QUAD SINGLE-SUPPLY OPERATIONAL AMPLIFIER

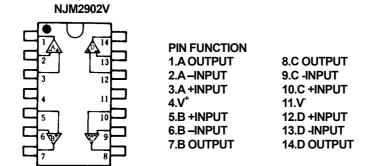
■ GENERAL DESCRIPTION

The NJM2902 consists of four independent high-gain operational amplifiers that are designed for single-supply operation.

Operation from split power supplies is also possible and the low power supply drain is independent of the magnitude of the power supply voltage.

Used with a dual supply the circuit will operate over a wide range of supply voltages. However, a large amount of crossover distortion may occur with loads to ground. An external current-sinking resistor to- V_S will reduce crossover distortion.

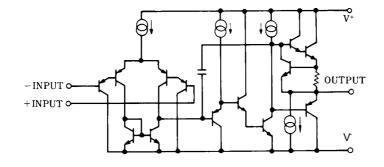
There is no crossover distortion problem in single-supply operation if the load is direct-coupled to ground.


■ FEATURES

- Single Supply
- Operating Voltage (+3V~+32V)
- High Output Voltage (V^+-2V)

NJM2902N, NJM2902M

- Slew Rate
- (0.5V/µs typ.)
- Low Operating Current
- Package Outline
- Bipolar Technology


■ PIN CONFIGURATION

(1mAtyp.)

DIP14, DMP14, SSOP14

EQUIVALENT CIRCUIT (1/4 Shown)

New Japan Radio Co., Ltd.

Ver.2012-01-30

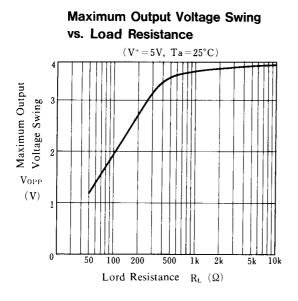
PACKAGE OUTLINE

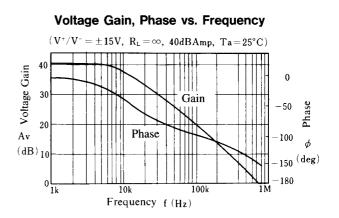
NJM2902N

NJM2902M

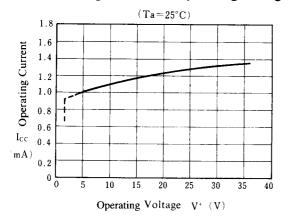
■ ABSOLUTE MAXIMUM RATINGS

			(Ta=25°C)
PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	$V^{+}(V^{+}N^{-})$	32 (or ± 16)	V
Differential Input Voltage	VID	32	V
Input Voltage	VIC	-0.3~ 32(Note2)	V
Power Dissipation	P _D	(DIP14) 570 (DMP14) 300 (SSOP14) 300	mW
Operating Temperature Range	T _{opr}	-40~+85	°C
Storage Temperature Range	T _{stg}	-50~+125	С°

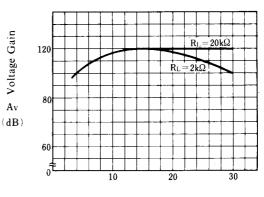

(Note1) Continuous short-circuits from output to GND is guaranteed only when V+≤15V.


(Note2) For supply voltage less than 32V[±16], the absolute maximum input voltage is equal to supply voltage.

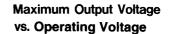
■ ELECTRICAL CHARACTERISTICS

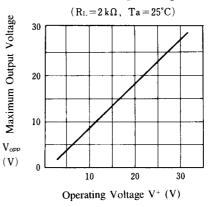

					(Ta=25°C,V⁺=5V)	
PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Input Offset Voltage	V _{IO}	R _s =0Ω	-	2	10	mV
Input Offset Current	l _{io}		-	5	50	nA
Input Bias Current	I _B	I _{IN} ⁺ or I _{IN} ⁻	-	20	500	nA
Large Signal Voltage Gain	Av	R _L >2kΩ	-	100	-	V/mV
Maximum Output Voltage Swing	VOPP	R _L =2kΩ	3.5	-	-	V
Input Common Mode Voltage Range	VICM		0~3.5	-	-	V
Common Mode Rejection Ratio	CMR		-	85	-	dB
Supply Voltage Rejection Ratio	SVR		-	100	-	dB
Output Source Current	ISOURCE	V _{IN} ⁺ =1V,V _{IN} ⁻ =0V	20	40	-	mA
Output Sink Current	I _{SINK}	$V_{IN}^{+}=0V, V_{IN}^{-}=1V$	8	20	-	mA
Channel Separation	CS	f=1k~20kHz,Input Referred	-	120	-	dB
Operating Current	lcc	RL=∞	-	1	2	mA
Slew Rate	SR	V ⁺ /√=±15V	-	0.5	-	V/µs
Gain Bandwidth Product	GB	V ⁺ /√=±15V	-	0.5	-	MHz

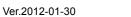
TYPICAL CHARACTERISTICS

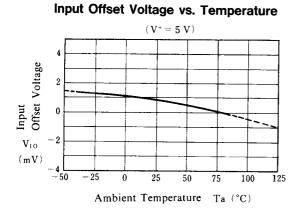


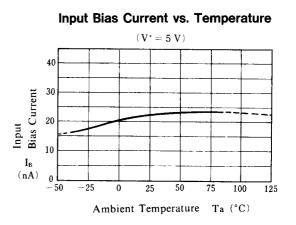
Operating Current vs. Operating Voltage

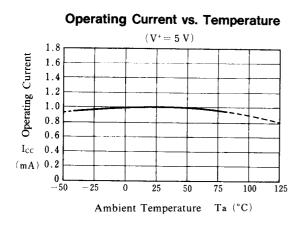


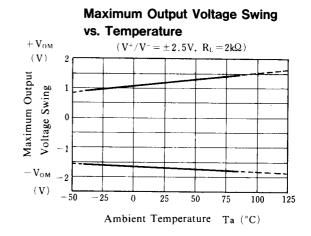

Input Offset Voltage vs. Temperature $(V^+ = 5V)$ 5 4 Input Offset Voltage 3 2 1 0 -1 -2- 3 Vio -- 4 (mV)- 5 -50-25 0 25 50 75 100 125 Ambient Temperature Ta (°C)

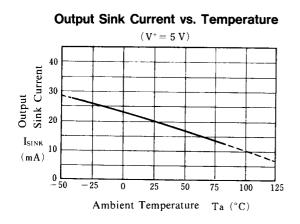

Voltage Gain vs. Operating Voltage

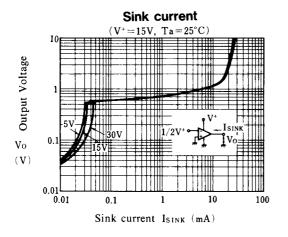

Operating Voltage V^+ (V)

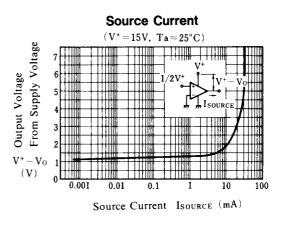


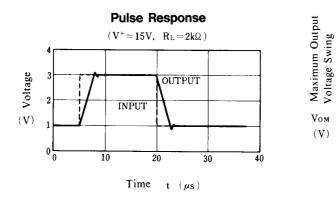


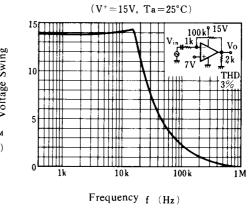



■ TYPICAL CHARACTERISTICS

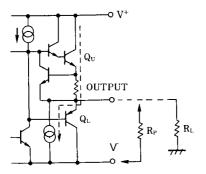





New Japan Radio Co., Ltd.


■ TYPICAL CHARACTERISTICS

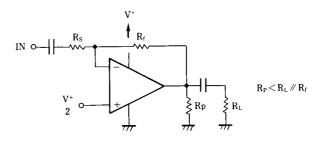
Maximum Output Voltage Swing vs. Frequenccy $(V^+=15V, Ta=25^{\circ}C)$



New Japan Radio Co., Ltd.

■ APPLICATION

Improvement of Cross-over Distortion Equivalent circuit at the output stage



IN $\sim R_s$ R_r R_r NJM2902,in its static state (No in and output condition) when design, Q_U being biassed by constant current (break down beam) yet, Q_L stays OFF.

While using with both power source mode, the cross-over distortion might occur instantly when Q_L ON.

There might be cases when application for amplifier of audio signals, not only distortion but also the apparent frequency bandwidth being narrowed remarkably.

It is adjustable especially when using both power source mode, constantly to use with higher current on Q_U than the load current (including feedback current), and then connect the pull-down resister R_P at the part between output and V pins.

[CAUTION]

The specifications on this databook are only given for information, without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.