

SNOSBJ9C-JULY 1999-REVISED APRIL 2013

DS1488 Quad Line Driver

Check for Samples: DS1488

FEATURES

www.ti.com

- Current Limited output: ±10 mA Typ
- Power-Off Source Impedance: 300Ω Min
- Simple Slew Rate Control with External Capacitor
- Flexible Operating Supply Range
- Inputs are TTL/LS Compatible

Schematic and Connection Diagrams

DESCRIPTION

The DS1488 is a quad line driver which converts standard TTL input logic levels through one stage of inversion to output levels which meet EIA Standard RS-232D and CCITT Recommendation V.24.

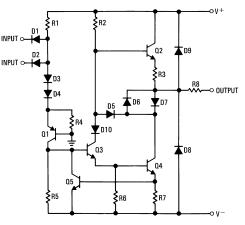


Figure 1. 1/4 Circuit

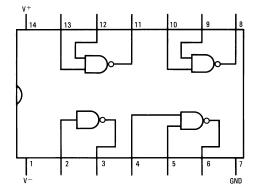


Figure 2. Small-Outline or Dual-In-Line Package (Top View) SOIC Package, See Package Number D PDIP Package, See Package Number NFF

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners.

www.ti.com

TRUMENTS

XAS

Absolute Maximum Ratings⁽¹⁾⁽²⁾

U U			
Supply Voltage	V ⁺	+15V	
	V ⁻	-15V	
Input Voltage (V _{IN})		−15V ≤ V _{IN} ≤ 7.0V	
Output Voltage		±15V	
Operating Temperature Range		0°C to +75°C	
Storage Temperature Range		−65°C to +150°	
Maximum Power Dissipation at 25°C ⁽³⁾	Molded PDIP Package	1280 mW	
	SOIC Package	974 mW	
Lead Temperature (Soldering, 4 sec.)		260°C	

(1) Absolute Maximum Ratings are those values beyond which the safety of the device cannot be ensured. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/Distributors for availability and specifications.

(3) Derate molded PDIP package 10.2 mW/°C above 25°C; derate SOIC package 7.8 mW/°C above 25°C.

Electrical Characteristics⁽¹⁾⁽²⁾

 V_{CC} + = 9V, V_{CC} - = -9V unless otherwise specified

Symbol	Parameter		Conditions	Min	Тур	Max	Units
IIL	Logical "0" Input Current	$V_{IN} = 0V$	V _{IN} = 0V		-0.8	-1.3	mA
I _{IH}	Logical "1" Input Current	V _{IN} = +5.0V			0.005	10.0	μA
V _{OH}	High Level Output Voltage	$R_{I} = 3.0 \ k\Omega,$	V ⁺ = 9.0V, V [−] = −9.0V	6.0	7.1		V
		$V_{IN} = 0.8V$	V ⁺ = 13.2V, V [−] = −13.2V	9.0	10.7		V
V _{OL}	Low Level Output Voltage	$R_1 = 3.0 \ k\Omega$,	V ⁺ = 9.0V, V ⁻ = -9.0V	-6.0	7.0		V
		V _{IN} = 1.9V	V ⁺ = 13.2V, V [−] = −13.2V	-9.0	-10.6		V
I _{OS} +	High Level Output		-V _{OUT} = 0V, V _{IN} = 0.8V		-10.0	-12.0	mA
	Short-Circuit Current	$v_{OUT} = 0V, V_{IN}$					
I _{OS} -	Low Level Output		– V _{OUT} = 0V, V _{IN} = 1.9V		10.0	12.0	mA
	Short-Circuit Current	$v_{OUT} = 0v, v_{IN}$					
R _{OUT}	Output Resistance	$V^+ = V^- = 0V, V_{OUT} = \pm 2V$		300			Ω
I _{CC} +	Positive Supply Current (Output Open)		V ⁺ = 9.0V, V ⁻ = -9.0V		11.6	20.0	mA
		$V_{IN} = 1.9V$	V ⁺ = 12V, V [−] = −12V		15.7	25.0	mA
			V ⁺ = 15V, V [−] = −15V		19.4	34.0	mA
			V ⁺ = 9.0V, V [−] = −9.0V		3.4	6.0	mA
		$V_{IN} = 0.8V$	V ⁺ = 12V, V [−] = −12V		4.1	7.0	mA
			V ⁺ = 15V, V [−] = −15V		9.1	12.0	mA
I _{CC} -	Negative Supply Current (Output Open)		V ⁺ = 9.0V, V ⁻ = -9.0V		-10.8	-17.0	mA
		$V_{IN} = 1.9V$	V ⁺ = 12V, V [−] = −12V		-14.6	-23.0	mA
			V ⁺ = 15V, V [−] = −15V		-18.3	-34.0	mA
		V _{IN} = 0.8V	V ⁺ = 9.0V, V ⁻ = -9.0V		-0.001	-0.100	mA
			V ⁺ = 12V, V [−] = −12V		-0.001	-0.100	mA
			V ⁺ = 15V, V [−] = −15V		-0.01	-2.5	mA
P _d	Dower Dissinction	V ⁺ = 9.0V, V ⁻ =	$V^+ = 9.0V, V^- = -9.0V$		252	333	mW
	Power Dissipation	$V^{+} = 12V, V^{-} =$	V ⁺ = 12V, V ⁻ = -12V		444	576	mW

(1) Unless otherwise specified min/max limits apply across the 0°C to +75°C temperature range for the DS1488.

(2) All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

SNOSBJ9C-JULY 1999-REVISED APRIL 2013

www.ti.com

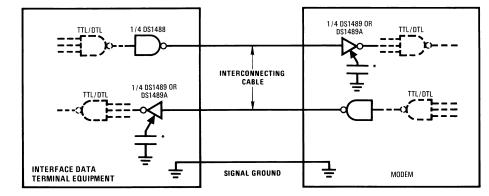
Switching Characteristics

$(V_{CC} = 9V, V_{EE} = -9V, T_A = 25^{\circ}C)$							
Symbol	Parameter	Conditions	Min	Тур	Max	Units	
t _{pd1}	Propagation Delay to a Logical "1"	$R_L = 3.0 \text{ k}\Omega, C_L = 15 \text{ pF}, T_A = 25^{\circ}C$		187	350	ns	
t _{pd0}	Propagation Delay to a Logical "0"	$R_L = 3.0 \text{ k}\Omega, C_L = 15 \text{ pF}, T_A = 25^{\circ}C$		45	175	ns	
t _r	Rise Time	$R_L = 3.0 \text{ k}\Omega, C_L = 15 \text{ pF}, T_A = 25^{\circ}\text{C}$		63	100	ns	
t _f	Fall Time	$R_L = 3.0 \text{ k}\Omega, C_L = 15 \text{ pF}, T_A = 25^{\circ}\text{C}$		33	75	ns	

Applications

By connecting a capacitor to each driver output the slew rate can be controlled utilizing the output current limiting characteristics of the DS1488. For a set slew rate the appropriate capacitor value may be calculated using the following relationship

$$C = I_{SC} (\Delta T / \Delta V)$$


(1)

where C is the required capacitor, I_{SC} is the short circuit current value, and $\Delta V/\Delta T$ is the slew rate.

RS-232C specifies that the output slew rate must not exceed 30V per microsecond. Using the worst case output short circuit current of 12 mA in the above equation, calculations result in a required capacitor of 400 pF connected to each output.

See Typical Performance Characteristics.

Typical Applications

Optional for noise filtering

Figure 3. RS-232C Data Transmission

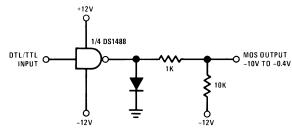


Figure 4. DTL/TTL-to-MOS Translator

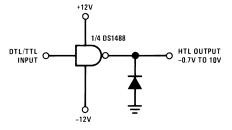
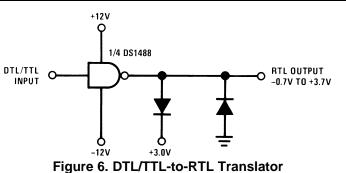
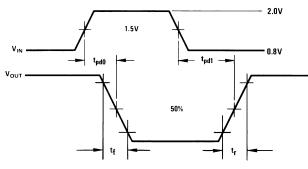



Figure 5. DTL/TTL-to-HTL Translator


www.ti.com

AC Load Circuit and Switching Time Waveforms

 $^{\ast}\text{C}_{\text{L}}$ includes probe and jig capacitance.

 $t_{\rm r}$ and $t_{\rm f}$ are measured between 10% and 90% of the output waveform.

SNOSBJ9C-JULY 1999-REVISED APRIL 2013

www.ti.com

Typical Performance Characteristics

T_A=+25°C unless otherwise noted

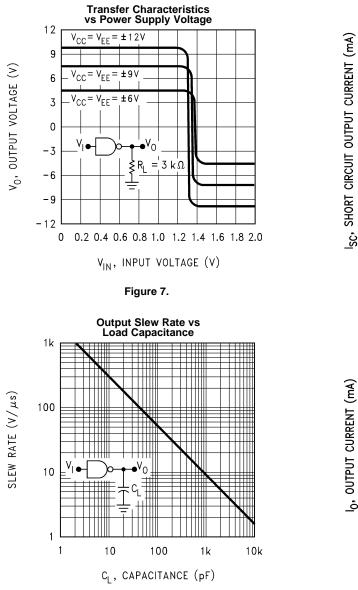
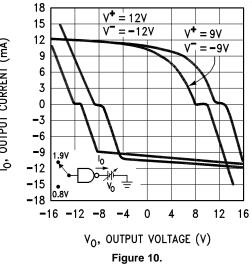



Figure 9.

12 9.0 0s+ 6.0 3.0 .9\ •V_{CC}=+9V 0 -9V -3.0 0.8V -6.0 05 -9.0 -12 55 -75 -50 -25 0 25 50 75 100 125 T, TEMPERATURE (°C) Figure 8.

Short-Circuit Output Current vs Temperature

Output Voltage and Current-Limiting Characteristics

Submit Documentation Feedback

Copyright © 1999–2013, Texas Instruments Incorporated

Changes from Revision B (April 2013) to Revision C				
•	Changed layout of National Data Sheet to TI format	. 5		

REVISION HISTORY

www.ti.com

6

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated