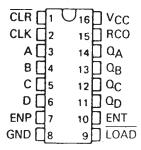
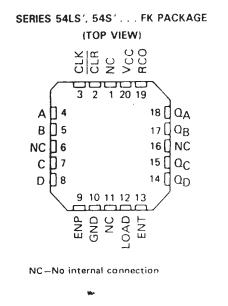
SN54160 THRU SN54163, SN54LS160A THRU SN54LS163A, SN54S162, SN54S163, SN74160 THRU SN74163, SN74LS160A THRU SN74LS163A, SN74S162, SN74S163 SYNCHRONOUS 4-BIT COUNTERS SDLS060 - OCTOBER 1976 - REVISED MARCH 1988


'160, '161, 'LS160A, 'LS161A . . . SYNCHRONOUS COUNTERS WITH DIRECT CLEAR '162, '163, 'LS162A, 'LS163A, 'S162, 'S163 . . . FULLY SYNCHRONOUS COUNTERS

- Internal Look-Ahead for Fast Counting
- Carry Output for n-Bit Cascading
- Synchronous Counting
- Synchronously Programmable
- Load Control Line
- Diode-Clamped Inputs


	TYPICAL	
TYPICAL PROPAGATION	MAXIMUM	TYPICAL
TIME, CLOCK TO	CLOCK	POWER
Q OUTPUT	FREQUENCY	DISSIPATION
14 ns	32 MHz	305 mW
14 ns	32 MHz	93 mW
9 ns	70 MHz	475 mW
	TIME, CLOCK TO Q OUTPUT 14 ns 14 ns	TYPICAL PROPAGATIONMAXIMUMTIME, CLOCK TOCLOCKQ OUTPUTFREQUENCY14 ns32 MHz14 ns32 MHz

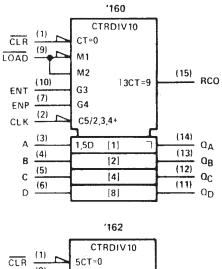
description

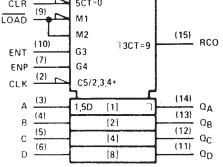
These synchronous, presettable counters feature an internal carry look-ahead for application in high-speed counting designs. The '160,'162,'LS160A,'LS162A, and 'S162 are decade counters and the '161,'163,'LS161A,'LS163A, and 'S163 are 4-bit binary counters. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincident with each other when so instructed by the count-enable inputs and internal gating. This mode of operation eliminates the output counting spikes that are normally associated with asynchronous (ripple clock) counters, however counting spikes may occur on the (RCO) ripple carry output. A buffered clock input triggers the four flip-flops on the rising edge of the clock input waveform. SERIES 54', 54LS' 54S'... J OR W PACKAGE SERIES 74'... N PACKAGE SERIES 74LS', 74S'... D OR N PACKAGE (TOP VIEW)

NC-No internal connection

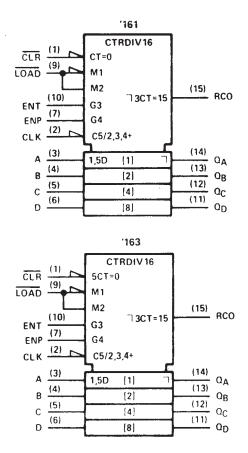
These counters are fully programmable; that is, the outputs may be preset to either level. As presetting is synchronous, setting up a low level at the load input disables the counter and causes the outputs to agree with the setup data after the next clock pulse regardless of the levels of the enable inputs. Low-to-high transitions at the load input of the '160 thru '163 should be avoided when the clock is low if the enable inputs are high at or before the transition. This restriction is not applicable to the 'LS160A thru 'LS163A or 'S162 or 'S163. The clear function for the '160, '161, 'LS160A, and 'LS161A is asynchronous and a low level at the clear input sets all four of the flip-flop outputs low regardless of the levels of clock, load, or enable inputs. The clear function for the '162, '163, 'LS162A, 'LS163A, 'S162, and 'S163 is synchronous and a low level at the clear input sets all four of the flip-flop outputs low after the next clock pulse, regardless of the levels of the enable inputs. This synchronous clear allows the count length to be modified easily as decoding the maximum count desired can be accomplished with one external NAND gate. The gate output is connected to the clear input to synchronously clear the counter to 0000 (LLLL). Low-to-high transitions at the clear input of the '162 and '163 should be avoided when the clock is low if the enable and load inputs are high at or before the transition.

Copyright © 1988, Texas Instruments Incorporated

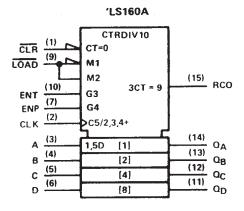

SN54160 THRU SN54163, SN54LS160A THRU SN54LS163A, SN54S162, SN54S163, SN74160 THRU SN74163, SN74LS160A THRU SN74LS163A, SN74S162, SN74S163 SYNCHRONOUS 4-BIT COUNTERS

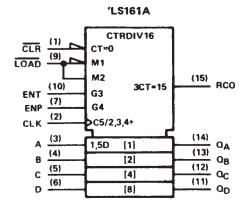

SDLS060 - OCTOBER 1976 - REVISED MARCH 1988

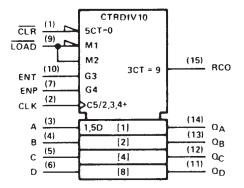
The carry look-ahead circuitry provides for cascading counters for n-bit synchronous applications without additional gating. Instrumental in accomplishing this function are two count-enable inputs and a ripple carry output. Both count-enable inputs (P and T) must be high to count, and input T is fed forward to enable the ripple carry output. The ripple carry output thus enabled will produce a high-level output pulse with a duration approximately equal to the high-level portion of the QA output. This high-level overflow ripple carry pulse can be used to enable successive cascaded stages. High-to-low-level transitions at the enable P or T inputs of the '160 thru '163 should occur only when the clock input is high. Transitions at the enable P or T inputs of the 'LS160A thru 'LS163A or 'S162 and 'S163 are allowed regardless of the level of the clock input.


'LS160A thru 'LS163A,'S162 and 'S163 feature a fully independent clock circuit. Changes at control inputs (enable P or T, or load) that will modify the operating mode have no effect until clocking occurs. The function of the counter (whether enabled, disabled, loading, or counting) will be dictated solely by the conditions meeting the stable setup and hold times.

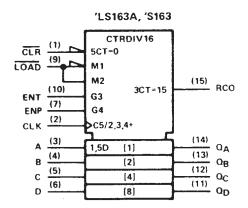
logic symbols[†]


[†]These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.



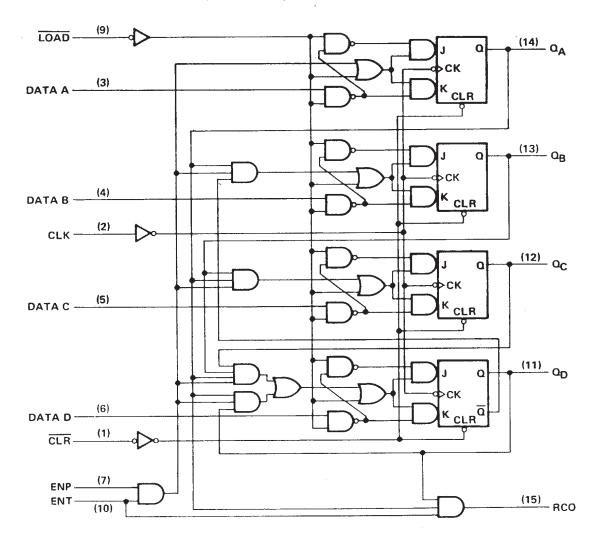

SN54LS160A THRU SN54LS163A, SN54S162, SN54S163, SN74LS160A THRU SN74LS163A, SN74S162, SN74S163 SYNCHRONOUS 4-BIT COUNTERS SDLS060 - OCTOBER 1976 - REVISED MARCH 1988

logic symbols (continued)[†]



'LS162A, 'S162

[†]These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.


SN54160, SN54162, SN74160, SN74162 SYNCHRONOUS 4-BIT COUNTERS

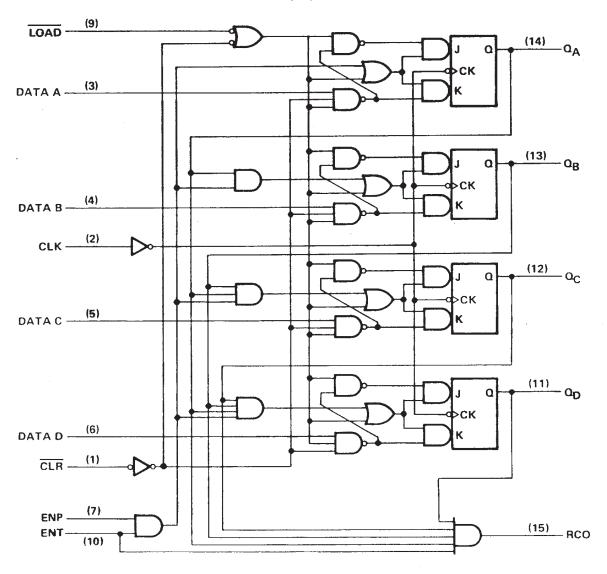
SDLS060 - OCTOBER 1976 - REVISED MARCH 1988

logic diagram (positive logic)

SN54160, SN74160 SYNCHRONOUS DECADE COUNTERS

SN54162, SN74162 synchronous decade counters are similar; however the clear is synchronous as shown for the SN54163, SN74163 binary counters at right.

Pin numbers shown are for D, J, N, and W packages

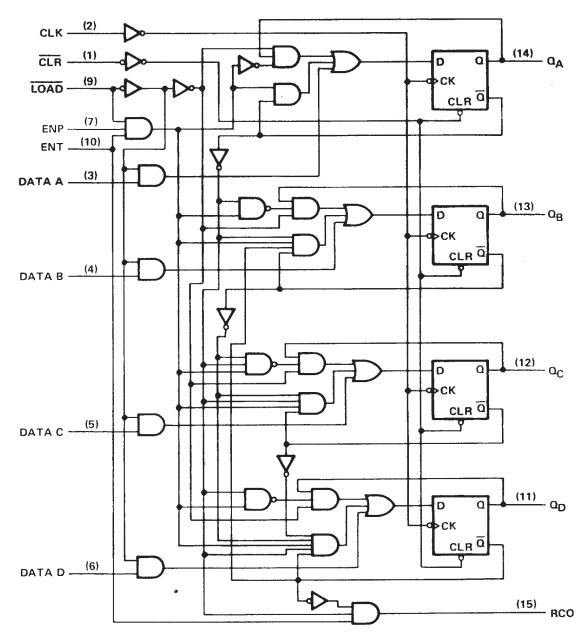

SN54161, SN54163, SN74161, SN74163 SYNCHRONOUS 4-BIT COUNTERS

SDLS060 - OCTOBER 1976 - REVISED MARCH 1988

logic diagram (positive logic)

SN54163, SN74163 SYNCHRONOUS BINARY COUNTERS

SN54161, SN74161 synchronous binary counters are similar; however, the clear is asynchronous as shown for the SN54160, SN74160 decade counters at left.

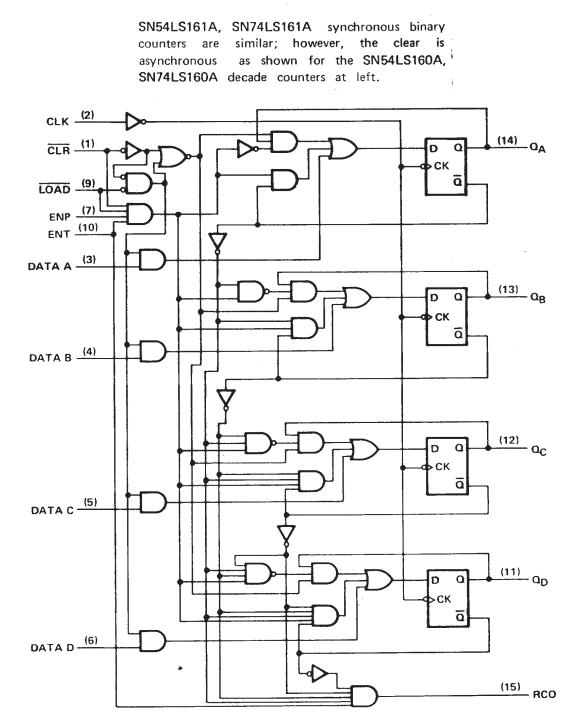

SN54LS160A, SN54LS162A, SN74LS160A, SN74LS162A SYNCHRONOUS 4-BIT COUNTERS

SDLS060 - OCTOBER 1976 - REVISED MARCH 1988

logic diagram (positive logic)

SN54LS160A, SN74LS160A SYNCHRONOUS DECADE COUNTERS

SN54LS162A, SN74LS162A synchronous decade counters are similar; however the clear is synchronous as shown for the SN54LS163A, SN74LS163A binary counters at right.

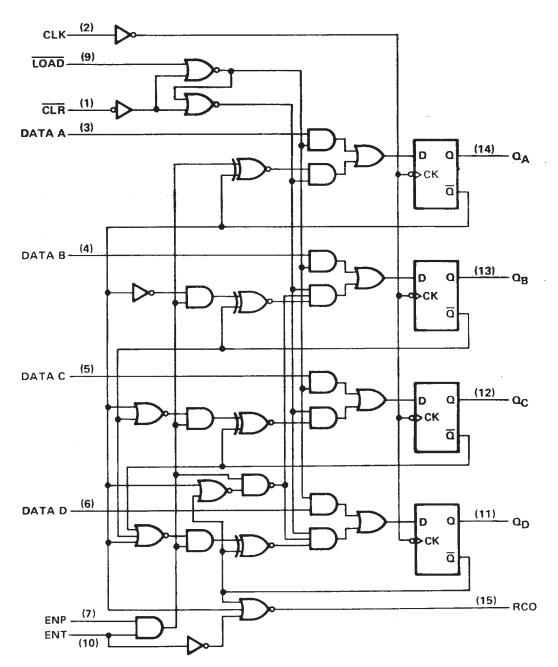


SN54LS161A, SN54LS163A, SN74LS161A, SN74LS163A SYNCHRONOUS 4-BIT COUNTERS

SDLS060 - OCTOBER 1976 - REVISED MARCH 1988

logic diagram (positive logic)

SN54LS163A, SN74LS163A SYNCHRONOUS BINARY COUNTERS

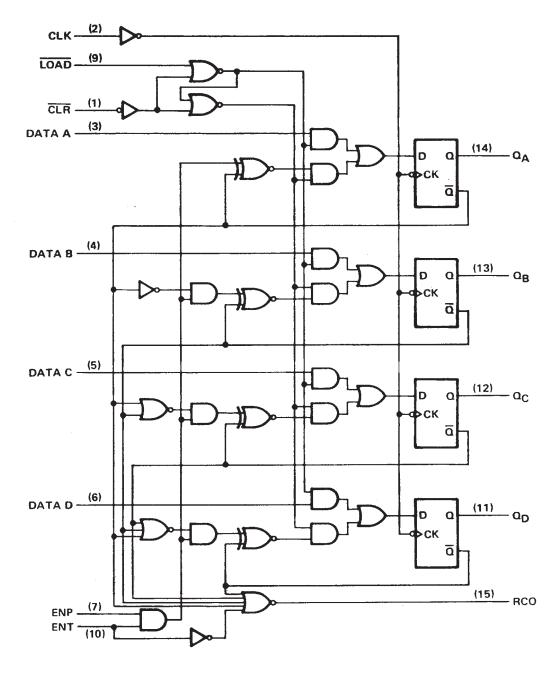


SN54S162, SN74S162 SYNCHRONOUS 4-BIT COUNTERS

SDLS060 - OCTOBER 1976 - REVISED MARCH 1988

logic diagram (positive logic)

SN54S162, SN74S162 SYNCHRONOUS DECADE COUNTER



SN54S163, SN74S163 SYNCHRONOUS 4-BIT COUNTERS

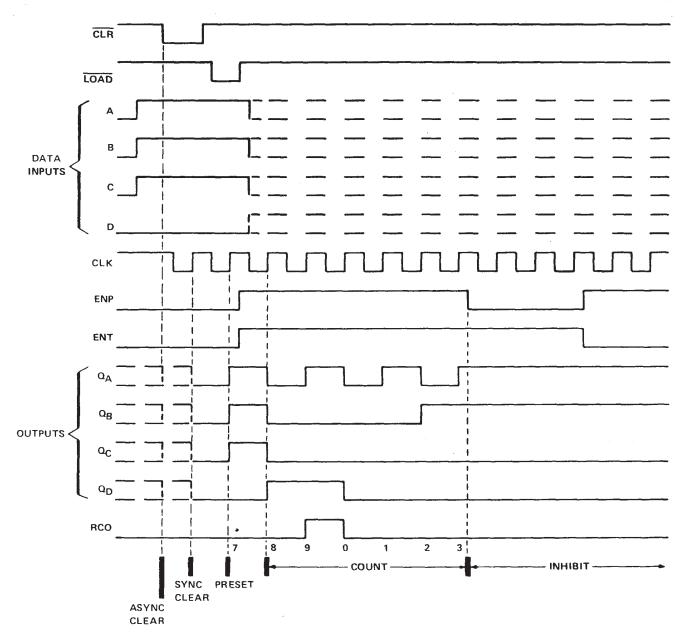
SDLS060 - OCTOBER 1976 - REVISED MARCH 1988

.

logic diagram (positive logic)

SN54S163, SN74S163 SYNCHRONOUS DECADE COUNTER

SN54160, SN54162, SN54LS160A, SN54LS162A, SN54S162, SN74160, SN74162, SN74LS160A, SN74LS162A, SN74S162 SYNCHRONOUS 4-BIT COUNTERS

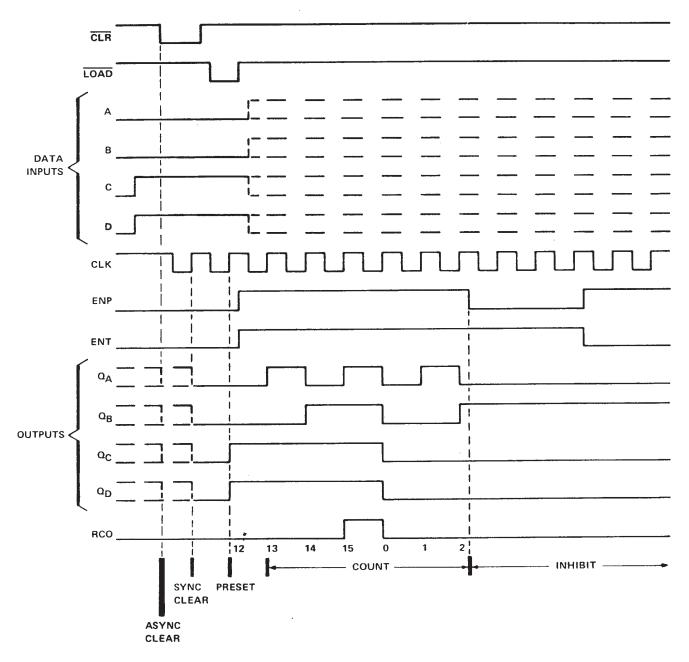

SDLS060 - OCTOBER 1976 - REVISED MARCH 1988

'160, '162, 'LS160A, 'LS162A, 'S162 DECADE COUNTERS

typical clear, preset, count, and inhibit sequences

Illustrated below is the following sequence:

- 1. Clear outputs to zero ('160 and 'LS160A are asynchronous; '162, 'LS162A, and 'S162 are synchronous)
- 2. Preset to BCD seven
- 3. Count to eight, nine, zero, one, two, and three
- 4. Inhibit

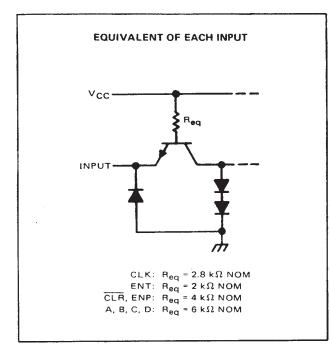


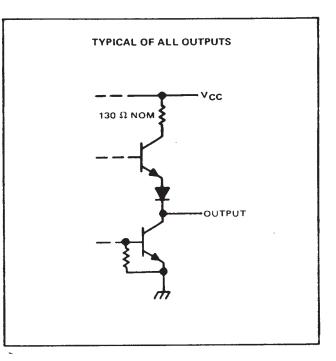
'161, 'LS161A, '163, 'LS163A, 'S163 BINARY COUNTERS

typical clear, preset, count, and inhibit sequences

Illustrated below is the following sequence:

- 1. Clear outputs to zero ('161 and 'LS161A are asynchronous; '163, 'LS163A, and 'S163 are synchronous)
- 2. Preset to binary twelve
- 3. Count to thirteen, fourteen fifteen, zero, one, and two
- 4. Inhibit





SN54160 THRU SN54163, SN74160 THRU SN74163 SYNCHRONOUS 4-BIT COUNTERS

SDLS060 - OCTOBER 1976 - REVISED MARCH 1988

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)	7V
Input voltage	5.5 V
Interemitter voltage (see Note 2)	
Operating free-air temperature range: SN54' Circuits	–55°C to 125°C
SN74' Circuits	. 0°C to 70°C
Storage temperature range	–65°C to 150°C

NOTES: 1. Voltage values, except interemitter voltage, are with respect to network ground terminal.
2. This is the voltage between two emitters of a multiple-emitter transistor. For these circuits, this rating applies between the count enable inputs P and T.

recommended operating conditions

			SN 541	60, SN5	4161	SN741	60, SN7	74161	
			SN541	62, SN5	54163	SN741	62, SN	74163	UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V _{CC}		<u></u>	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH					800			-800	μA
Low-level output current, IOL					16			16	mA
Clock frequency, fclock			0		25	0		25	MHz
Width of clock pulse, tw(clock)			25			25			ns
Width of clear pulse, tw(clear)			20			20			ns
		Data inputs A, B, C, D	20	_		20			
	F	ENP	20			20			ns
Setup time, t _{su} (see Figures 1 and 2)	. [LOAD	25			25			115
	· · r	CLR [†]	20			20			L
Hold time at any input, th	Hold time at any input, th					0			ns
perating free-air temperature, T_{Δ}					125	0		70	°C

[†]This applies only for '162 and '163, which have synchronous clear inputs.

SN54160 THRU SN54163, SN74160 THRU SN74163 SYNCHRONOUS 4-BIT COUNTERS

SDLS060 - OCTOBER 1976 - REVISED MARCH 1988

PARAMETER		TEST CO	TEST CONDITIONS [†]		160, SN 162, SN		SN74 SN74				
					MIN	TYP‡	MAX	MIN	TYP‡	MAX]
VIH	High-level input voltage				2			2			V
VIL	Low-level input voltage						0.8			0.8	V
VIK	Input clamp voltage		V _{CC} = MIN,	l _l =12 mA			-1.5			-1.5	V
	/OH High-level output voltage		V _{CC} = MIN,	V _{IH} = 2 V,	2.4	3.4		2.4	3.4		v
⊻он			V _{IL} = 0.8 V,	I _{OH} = -800 μA	2.4	3.4		2.4	3.4	,	v
VOL	Low-level output voltage		V _{CC} = MIN,	VIH = 2 V,	1	0.0	0.4		0.2	0.4	V
			V _{IL} = 0.8 V,	IOL = 16 mA		0.2	0.4		0.2	0.4	V.
11	Input current at	maximum input voltage	V _{CC} = MAX,	VI = 5.5 V			1			1	mA
1	High-level	CLK or ENT	1/ MAAY	V 2 4 V			80			80	
ΙΗ	input current	Other inputs	$V_{CC} = MAX,$	vi = 2.4 v			40			40	μA
	Low-level	CLK or ENT					-3.2			-3.2	
ΗL	input current	Other inputs	$-V_{CC} = MAX,$	V = 0.4 V			-1.6			-1.6	mA
los	Short-circuit out	hort-circuit output current§			-20		-57	-18		-57	mA
1ссн	Supply current,	all outputs high	V _{CC} = MAX,	See Note 3		59	85		59	94	mA
ICCL	Supply current,	all outputs low	V _{CC} = MAX,	See Note 4	1	63	91		63	101	mA

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡]All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$.

\$Not more than one output should be shorted at a time.

NOTES: 3. I_{CCH} is measured with the load input high, then again with the load input low, with all other inputs high and all outputs open. 4. I_{CCL} is measured with the clock input high, then again with the clock input low, with all other inputs low and all outputs open.

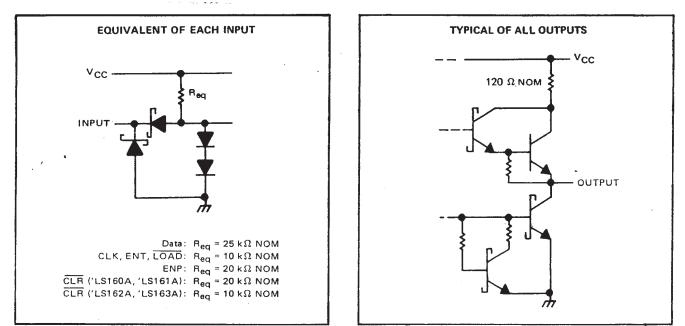
switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	түр	ΜΑΧ	רואט
f _{max}				25	32		MHz
^t PLH	CLK		7		23	35	- ns
tPHL		RCO	Cլ = 15 pF,		23	35	
tPLH	CLK	Апу			13	20	ns
^t PHL	(LOAD input high)	۵	$R_L = 400 \Omega$,		15	23	
tPLH	CLK	Αηγ	See Figures 1 and 2		17	25	ns
tPHL	(LOAD input low)	Q	and Note 5		19	29	
τριμ					11	16	
^t PHL	ENT	RCO			11	16	ns
tPHL	CLR	Any Q	-1		26	38	ns

¶f_{max} = Maximum clock frequency

tpLH = propagation delay time, low-to-high-level output

tpHL = propagation delay time, high-to-low-level output


NOTE 5: Propagation delay for clearing is measured from the clear input for the '160 and '161 or from the clock input transition for the '162 and '163.

SN54LS160 THRU SN54LS163A, SN74LS160 THRU SN74LS163A SYNCHRONOUS 4-BIT COUNTERS

SDLS060 - OCTOBER 1976 - REVISED MARCH 1988

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 7)	· · · · · · · · · · · · · · · · · · ·
input voltage	· · · · · · · · · · · · · · · · · · ·
Operating free-air temperature range: SN54LS' Circuits	
SN74LS' Circuits	0°C to 70°C
Storage temperature range 🕠	

NOTE 7: Voltage values are with respect to network ground terminal.

recommended operating conditions

				1	SN54LS	57	:	SN74LS'		
<u>-</u>				MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage			4.5	5	5.5	4.75	5	5.25	V
ЮН	High-level output current					- 400			- 400	μA
^I OL	Low-level output current					4			8	mA
fclock	Clock frequency			0		25	0		25	MHz
tw(clock)	Width of clock pulse			25			25			ns
^t w(clear)	Width of clear pulse			20			20			ns
	······		Data inputs A, B, C, D	20			20			
			ENP or ENT	20			20			
	Conversions (and Cineses 1 and 2)	•	LOAD	20			20			ns
t _{su}	Setup time, (see Figures 1 and 2)		LOAD inactive state	20			20			(15
			CLR [†]	20			20			
			CLR inactive state	25			25			
th	Hold time at any input			3			3			ns
TA	perating free-air temperature			55		125	0		70	°C

[†] This applies only for 'LS162 and 'LS163, which have synchronous clear inputs.

SN54LS160 THRU SN54LS163A, SN74LS160 THRU SN74LS163A SYNCHRONOUS 4-BIT COUNTERS

SDLS060 - OCTOBER 1976 - REVISED MARCH 1988

				+		SN54LS			SN74LS	f	
	PARA	METER	TEST CON	DITIONS	MIN	TYP‡	MAX	MIN	түр‡	MAX	UNIT
VIH	High-level input vo	oltage		· · · · · · · · · · · · · · · · · · ·	2			2			V
VIL	Low-level input vo	oltage					0.7			0.8	V
VIK	Input clamp volta	ge	V _{CC} = MIN,	II = -18 mA			-1.5			-1.5	V
	High-level output voltage			V _{IH} = 2 V, I _{OH} = -400 μA	2.5	3.4		2.7	3.4		v
Voi	Low-level output			IOL = 4 mA		0.25	0.4		0.25	0.4	v
VUL			ViH = 2 V, ViL = ViL max	10L = 8 mA					0.35	0.5	
	Input current at maximum	Data or ENP				_	0.1			0.1	
•		LOAD, CLK, or ENT		$\lambda = 7 \lambda$			0.2			0.2	mA
		CLR ('LS160A, 'LS161A)		v ~/v			0.1			0.1] '''``
	input voltage	CLR ('LS162A, 'LS163A)					0.2			0.2	
		Data or ENP		N . 0 7 V		_	20			20	
	High-level	LOAD, CLK, or ENT					40			40	
ЧΗ	input current	CLR ('LS160A, 'LS161A)	V _{CC} = MAX,	VI - 2.7 V			20			20	
		CLR ('LS162A, 'LS163A)					40			40	·
		Data or ENP					-0.4			-0.4	
	Low-level	LOAD, CLK, or ENT		V - 0 4 V			-0.8			-0.8] mA
ΗL	input current	CLR ('LS160A, 'LS161A)	V _{CC} = MAX,	VI = 0.4 V			-0.4			-0.4] """
		CLR ('LS162A, 'LS163A)					-0.8			-0.8	ł
los	Short-circuit outp	ut current §	V _{CC} = MAX		-20		-100	-20		-100	mA
ІССН	Supply current, al	l outputs high	V _{CC} = MAX,	See Note 3		18	31		18	31	mA
	Supply current, al	l outputs low	V _{CC} = MAX,	See Note 4		19	32		19	32	mA

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡]All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

SNot more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

NOTES: 3. ICCH is measured with the load input high, then again with the load input low, with all other inputs high and all outputs open.

4. ICCL is measured with the clock input high, then again with the clock input low, with all other inputs low and all outputs open.

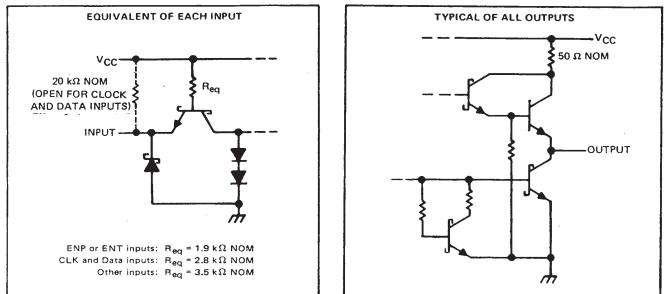
switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	ТҮР	MAX	UNI
fmax				25	32		MHz
^t PLH		RCO			20	35	ns
tPHL	- CLK	RUU			18	35	
tPLH	CLK	Any	$-C_L = 15 \text{pF},$		13	24	ns
tPHL	(LOAD input high)	Q	$R_L = 2 k \Omega,$		18	27	
tPLH	CLK	Any	See figures		13	24	ns
tPHL	(LOAD input low)	۵	1 and 2 and		18	27] ""
tPLH	• +		Note 8		9	14	ns
tPHL	- ENT	RCO			9	14] "3
tPHL	CLR	Any Q	1		20	28	ns

¶f_{max} = Maximum clock frequency

tpLH = propagation delay time, low-to-high-level output.

tpHL = propagation delay time, high-to-low-level output.


NOTE 8: Propagation delay for clearing is measured from the clear input for the 'LS160A and 'LS161A or from the clock transition for the 'LS162A and 'LS163A.

SN54S162, SN54S163, SN74S162, SN74S163 SYNCHRONOUS 4-BIT COUNTERS

SDLS060 - OCTOBER 1976 - REVISED MARCH 1988

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)	7 V
Input voltage	5.5 V
Interemitter voltage (see Note 2)	5.5 V
Operating free-air temperature range: SN54S162, SN54S163 (see Note 10)	55°C to 125°C
SN74S162, SN74S163	0°C to 70°C
Storage temperature range	

recommended operating conditions

			SN54S	162, SN	54S163	SN74S	162, SN7	74S163	
			MIN	NOM	MAX	MIN	NOM	MAX	UNI
Supply voltage, Vec			4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH					1			1	mA
Low-level output current, IOL	Low-level output current, IOL				20			20	mA
Clock frequency, f _{clock}					40	0		40	MH
Nidth of clock pulse, tw(clock) (high or low)						10			ns
Width of clear pulse, tw(clear)			10			10			ns
		Data inputs, A, B, C, D	4			4			
		ENP or ENT	12			12]
		LOAD	14			14			ns
Setup time, t _{su} (see Figure 4)		CLR	14			14			
		LOAD inactive-state	12			12			
	•	CLR inactive-state	12			12		- 1m	
Release time, trelease (see Figure 4)		ENP or ENT			4			4	ns
		Data inputs A, B, C, D	3			3			
Hold time, th (see Figure 4)		LOAD	0			0			ns
		CLR	0			0			
Operating free-air temperature, TA (s	ee Note 1	0)	55		125	0		70	С

NOTES: 1. Voltage values, except interemitter voltage, are with respect to network ground terminal.

 This is the voltage between two emitters of a multiple emitter transistor. For these circuits, this rating applies between the count enable inputs P and T.

10. An SN54S162 or SN54S163 in the W package operating at free air temperatures above 91. C requires a heal sink that provides a thermal resistance from case to free-air, $R_{\theta CA}$, of not more than 26° C/W.

SN54S162, SN54S163, SN74S162, SN74S163 SYNCHRONOUS 4-BIT COUNTERS

SDLS060 - OCTOBER 1976 - REVISED MARCH 1988

	PARAMETER			TEST CONDITIONS [†]			62 63		N74S16		UNIT
					MIN	TYP‡	MAX	MIN	TYP‡	MAX	
VIH	High-level input voltage			2			2			V	
VIL	Low-level input voltage						0.8			0.8	V
VIr	Input clamp voltage		V _{CC} = MIN,	l₁ = −18 mA			-1.2			-1.2	V
V _{OH}	High-level output voltage		V _{CC} ≈ MIN, V _{IL} = 0.8 V,	V _{IH} = 2 V, I _{OH} = -1 mA	2.5	3.4		2.7	3.4		v
VOL	L Low-level output voltage		V _{CC} = MIN, V _{IL} = 0.8 V,	V _{IH} = 2 V, I _{OL} = 20 mA			0.5			0.5	v
4	Input current at maximum	i input voltage	V _{CC} = MAX,	V ₁ = 5.5 V	-		1			1	mA
		CLK and data inputs		N - 2 7 V	1		50			50	
IН	High-level input current	Other inputs	V _{CC} = MAX,	VI - 2.7 V	-10		-200	-10		-200	μA
	· · · · ·	ENT			1		-4			4	
ΊL	Low-level input current	Other inputs	V _{CC} = MAX,	v ₁ = 0.5 v			2			- 2	mA
10S	Short-circuit output curren	ntŚ	V _{CC} - MAX		-40		-100	40		100	mA
'cc	Supply current		V _{CC} = MAX		1	95	160	-	95	160	mA

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

¹For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

 $\pm Alt$ typical values are at V $_{CC}$ = 5 V , T $_{A}$ = 25 C.

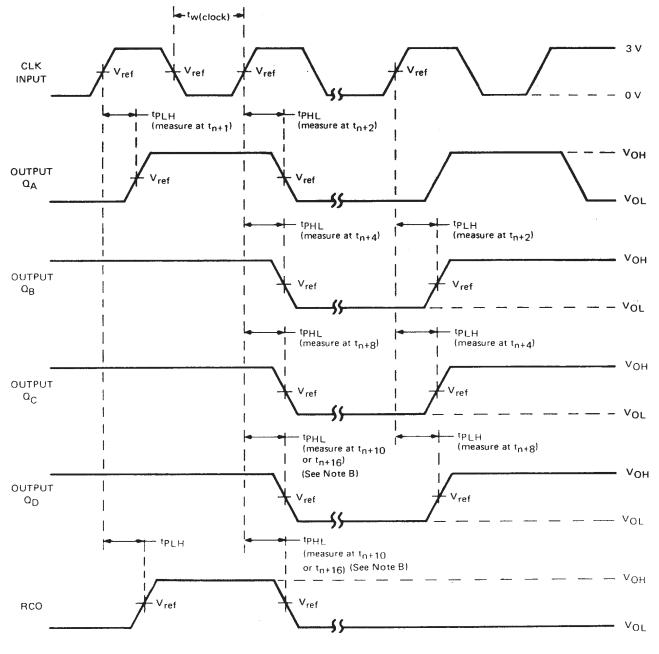
\$ Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$

PARAMETER¶	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
fmax				40	70		MH2
<u>۲</u> ۹۲Η			1		14	25	ns
tPHL	CLK	RCO	C _L 15 pF, R _L = 280 Ω, See Figures 1, 3, and 4		17	25	
tPLH	CLK	Any Q			8	15	ns
tPHL	CLK	Anyo			10	15	
TPLH -					10	15	ns
 tрнL	ENT	RCO			10	15	

 $f_{max} \equiv maximum clock frequency$

 $t_{PLH} \equiv propagation delay time, low to high level output$


tPHI ≡ propagation defay time, high-to low level output

SN54160 THRU SN54163, SN54LS160A THRU SN54LS163A, SN54S162, SN54S163, SN74160 THRU SN74163, SN74LS160A THRU SN74LS163A, SN74S162, SN74S163 SYNCHRONOUS 4-BIT COUNTERS

SDLS060 - OCTOBER 1976 - REVISED MARCH 1988

VOLTAGE WAVEFORMS

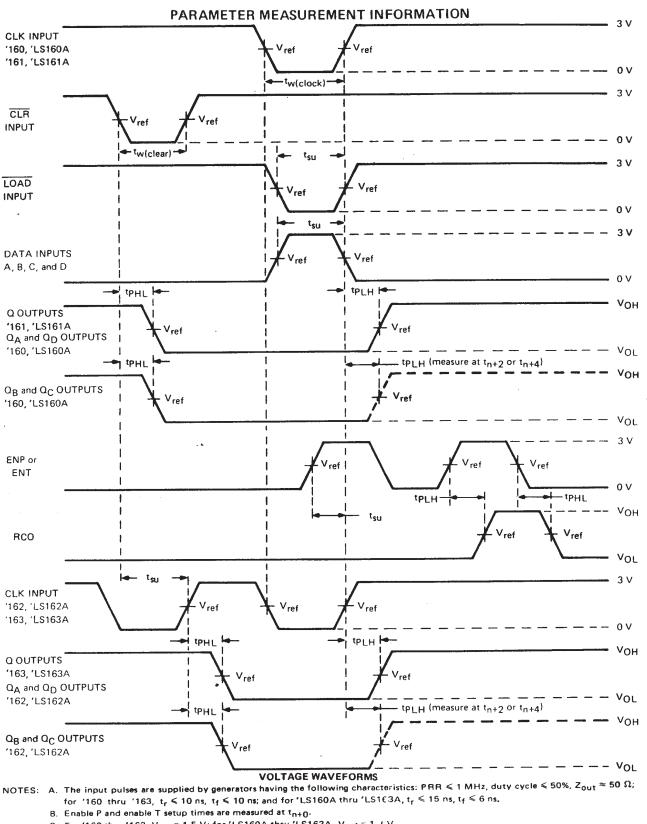
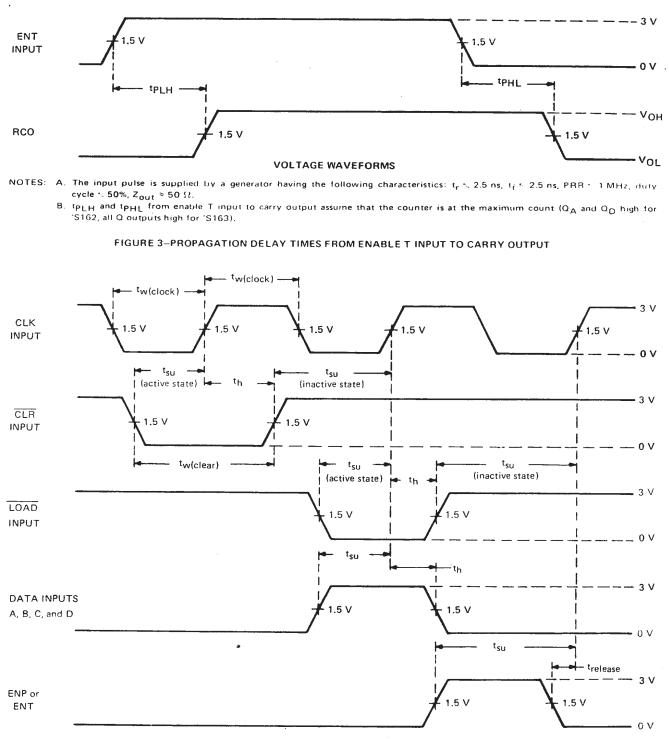

- NOTES: A. The input pulses are supplied by a generator having the following characteristics: PRR \leq 1 MHz, duty cycle \leq 50%, Z_{out} \approx 50 Ω ; for '160 thru '163, t_r \leq 10 ns, t_f \leq 10 ns; for 'LS160A thru 'LS163A t_r \leq 15 ns, t_f \leq 6 ns; and for 'S162, 'S163, t_r \leq 2.5 ns, t_f \leq 2.5 ns. Vary PRR to measure f_{max}.
 - B. Outputs Ω_D and carry are tested at t_{n+10} for '160, '162, 'LS160A, 'LS162A, and 'S162, and at t_{n+16} for '161, '163, 'LS161A, 'LS163A, and 'S163, where t_n is the bit time when all outputs are low.
 - C. For '160 thru '163, 'S162, and 'S163, V_{ref} = 1.5 V; for 'LS160A thru 'LS163A, V_{ref} = 1.3 V.

FIGURE 1-SWITCHING TIMES

SN54160 THRU SN54163, SN54LS160A THRU SN54LS163A, SN74160 THRU SN74163, SN74LS160A THRU SN74LS163A, SYNCHRONOUS 4-BIT COUNTERS

SDLS060 - OCTOBER 1976 - REVISED MARCH 1988


- C. For '160 thru '163, V_{ref} = 1.5 V; for 'LS160A thru 'LS163A, V_{ref} = 1.4 V.
 - FIGURE 2-SWITCHING TIMES

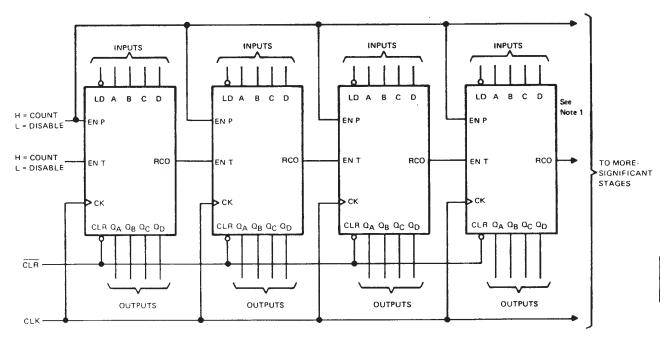
SN54S162, SN54S163, SN74S162, SN74S163 SYNCHRONOUS 4-BIT COUNTERS

SDLS060 - OCTOBER 1976 - REVISED MARCH 1988

PARAMETER MEASUREMENT INFORMATION

VOLTAGE WAVEFORMS

NOTE A: The input pulses are supplied by generators having the following characteristics: $t_r = 2.5$ ns, $t_f = 2.5$ ns, PRR = 1.MHz, duty cycle = 50%, $Z_{out} \approx 50$ Ω.


FIGURE 4-PULSE WIDTHS, SETUP TIMES, HOLD TIMES, AND RELEASE TIME

SN54160 THRU SN54163, SN54LS160A THRU SN54LS163A, SN54S162, SN54S163, SN74160 THRU SN74163, SN74LS160A THRU SN74LS163A, SN74S162, SN74S163 SYNCHRONOUS 4-BIT COUNTERS SDLS060 - OCTOBER 1976 - REVISED MARCH 1988

TYPICAL APPLICATION DATA

This application demonstrates how the ripple mode carry circuit (Figure 1) and the carry-look-ahead circuit (Figure 2) can be used to implement a high-speed N-bit counter. The '160, '162, 'LS160A, 'LS162A, or 'S162 will count in BCD and the '161, '163, 'LS161A, 'LS163A, or 'S163 will count in binary. When additional stages are added the fMAX decreases in Figure 1, but remains unchanged in Figure 2.

N-BIT SYNCHRONOUS COUNTERS

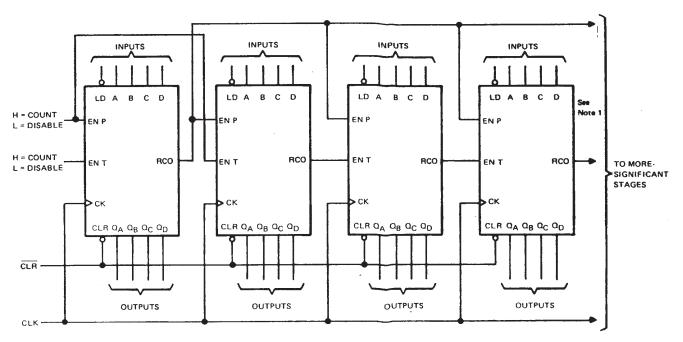


FIGURE 1

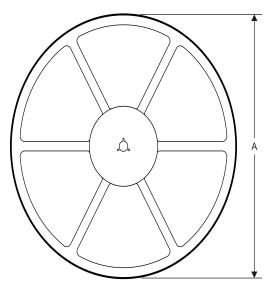
SN54160 THRU SN54163, SN54LS160A THRU SN54LS163A, SN54S162, SN54S163, SN74160 THRU SN74163, SN74LS160A THRU SN74LS163A, SN74S162, SN74S163 SYNCHRONOUS 4-BIT COUNTERS

SDLS060 - OCTOBER 1976 - REVISED MARCH 1988

TYPICAL APPLICATION DATA

 $f_{MAX} = 1/(CLK \text{ to RCO } t_{PLH}) + (ENP t_{su})$

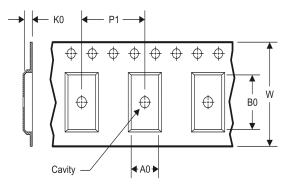
FIGURE 2


PACKAGE MATERIALS INFORMATION

www.ti.com

TAPE AND REEL INFORMATION

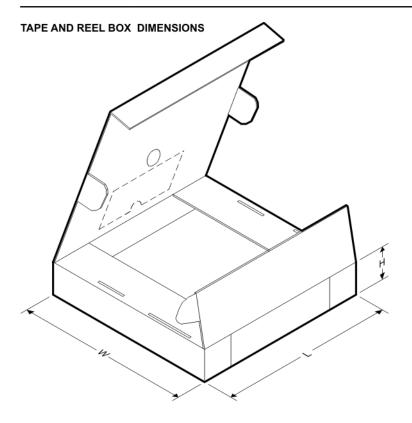
REEL DIMENSIONS


TEXAS INSTRUMENTS

TAPE AND REEL INFORMATION

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LS161ADR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
SN74LS161ANSR	SO	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
SN74LS163ADR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
SN74LS163ANSR	SO	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

14-Jul-2012

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LS161ADR	SOIC	D	16	2500	333.2	345.9	28.6
SN74LS161ANSR	SO	NS	16	2000	367.0	367.0	38.0
SN74LS163ADR	SOIC	D	16	2500	333.2	345.9	28.6
SN74LS163ANSR	SO	NS	16	2000	367.0	367.0	38.0

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconnectivity		

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated