version < 0.9).

Remedy: Use a more up-to-date driver (Version ≥ 0.9).

ERR_DRV_INVLD_FUNC 00E2hex

Cause: The used function is not supported by the DDI and driver.

Remedy: Use a more up-to-date driver, which supports these parameter values.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

6-12 533305

6.3.3 Error Messages When Opening a Data Channel

ERR_NODE_NOT_PRES 0090hex

Cause: An attempt was made to open a data channel to a node that does not exist.

Remedy: Select the correct node.
Available nodes:
Host: Node 0
IBS master: Node 1
Coprocessor board: Node 2

ERR_INVLD_DEV_NAME 0091hex

Cause: An unknown device name was specified as a parameter when opening a
data channel.

Remedy: Select a correct device name according to Table 2-1 on page 2-9.

ERR_NO_MORE_HNDL 0092hex

Cause: Device driver resources used up. No further data channels can be opened.
If you exit a program without closing the data channels in use, they will
remain open. Additional data channels will be opened the next time the
program is started. After this program has been started a number of times,
the maximum permitted number of data channels that can be opened
simultaneously will be reached and no more will be available.

Remedy: Close a data channel that is not required or reinstall the device driver.
Every time you exit a program you should close all data channels that have
been used.

ERR_NO_MORE_SUBNODE 0093hex

Cause: The maximum number of handles to a node have already been opened.

Remedy: Close data channels that are no longer required (on exiting a program).

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

Diagnostics for Driver Software

533305 6-13

ERR_SUBNODE_IN_USE 0094hex

Cause: Opening using the specified subnode was rejected, since there is already
an open connection with this subnode, and only one connection is
permitted.

Remedy: Close the previously opened connection.

ERR_PARA_OUT_OF_RANGE 0095hex

Cause: A parameter has a value, which is not permitted.

Remedy: Check your parameters for the function used or use a more up-to-date
driver, which supports these parameter values.

6.3.4 Error Messages Relating to the Transfer of
Messages/Commands

ERR_MSG_TOO_LONG 009Ahex

Cause: If an error message occurs when sending a command, then the length of
the command exceeds the maximum number of permitted parameters.

Remedy: Reduce the number of parameters.

Cause: If an error message occurs when receiving a message, then the length of
the message exceeds the length of the receive buffer specified.

Remedy: Increase the length of the receive buffer.

ERR_NO_MSG 009Bhex

Cause: This message occurs if an attempt has been made to retrieve a message
using the DDI_MXI_RCV_MESSAGE function, but no messages are
present for the node specified by the node handle.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

6-14 533305

ERR_NO_MORE_MAILBOX 009Chex

Cause: You have requested too many mailboxes within a short space of time.

No further mailboxes of the required size are available. Note the maximum
useful mailbox size (1020 bytes).

Remedy: Increase the time interval between individual mailbox requests and try
again.

Select a smaller mailbox or wait until a mailbox of the required size is free
again.

ERR_SVR_TIMEOUT 009Ehex

Meaning: If a message placed in the MPM by the INTERBUS controller board is not
retrieved by the MPM device addressed, it does not reset the acknowledge
message bit set by the INTERBUS controller board, i.e., the MPM device
addressed does not indicate "Message detected". After a specific time has
expired ("timeout"), the INTERBUS controller board generates the error
message ERR_SVR_TIMEOUT. If this error message occurs repeatedly,
it must be assumed that the node being addressed is no longer ready to
accept the message.

Cause: Invalid node called, for example:

An attempt was made to address the coprocessor board (COP), but it is
faulty.

Remedy: Please get in touch with Phoenix Contact.

ERR_AVR_TIMEOUT 009Fhex

Meaning: An acknowledge message bit was set when reading a message to indicate
to the communication partner that a message has been processed and the
mailbox is free again. This bit must be reset by the communication partner
to indicate that it has recognized that the mailbox is free again. If this reset
does not take place within a set time, this error message is generated.

Cause: Invalid node called.

Remedy: Please get in touch with Phoenix Contact.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

Diagnostics for Driver Software

533305 6-15

6.3.5 Error Messages Relating to Process Data
Transfer

These errors only occur when accessing the data interface (DTI).

ERR_AREA_EXCDED 0096hex

Meaning: Access exceeds the upper limit of the selected data area.

Cause: The data record to be read or written is too large. The function can read a
maximum of 4 kbytes in one call.

Remedy: Only read or write data records with a maximum size of 4 kbytes.

Cause: The upper area limit (4 kbytes over the start of the device area) has been
exceeded.

Remedy: Make sure that the total of address offset, relative address, and data length
to be read does not exceed the upper area limit.

ERR_INVLD_DATA_CONS 0097hex

Cause: An invalid value was specified for the data consistency (1 byte).

Remedy: Specify a permissible data consistency with one of the following constants:

DTI_DATA_BYTE :Byte data consistency (1 byte)

ERR_PLUG_PLAY 00A9hex

Cause: An attempt was made to gain write access to process data in plug and play
mode. This is not permitted for security reasons.

Remedy: Deactivate plug and play mode using the "Set_Value" command with the
value "0" or switch to read access.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

6-16 533305

ERR_STATE_CONFLICT 0100hex

Cause: A service was called, which is not permitted in this operating mode.

Remedy: Switch to an operating mode in which the desired call can be executed.

ERR_INVLD_CONN_TYPE 0101hex

Cause: A service was called, which cannot be executed via the selected
connection.

Remedy: Select a connection type via which the service can be executed.

ERR_ACTIVE_PD_CHK 0102hex

Cause: Process IN data monitoring failed to activate.

ERR_DATA_SIZE 0103hex

Cause: The data volume to be transmitted exceeds the maximum permissible size.

Remedy: Transmit the data in several cycles.

ERR_OPT_INVLD_CMD 0200hex

Cause: An attempt was made to execute an unknown (invalid) command.

Remedy: Select a valid command.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

Diagnostics for Driver Software

533305 6-17

ERR_OPT_INVLD_PARAM 0201hex

Cause: An attempt was made to execute a command with unknown (invalid)
parameters.

Remedy: Enter valid parameters.

ERR_ETH_RCV_TIMEOUT 1001hex

Cause: The time limit for receiving a data telegram was exceeded.

Remedy: The Ethernet connection was interrupted or an incorrect IP address was
entered. Increase the timeout value.

ERR_IBSETH_OPEN 1010hex

Cause: The IBSETHA file cannot be opened.

Remedy: The IBSETHA file does not exist or is in the wrong directory.

ERR_IBSETH_READ 1013hex

Cause: The IBSETHA file cannot be read.

Remedy: The file exists but cannot be read. You may not have read access.

ERR_IBSETH_NAME 1014hex

Cause: The device name cannot be found in the file.

Remedy: The name, which was transferred to the DDI_DEVOPEN_NODE ()
function, is not in the IBSETHA file.

ERR_IBSETH_INTERNET 1016hex

Cause: The system cannot read the computer name/host address.

Remedy: The IP address entered in the IBSETHA file is incorrect or the symbolic
name cannot be found in the host file.

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

6-18 533305

6.3.6 Error Messages Under DOS

ERR_TSR_NOT_LOADED 008Bhex

Cause: The device driver is not yet loaded, however an attempt was made to
access it.

Remedy: Load the IBSISA.EXE TSR program as the device driver on the host.

6.3.7 Error Messages Under Microsoft Windows

ERR_NUMBER_OF_DRIVERS_EXCEEDED 0110hex

Cause: The maximum number of external drivers is already loaded.

Remedy: Close the connections to drivers/devices that are currently no longer
required.

ERR_LOAD_DLL_FAILED 0111hex

Cause: A required DLL driver could not be found.

Remedy: – Check whether all required drivers are available

– Check the registry database for the correct path information to the
drivers

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

Appendix A

533305 A-19

A Index

C
ClearWatchDog............ 3-15, 3-16, 3-18, 3-19,

3-20, 4-27

Client monitoring 4-35

Connection monitoring 4-35

Converting

- Input data ... 5-12

- Output data .. 5-14

- The data block of a command.............. 5-7

- The data block of a message............... 5-9

D
Data channel ... 4-3

Data interface (DTI)................................... 2-18

Data interface (DTI) monitoring....... 4-35, 4-41

Data telegram.. 4-36

DDI

Error messages...................................... 6-3

DDI messages... 6-3

DDI_ClrMsgNotification............................. 4-31

DDI_DevCloseNode..... 3-15, 3-16, 3-17, 3-19,
3-20, 4-6

DDI_DevOpenNode 3-15, 3-16, 3-17, 3-19,
3-20, 4-3

DDI_DTI_ReadData 3-15, 3-16, 3-17, 3-19,
3-20, 4-7

DDI_DTI_WriteData 3-15, 3-16, 3-17, 3-19,
3-20, 4-10

DDI_MXI_RcvMessage 3-15, 3-16, 3-17, 3-19,
3-20, 4-17

DDI_MXI_SndMessage 3-15, 3-16, 3-17, 3-19,
3-20, 4-14

DDIGetInfo .. 3-15, 3-17, 3-18, 3-19, 3-20, 4-31

Diagnostic parameter register................... 2-25

Diagnostics

Bit register.. 2-25

Register.. 2-25

Drivers for MS-DOS 3-6

Dynamic link library..................................... 3-7

E
Echo port... 4-36

EnableWatchDog 3-15, 3-16, 3-17, 3-19,
3-20, 4-25

EnableWatchDogEx...... 3-15, 3-17, 3-18, 4-29

Error messages

DDI.. 6-3, 6-8

For process data transfer..................... 6-15

General .. 6-9

Relating to the transfer of messages/com-
mands .. 6-13

Under DOS .. 6-18

Under Microsoft Windows.................... 6-18

When initializing the controller board 6-8

When opening a data channel 6-12

G
GetIBSDiagnostic................... 3-15, 3-16, 3-17

GetIBSDiagnosticEx 3-15, 3-16, 3-17, 4-22

GetSlaveDiagnostic 3-16, 3-19, 3-20, 4-24

GetSysFailRegister 3-16, 3-17, 3-18, 3-19,
3-20, 4-33

GetWatchDogState 3-15, 3-16, 3-17, 3-19,
3-20, 4-26

GetWatchDogTimeout . 3-15, 3-17, 3-18, 3-19,
3-20, 4-29

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

IBS PC SC SWD UM E

A-20 533305

H
Host monitoring ... 4-35

I
Include files ... 3-6

Intel format .. 5-3

IPMS ... 5-3

L
Libraries .. 3-6

M
Macros for process data conversion 5-4

Mailbox interface (MXI) 2-16

Monitoring function.................................... 4-35

Client .. 4-35

Connection ... 4-35

Controller board 4-35

Data interface (DTI).................... 4-35, 4-41

Monitoring time.. 4-28

Motorola format ... 5-3

MPM

SysFail signal ... 2-6

N
NetFail signal .. 4-45

Node handle.. 4-3

O
Overview of the driver functions................ 3-15

P
Process data conversion............................. 5-3

Process image .. 5-3

S
SetWatchDogTimeout .. 3-15, 3-17, 3-18, 3-19,

3-20, 4-27

SysFail signal .. 4-45

T
TriggerWatchDog......... 3-15, 3-16, 3-17, 3-19,

3-20, 4-25

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

533305

We Are Interested in Your Opinion!

We would like to hear your comments and suggestions concerning this
document.

We review and consider all comments for inclusion in future
documentation.

Please fill out the form on the following page and fax it to us or send your
comments, suggestions for improvement, etc. to the following address:

Phoenix Contact GmbH & Co. KG
Marketing Services
Dokumentation INTERBUS
32823 Blomberg
GERMANY

Phone +49 - (0) 52 35 - 3-00
Telefax +49 - (0) 52 35 - 3-4 18 08
E-Mail tecdoc@phoenixcontact.com

http://www.onlinecomponents.com/

onlin
ec

om
ponen

ts
.co

m

533305

FAX Reply
Phoenix Contact GmbH & Co. KG Date:
Marketing Services
Dokumentation INTERBUS Fax No: +49 - (0) 52 35 - 3-4 18 08

From:

Company: Name:

Department:

Address: Job function:

City, ZIP
code:

Phone:

Country: Fax:

Document:

Designation: IBS PC SC SWD UM E Revision: 05 Order No.: 27 45 17 2

My Opinion on the Document

Form Yes In part No

Is the table of contents clearly arranged?

Are the figures/diagrams easy to understand/helpful?

Are the written explanations of the figures adequate?

Does the quality of the figures meet your expectations/needs?

Does the layout of the document allow you to find information
easily?

Contents Yes In part No

Is the phraseology/terminology easy to understand?

Are the index entries easy to understand/helpful?

Are the examples practice-oriented?

Is the document easy to handle?

Is any important information missing? If yes, what?

Other Comments:

http://www.onlinecomponents.com/

