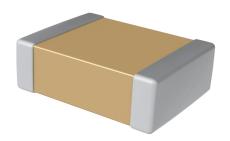
# Floating Electrode Design (FE-CAP), X7R Dielectric, 6.3 – 250 VDC (Commercial & Automotive Grade)




#### **Overview**

KEMET's Floating Electrode (FE-CAP) multilayer ceramic capacitor in X7R dielectric utilizes a cascading internal electrode design configured to form multiple capacitors in series within a single monolithic structure. This unique configuration results in enhanced voltage and ESD performance over standard capacitor designs while allowing for a fail-open condition if mechanically damaged (cracked). If damaged, the device may experience a drop in capacitance but a short is unlikely. The FE-CAP is designed to reduce the likelihood of a low IR or short circuit condition and the chance for a catastrophic and potentially costly failure event.

Driven by the demand for a more robust and reliable component, the FE-CAP was designed for critical applications where higher operating temperatures and mechanical stress are a concern. These capacitors are manufactured in state of the art ISO/TS 16949:2009 certified facilities and are widely used in power supplies (input and output filters) and general electronic applications.

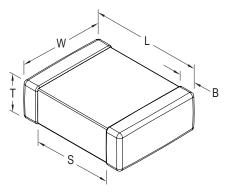
Combined with the stability of an X7R dielectric, the FE-CAP complements KEMET's "Open Mode" devices by providing a fail-safe design optimized for low to mid range capacitance values. These devices exhibit a predictable change in capacitance with respect to time and voltage and boast a minimal change in capacitance with reference to ambient temperature. Capacitance change is limited to ±15% from -55°C to +125°C.

In addition to Commercial Grade, Automotive Grade devices are available which meet the demanding Automotive Electronics Council's AEC–Q200 qualification requirements.



## **Ordering Information**

| С       | 0805                                         | S                         | 104                                       | K                               | 5                                                                                                | R          | Α                       | С                                             | TU                                                              |
|---------|----------------------------------------------|---------------------------|-------------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------|------------|-------------------------|-----------------------------------------------|-----------------------------------------------------------------|
| Ceramic | Case Size<br>(L" x W")                       | Specification/<br>Series  | Capacitance<br>Code (pF)                  | Capacitance<br>Tolerance        | Voltage                                                                                          | Dielectric | Failure Rate/<br>Design | Termination Finish <sup>1</sup>               | Packaging/Grade<br>(C-Spec) <sup>2</sup>                        |
|         | 0402<br>0603<br>0805<br>1206<br>1210<br>1812 | S = Floating<br>Electrode | 2 Significant Digits +<br>Number of Zeros | J = ±5%<br>K = ±10%<br>M = ±20% | 9 = 6.3 V<br>8 = 10 V<br>4 = 16 V<br>3 = 25 V<br>5 = 50 V<br>1 = 100 V<br>2 = 200 V<br>A = 250 V | R = X7R    | A = N/A                 | C = 100% Matte Sn<br>L = SnPb (5%<br>minimum) | Blank = Bulk<br>TU = 7" Reel<br>Unmarked<br>TM = 7" Reel Marked |


<sup>&</sup>lt;sup>1</sup> Additional termination finish options may be available. Contact KEMET for details.

<sup>&</sup>lt;sup>1,2</sup> SnPb termination finish option is not available on automotive grade product.

<sup>&</sup>lt;sup>2</sup> Additional reeling or packaging options may be available. Contact KEMET for details.



## **Dimensions – Millimeters (Inches)**



| EIA<br>Size<br>Code | Metric<br>Size<br>Code | L<br>Length               | W<br>Width                | T<br>Thickness  | B<br>Bandwidth            | S<br>Separation<br>Minimum | Mounting<br>Technique           |
|---------------------|------------------------|---------------------------|---------------------------|-----------------|---------------------------|----------------------------|---------------------------------|
| 0402                | 1005                   | 1.00 (.040) ± 0.05 (.002) | 0.50 (.020) ± 0.05 (.002) |                 | 0.30 (.012) ± 0.10 (.004) | 0.30 (.012)                | Solder Reflow Only              |
| 0603                | 1608                   | 1.60 (.063) ± 0.15 (.006) | 0.80 (.032) ± 0.15 (.006) |                 | 0.35 (.014) ± 0.15 (.006) | 0.70 (.028)                |                                 |
| 0805                | 2012                   | 2.00 (.079) ± 0.20 (.008) | 1.25 (.049) ± 0.20 (.008) | See Table 2 for | 0.50 (0.02) ± 0.25 (.010) | 0.75 (.030)                | Solder Wave or<br>Solder Reflow |
| 1206                | 3216                   | 3.20 (.126) ± 0.20 (.008) | 1.60 (.063) ± 0.20 (.008) | Thickness       | 0.50 (0.02) ± 0.25 (.010) |                            |                                 |
| 1210                | 3225                   | 3.20 (.126) ± 0.20 (.008) | 2.50 (.098) ± 0.20 (.008) |                 | 0.50 (0.02) ± 0.25 (.010) | N/A                        | Caldan Daffass Only             |
| 1812                | 4532                   | 4.50 (.177) ± 0.30 (.012) | 3.20 (.126) ± 0.30 (.012) |                 | 0.60 (.024) ± 0.35 (.014) |                            | Solder Reflow Only              |

#### **Benefits**

- -55°C to +125°C operating temperature range
- · Floating Electrode/fail open design
- · Low to mid capacitance flex mitigation
- · Lead (Pb)-Free, RoHS and REACH compliant
- EIA 0402, 0603, 0805, 1206, 1210, and 1812 case sizes
- DC voltage ratings of 6.3 V, 10 V, 16 V, 25 V, 50 V, 100 V, 200 V, and 250 V
- Capacitance offerings ranging from 150 pF to 0.22 μF

- Available capacitance tolerances of ±5%, ±10%, and ±20%
- Commercial and Automotive (AEC-Q200) grades available
- · Non-polar device, minimizing installation concerns
- 100% pure matte tin-plated termination finish allowing for excellent solderability
- SnPb termination finish option available upon request (5% minimum)

# **Applications**

Typical applications include circuits with a direct battery or power source connection, critical and safety relevant circuits without (integrated) current limitation and any application that is subject to high levels of board flexure or temperature cycling. Examples include raw power input side filtering (power plane/bus), high current applications (automobile battery line) and circuits that cannot be fused to open. Markets include consumer, medical, industrial (power supply), automotive, aerospace and telecom.



#### Qualification/Certification

Commercial Grade products are subject to internal qualification. Details regarding test methods and conditions are referenced in Table 4, Performance and Reliability.

Automotive Grade products meet or exceed the requirements outlined by the Automotive Electronics Council. Details regarding test methods and conditions are referenced in document AEC–Q200, Stress Test Qualification for Passive Components. For additional information regarding the Automotive Electronics Council and AEC–Q200, please visit their website at www.aecouncil.com.

## **Environmental Compliance**

Lead (Pb)-Free, RoHS, and REACH compliant without exemptions (excluding SnPb termination finish option).



# **Electrical Parameters/Characteristics**

| Item                                                               | Parameters/Characteristics                                                              |
|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Operating Temperature Range                                        | -55°C to +125°C                                                                         |
| Capacitance Change with Reference to +25°C and 0 VDC Applied (TCC) | ±15%                                                                                    |
| Aging Rate (Maximum % Capacitance Loss/Decade Hour)                | 3.0%                                                                                    |
| Dielectric Withstanding Voltage (DWV)                              | 250% of rated voltage (5 ±1 seconds and charge/discharge not exceeding 50 mA)           |
| Dissipation Factor (DF) Maximum Limit @ 25°C                       | 5% (6.3 and 10 V), 3.5% (16 and 25 V) and 2.5% (50 to 250 V)                            |
| Insulation Resistance (IR) Limit @ 25°C                            | See Insulation Resistance Limit Table (Rated voltage applied for 120 ±5 seconds @ 25°C) |

Regarding aging rate: Capacitance measurements (including tolerance) are indexed to a referee time of 1,000 hours.

To obtain IR limit, divide  $M\Omega$ - $\mu$ F value by the capacitance and compare to  $G\Omega$  limit. Select the lower of the two limits.

Capacitance and dissipation factor (DF) measured under the following conditions:

1 kHz  $\pm 50$  Hz and 1.0  $\pm 0.2$  Vrms if capacitance  $\leq 10 \,\mu\text{F}$ 

120 Hz  $\pm$ 10 Hz and 0.5  $\pm$ 0.1 Vrms if capacitance > 10  $\mu$ F

Note: When measuring capacitance it is important to ensure the set voltage level is held constant. The HP4284 and Agilent E4980 have a feature known as Automatic Level Control (ALC). The ALC feature should be switched to "ON."



#### **Post Environmental Limits**

| High Temperature Life, Biased Humidity, Moisture Resistance |                     |                      |                                |                      |                          |  |  |  |  |  |  |
|-------------------------------------------------------------|---------------------|----------------------|--------------------------------|----------------------|--------------------------|--|--|--|--|--|--|
| Dielectric                                                  | Rated DC<br>Voltage | Capacitance<br>Value | Dissipation Factor (Maximum %) | Capacitance<br>Shift | Insulation<br>Resistance |  |  |  |  |  |  |
|                                                             | > 25                |                      | 3.0                            |                      |                          |  |  |  |  |  |  |
| X7R                                                         | 16/25               | All                  | 5.0                            | ±20%                 | 10% of Initial Limit     |  |  |  |  |  |  |
|                                                             | < 16                |                      | 7.5                            |                      |                          |  |  |  |  |  |  |

# **Insulation Resistance Limit Table (X7R Dielectric)**

| EIA Case Size | 1,000 Megohm<br>Microfarads or 100 GΩ | 500 Megohm<br>Microfarads or 10 GΩ |
|---------------|---------------------------------------|------------------------------------|
| 0201          | N/A                                   | ALL                                |
| 0402          | < 0.012 µF                            | ≥ 0.012 µF                         |
| 0603          | < 0.047 µF                            | ≥ 0.047 µF                         |
| 0805          | < 0.15 µF                             | ≥ 0.15 µF                          |
| 1206          | < 0.47 µF                             | ≥ 0.47 µF                          |
| 1210          | < 0.39 µF                             | ≥ 0.39 µF                          |
| 1808          | ALL                                   | N/A                                |
| 1812          | < 2.2 µF                              | ≥ 2.2 µF                           |
| 1825          | ALL                                   | N/A                                |
| 2220          | < 10 µF                               | ≥ 10 µF                            |
| 2225          | ALL                                   | N/A                                |



# Table 1A – Capacitance Range/Selection Waterfall (0402 – 0805 Case Sizes)

|             |      |                      | se S<br>Serie   |     |          | С               | 0402 | 2S       |          |          |              | С     | 0603  | S     |      |          |      |      |          | C08      | 05S      |          |     |          |
|-------------|------|----------------------|-----------------|-----|----------|-----------------|------|----------|----------|----------|--------------|-------|-------|-------|------|----------|------|------|----------|----------|----------|----------|-----|----------|
| Capacitance | Cap  | Vol                  | tage C          | ode | 9        | 8               | 4    | 3        | 5        | 9        | 8            | 4     | 3     | 5     | 1    | 2        | 9    | 8    | 4        | 3        | 5        | 1        | 2   | Α        |
| Gapaonanoo  | Code | Rat                  | ed Vol<br>(VDC) |     | 6.3      | 5               | 16   | 25       | 20       | 6.3      | 6            | 16    | 25    | 20    | 9    | 200      | 6.3  | 5    | 16       | 25       | 20       | 9        | 200 | 250      |
|             |      | Ca                   | pacita          |     |          |                 |      | ļ        | l        |          |              |       |       |       | Chi  |          |      |      |          | l        |          |          | ļ   |          |
|             | 1-1  |                      | oleran          |     |          |                 |      |          |          | <u>S</u> | <u>ee Ta</u> | ble 2 | for C | hip T | hick | ness     | Dime | nsio | ns       |          |          |          |     |          |
| 150 pF      | 151  | J                    | K               | M   | BB       | BB<br>BB        | BB   | BB<br>BB | BB       | 05       | 05           | CF    | 05    | 0.5   | 05   | 05       | D0   | D0   | D0       | D0       | D0       | D0       | D0  | D0       |
| 180 pF      | 181  | J                    | K               | M   | BB<br>BB | BB              | BB   | BB       | BB<br>BB | CF       | CF           | CF    | CF    | CF    | CF   | CF<br>CF | DC   | DC   | DC<br>DC | DC<br>DC | DC<br>DC | DC<br>DC | DC  | DC<br>DC |
| 220 pF      | 221  | J                    | K               | M   |          |                 | BB   |          |          | CF       | CF           |       | CF    | CF    | CF   |          | DC   | DC   |          |          |          |          | DC  |          |
| 270 pF      | 271  | J                    | K               | M   | BB       | BB              | BB   | BB       | BB       | CF       | CF           | CF    | CF    | CF    | CF   | CF       | DC   | DC   | DC       | DC       | DC       | DC       | DC  | DC       |
| 330 pF      | 331  | J                    | K               | M   | BB       | BB              | BB   | BB       | BB       | CF       | CF           | CF    | CF    | CF    | CF   | CF       | DC   | DC   | DC       | DC       | DC       | DC       | DC  | DC       |
| 390 pF      | 391  | J                    | K               | M   | BB       | BB              | BB   | BB       | BB       | CF       | CF           | CF    | CF    | CF    | CF   | CF       | DC   | DC   | DC       | DC       | DC       | DC       | DC  | DC       |
| 470 pF      | 471  | J                    | K               | M   | BB       | BB              | BB   | BB       | BB       | CF       | CF           | CF    | CF    | CF    | CF   | CF       | DC   | DC   | DC       | DC       | DC       | DC       | DC  | DC       |
| 560 pF      | 561  | J                    | K               | M   | BB       | BB              | BB   | BB       | BB       | CF       | CF           | CF    | CF    | CF    | CF   | CF       | DC   | DC   | DC       | DC       | DC       | DC       | DC  | DC       |
| 680 pF      | 681  | J                    | K               | M   | BB       | BB              | BB   | BB       | BB       | CF       | CF           | CF    | CF    | CF    | CF   | CF       | DC   | DC   | DC       | DC       | DC       | DC       | DC  | DC       |
| 820 pF      | 821  | J                    | K               | M   | BB       | BB              | BB   | BB       | BB       | CF       | CF           | CF    | CF    | CF    | CF   | CF       | DC   | DC   | DC       | DC       | DC       | DC       | DC  | DC       |
| 1,000 pF    | 102  | J                    | K               | M   | BB       | BB              | BB   | BB       | BB       | CF       | CF           | CF    | CF    | CF    | CF   | CF       | DC   | DC   | DC       | DC       | DC       | DC       | DC  | DC       |
| 1,200 pF    | 122  | J                    | K               | M   |          |                 |      |          |          | CF       | CF           | CF    | CF    | CF    | CF   | CF       | DC   | DC   | DC       | DC       | DC       | DC       | DC  | DC       |
| 1,500 pF    | 152  | J                    | K               | M   |          |                 |      |          |          | CF       | CF           | CF    | CF    | CF    | CF   | CF       | DC   | DC   | DC       | DC       | DC       | DC       | DC  | DC       |
| 1,800 pF    | 182  | J                    | K               | M   |          |                 |      |          |          | CF       | CF           | CF    | CF    | CF    | CF   | CF       | DC   | DC   | DC       | DC       | DC       | DC       | DC  | DC       |
| 2,200 pF    | 222  | J                    | K               | M   |          |                 |      |          |          | CF       | CF           | CF    | CF    | CF    | CF   | CF       | DC   | DC   | DC       | DC       | DC       | DC       | DC  | DC       |
| 2,700 pF    | 272  | J                    | K               | M   |          |                 |      |          |          | CF       | CF           | CF    | CF    | CF    | CF   | CF       | DC   | DC   | DC       | DC       | DC       | DC       | DC  | DC       |
| 3,300 pF    | 332  | J                    | K               | M   |          |                 |      |          |          | CF       | CF           | CF    | CF    | CF    | CF   | CF       | DC   | DC   | DC       | DC       | DC       | DC       | DC  | DC       |
| 3,900 pF    | 392  | J                    | K               | M   |          |                 |      |          |          | CF       | CF           | CF    | CF    | CF    | CF   | CF       | DC   | DC   | DC       | DC       | DC       | DC       | DC  | DC       |
| 4,700 pF    | 472  | J                    | K               | M   |          |                 |      |          |          | CF       | CF           | CF    | CF    | CF    | CF   | CF       | DC   | DC   | DC       | DC       | DC       | DC       | DC  | DC       |
| 5,600 pF    | 562  | J                    | K               | M   |          |                 |      |          |          | CF       | CF           | CF    | CF    | CF    | CF   |          | DC   | DC   | DC       | DC       | DC       | DC       | DC  | DC       |
| 6,800 pF    | 682  | J                    | K               | M   |          |                 |      |          |          | CF       | CF           | CF    | CF    | CF    | CF   |          | DC   | DC   | DC       | DC       | DC       | DC       | DC  | DC       |
| 8,200 pF    | 822  | J                    | K               | M   |          |                 |      |          |          | CF       | CF           | CF    | CF    | CF    | CF   |          | DC   | DC   | DC       | DC       | DC       | DC       | DC  | DC       |
| 10,000 pF   | 103  | J                    | K               | M   |          |                 |      |          |          | CF       | CF           | CF    | CF    | CF    |      |          | DC   | DC   | DC       | DC       | DC       | DC       | DC  | DC       |
| 12,000 pF   | 123  | J                    | K               | M   |          |                 |      |          |          | CF       | CF           | CF    | CF    | CF    |      |          | DC   | DC   | DC       | DC       | DC       | DC       | DC  | DC       |
| 15,000 pF   | 153  | J                    | K               | M   |          |                 |      |          |          | CF       | CF           | CF    | CF    | CF    |      |          | DC   | DC   | DC       | DC       | DC       | DD       |     |          |
| 18,000 pF   | 183  | J                    | K               | M   |          |                 |      |          |          | CF       | CF           | CF    | CF    | CF    |      |          | DC   | DC   | DC       | DC       | DC       | DD       |     |          |
| 22,000 pF   | 223  | J                    | K               | M   |          |                 |      |          |          | CF       | CF           | CF    | CF    | CF    |      |          | DC   | DC   | DC       | DC       | DC       | DD       |     |          |
| 27,000 pF   | 273  | J                    | K               | M   |          |                 |      |          |          |          |              |       |       |       |      |          | DC   | DC   | DC       | DC       | DC       |          |     |          |
| 33,000 pF   | 333  | J                    | K               | M   |          |                 |      |          |          |          |              |       |       |       |      |          | DC   | DC   | DC       | DC       | DC       |          |     |          |
| 39,000 pF   | 393  | J                    | K               | M   |          |                 |      |          |          |          |              |       |       |       |      |          | DC   | DC   | DC       | DC       | DC       |          |     |          |
| 47,000 pF   | 473  | J                    | K               | M   |          |                 |      |          |          |          |              |       |       |       |      |          | DC   | DC   | DC       | DC       | DC       |          |     |          |
| 56,000 pF   | 563  | J                    | K               | M   |          |                 |      |          |          |          |              |       |       |       |      |          | DD   | DD   | DD       | DD       | DD       |          |     |          |
| 68,000 pF   | 683  | J                    | K               | M   |          |                 |      |          |          |          |              |       |       |       |      |          | DD   | DD   | DD       | DD       | DD       |          |     |          |
| 82,000 pF   | 823  | J                    | K               | M   |          |                 |      |          |          |          |              |       |       |       |      |          | DG   | DG   | DG       | DG       | DG       |          |     |          |
| 0.10 µF     | 104  | J                    | K               | M   |          |                 |      |          |          |          |              |       |       |       |      |          | DG   | DG   | DG       | DG       | DG       |          |     |          |
|             | Сар  | Rat                  | ed Vol<br>(VDC) |     | 6.3      | 9               | 9    | 25       | 20       | 6.3      | 2            | 16    | 25    | 20    | 100  | 700      | 6.3  | 9    | 16       | 25       | 20       | 9        | 200 | 250      |
| Capacitance | Cap  | Vol                  | tage C          | ode | 9        | 8               | 4    | 3        | 5        | 9        | 8            | 4     | 3     | 5     | 1    | 2        | 9    | 8    | 4        | 3        | 5        | 1        | 2   | Α        |
|             |      | Case Size/<br>Series |                 |     |          | C04028   C06038 |      |          |          |          |              |       |       |       | C08  | 05S      |      |      |          |          |          |          |     |          |



# Table 1B – Capacitance Range/Selection Waterfall (1206 – 1812 Case Sizes)

|             |      |     | se Si<br>Serie   |      |     |                                                                                         |    | C12 | 06S |     |        |     |     |        |        | C12   | 108       |      |     |     |                 | С  | 1812 | S   |     |  |
|-------------|------|-----|------------------|------|-----|-----------------------------------------------------------------------------------------|----|-----|-----|-----|--------|-----|-----|--------|--------|-------|-----------|------|-----|-----|-----------------|----|------|-----|-----|--|
| Capacitance | Cap  | Vol | tage C           | ode  | 9   | 8                                                                                       | 4  | 3   | 5   | 1   | 2      | Α   | 9   | 8      | 4      | 3     | 5         | 1    | 2   | Α   | 3               | 5  | 1    | 2   | Α   |  |
| Capacitance | Code |     | ed Volt          |      | 6.3 | 9                                                                                       | 16 | 25  | 50  | 100 | 200    | 250 | 6.3 | 10     | 16     | 25    | 50        | 00   | 200 | 250 | 25              | 50 | 100  | 200 | 250 |  |
|             |      |     | (VDC)            |      | Ě   |                                                                                         |    |     |     |     |        |     |     | litv a | nd C   | hin 1 | <br>[hick | naes |     |     | 1 1 7 1 1 1 1 1 |    |      |     |     |  |
|             |      |     | olerano          |      |     | Product Availability and Chip Thickness Codes See Table 2 for Chip Thickness Dimensions |    |     |     |     |        |     |     |        |        |       |           |      |     |     |                 |    |      |     |     |  |
| 1,000 pF    | 102  | J   | K                | M    | EB  | EB                                                                                      | EB | EB  | EB  | EB  | EB     | EB  |     |        |        |       |           |      |     |     |                 |    |      |     |     |  |
| 1,200 pF    | 122  | J   | K                | M    | EB  | EB                                                                                      | EB | EB  | EB  | EB  | EB     | EB  |     |        |        |       |           |      |     |     |                 |    |      |     |     |  |
| 1,500 pF    | 152  | J   | K                | M    | EB  | EB                                                                                      | EB | EB  | EB  | EB  | EB     | EB  |     |        |        |       |           |      |     |     |                 |    |      |     |     |  |
| 1,800 pF    | 182  | J   | K                | M    | EB  | EB                                                                                      | EB | EB  | EB  | EB  | EB     | EB  |     |        |        |       |           |      |     |     |                 |    |      |     |     |  |
| 2,200 pF    | 222  | J   | K                | M    | EB  | EB                                                                                      | EB | EB  | EB  | EB  | EB     | EB  | FB  | FB     | FB     | FB    | FB        | FB   | FB  | FB  |                 |    |      |     |     |  |
| 2,700 pF    | 272  | J   | K                | M    | EB  | EB                                                                                      | EB | EB  | EB  | EB  | EB     | EB  | FB  | FB     | FB     | FB    | FB        | FB   | FB  | FB  |                 |    |      |     |     |  |
| 3,300 pF    | 332  | J   | K                | M    | EB  | EB                                                                                      | EB | EB  | EB  | EB  | EB     | EB  | FB  | FB     | FB     | FB    | FB        | FB   | FB  | FB  |                 |    |      |     |     |  |
| 3,900 pF    | 392  | J   | K                | M    | EB  | EB                                                                                      | EB | EB  | EB  | EB  | EB     | EB  | FB  | FB     | FB     | FB    | FB        | FB   | FB  | FB  |                 |    |      |     |     |  |
| 4,700 pF    | 472  | J   | K                | M    | EB  | EB                                                                                      | EB | EB  | EB  | EB  | EB     | EB  | FB  | FB     | FB     | FB    | FB        | FB   | FB  | FB  |                 |    |      |     |     |  |
| 5,600 pF    | 562  | J   | K                | M    | EB  | EB                                                                                      | EB | EB  | EB  | EB  | EB     | EB  | FB  | FB     | FB     | FB    | FB        | FB   | FB  | FB  |                 |    |      |     |     |  |
| 6,800 pF    | 682  | J   | K                | M    | EB  | EB                                                                                      | EB | EB  | EB  | EB  | EB     | EB  | FB  | FB     | FB     | FB    | FB        | FB   | FB  | FB  | GB              | GB | GB   | GB  | GB  |  |
| 8,200 pF    | 822  | J   | K                | M    | EB  | EB                                                                                      | EB | EB  | EB  | EB  | EB     | EB  | FB  | FB     | FB     | FB    | FB        | FB   | FB  | FB  | GB              | GB | GB   | GB  | GB  |  |
| 10,000 pF   | 103  | J   | K                | M    | EB  | EB                                                                                      | EB | EB  | EB  | EB  | EB     | EB  | FB  | FB     | FB     | FB    | FB        | FB   | FB  | FB  | GB              | GB | GB   | GB  | GB  |  |
| 12,000 pF   | 123  | J   | K                | M    | EB  | EB                                                                                      | EB | EB  | EB  | EB  | EB     | EB  | FB  | FB     | FB     | FB    | FB        | FB   | FB  | FB  | GB              | GB | GB   | GB  | GB  |  |
| 15,000 pF   | 153  | J   | K                | M    | EB  | EB                                                                                      | EB | EB  | EB  | EB  | EB     | EB  | FB  | FB     | FB     | FB    | FB        | FB   | FB  | FB  | GB              | GB | GB   | GB  | GB  |  |
| 18,000 pF   | 183  | J   | K                | M    | EB  | EB                                                                                      | EB | EB  | EB  | EB  | EB     | EB  | FB  | FB     | FB     | FB    | FB        | FB   | FB  | FB  | GB              | GB | GB   | GB  | GB  |  |
| 22,000 pF   | 223  | J   | K                | M    | EB  | EB                                                                                      | EB | EB  | EB  | EB  | EB     | EB  | FB  | FB     | FB     | FB    | FB        | FB   | FB  | FB  | GB              | GB | GB   | GB  | GB  |  |
| 27,000 pF   | 273  | J   | K                | M    | EB  | EB                                                                                      | EB | EB  | EB  | EB  | EB     | EB  | FB  | FB     | FB     | FB    | FB        | FB   | FB  | FB  | GB              | GB | GB   | GB  | GB  |  |
| 33,000 pF   | 333  | J   | K                | M    | EB  | EB                                                                                      | EB | EB  | EB  | EB  |        |     | FB  | FB     | FB     | FB    | FB        | FB   | FB  | FB  | GB              | GB | GB   | GB  | GB  |  |
| 39,000 pF   | 393  | J   | K                | M    | EB  | EB                                                                                      | EB | EB  | EB  | EC  |        |     | FB  | FB     | FB     | FB    | FB        | FB   | FB  | FB  | GB              | GB | GB   | GB  | GB  |  |
| 47,000 pF   | 473  | J   | K                | M    | EB  | EB                                                                                      | EB | EB  | EB  | EC  |        |     | FB  | FB     | FB     | FB    | FB        | FB   | FC  | FC  | GB              | GB | GB   | GB  | GB  |  |
| 56,000 pF   | 563  | J   | K                | M    | EB  | EB                                                                                      | EB | EB  | EB  | EB  |        |     | FB  | FB     | FB     | FB    | FB        | FB   | FC  | FC  | GB              | GB | GB   | GB  | GB  |  |
| 68,000 pF   | 683  | J   | K                | M    | EB  | EB                                                                                      | EB | EB  | EB  |     |        |     | FB  | FB     | FB     | FB    | FB        | FB   |     |     | GB              | GB | GB   | GB  | GB  |  |
| 82,000 pF   | 823  | J   | K                | M    | EB  | EB                                                                                      | EB | EB  | EB  |     |        |     | FB  | FB     | FB     | FB    | FB        | FC   |     |     | GB              | GB | GB   | GB  | GB  |  |
| 0.10 µF     | 104  | J   | K                | M    | EB  | EB                                                                                      | EB | EB  | EB  |     |        |     | FB  | FB     | FB     | FB    | FB        | FD   |     |     | GB              | GB | GB   | GB  | GB  |  |
| 0.12 µF     | 124  | J   | K                | M    | EC  | EC                                                                                      | EC | EC  | EC  |     |        |     | FB  | FB     | FB     | FB    | FB        |      |     |     | GB              | GB | GB   | GB  | GB  |  |
| 0.15 µF     | 154  | J   | K                | M    |     |                                                                                         |    |     |     |     |        |     | FC  | FC     | FC     | FC    | FC        |      |     |     | GB              | GB | GB   | GB  | GB  |  |
| 0.18 µF     | 184  | J   | K                | M    |     |                                                                                         |    |     |     |     |        |     | FC  | FC     | FC     | FC    | FC        |      |     |     | GB              | GB | GB   | GB  | GB  |  |
| 0.22 μF     | 224  | J   | K                | M    |     |                                                                                         |    |     |     |     |        |     | FC  | FC     | FC     | FC    | FC        |      |     |     | GB              | GB | GB   | GB  | GB  |  |
|             |      | Rat | ed Volt<br>(VDC) | tage | 6.3 | 9                                                                                       | 9  | 52  | 20  | 100 | 200    | 250 | 6.3 | 9      | 9      | 52    | 20        | 100  | 200 | 250 | 25              | 20 | 100  | 200 | 250 |  |
| Capacitance | Сар  | Vol | tage C           | ode  | 9   | 8                                                                                       | 4  | 3   | 5   | 1   | 2      | Α   | 9   | 8      | 4      | 3     | 5         | 1    | 2   | Α   | 3               | 5  | 1    | 2   | Α   |  |
| •           | Code | Ca  | se Si<br>Serie:  | ze/  |     |                                                                                         | I  |     | 06S |     | C1210S |     |     |        | C1812S |       |           |      |     |     |                 |    |      |     |     |  |



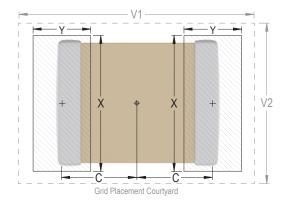
# **Table 2 – Chip Thickness/Packaging Quantities**

| Thickness | Case | Thickness ±     | Paper C | Plastic ( | Quantity         |          |  |  |
|-----------|------|-----------------|---------|-----------|------------------|----------|--|--|
| Code      | Size | Range (mm)      | 7" Reel | 13" Reel  | 7" Reel          | 13" Reel |  |  |
| BB        | 0402 | 0.50 ± 0.05     | 10,000  | 50,000    | 0                | 0        |  |  |
| CF        | 0603 | $0.80 \pm 0.07$ | 4,000   | 15,000    | 0                | 0        |  |  |
| DC        | 0805 | 0.78 ± 0.10     | 4,000   | 10,000    | 0                | 0        |  |  |
| DD        | 0805 | $0.90 \pm 0.10$ | 4,000   | 10,000    | 0                | 0        |  |  |
| DG        | 0805 | 1.25 ± 0.15     | 0       | 0         | 2,500            | 10,000   |  |  |
| EB        | 1206 | $0.78 \pm 0.10$ | 4,000   | 10,000    | 4,000            | 10,000   |  |  |
| EC        | 1206 | $0.90 \pm 0.10$ | 0       | 0         | 4,000            | 10,000   |  |  |
| FB        | 1210 | 0.78 ± 0.10     | 0       | 0         | 4,000            | 10,000   |  |  |
| FC        | 1210 | $0.90 \pm 0.10$ | 0       | 0         | 4,000            | 10,000   |  |  |
| FD        | 1210 | $0.95 \pm 0.10$ | 0       | 0         | 4,000            | 10,000   |  |  |
| GB        | 1812 | 1.00 ± 0.10     | 0       | 0         | 1,000            | 4,000    |  |  |
| Thickness | Case | Thickness ±     | 7" Reel | 13" Reel  | 7" Reel          | 13" Reel |  |  |
| Code      | Size | Range (mm)      | Paper C | Quantity  | Plastic Quantity |          |  |  |

Package quantity based on finished chip thickness specifications.



## Table 3 – Chip Capacitor Land Pattern Design Recommendations per IPC-7351


| EIA<br>Size<br>Code | Metric<br>Size<br>Code | Density Level A:  Maximum (Most)  Land Protrusion (mm) |      |      |      |      | Density Level B:<br>Median (Nominal)<br>Land Protrusion (mm) |      |      |      |      |      | Density Level C:<br>Minimum (Least)<br>Land Protrusion (mm) |      |      |      |  |  |
|---------------------|------------------------|--------------------------------------------------------|------|------|------|------|--------------------------------------------------------------|------|------|------|------|------|-------------------------------------------------------------|------|------|------|--|--|
| Code                | Code                   | С                                                      | Y    | Х    | V1   | V2   | С                                                            | Υ    | Х    | V1   | V2   | С    | Υ                                                           | Х    | V1   | V2   |  |  |
| 0402                | 1005                   | 0.50                                                   | 0.72 | 0.72 | 2.20 | 1.20 | 0.45                                                         | 0.62 | 0.62 | 1.90 | 1.00 | 0.40 | 0.52                                                        | 0.52 | 1.60 | 0.80 |  |  |
| 0603                | 1608                   | 0.90                                                   | 1.15 | 1.10 | 4.00 | 2.10 | 0.80                                                         | 0.95 | 1.00 | 3.10 | 1.50 | 0.60 | 0.75                                                        | 0.90 | 2.40 | 1.20 |  |  |
| 0805                | 2012                   | 1.00                                                   | 1.35 | 1.55 | 4.40 | 2.60 | 0.90                                                         | 1.15 | 1.45 | 3.50 | 2.00 | 0.75 | 0.95                                                        | 1.35 | 2.80 | 1.70 |  |  |
| 1206                | 3216                   | 1.60                                                   | 1.35 | 1.90 | 5.60 | 2.90 | 1.50                                                         | 1.15 | 1.80 | 4.70 | 2.30 | 1.40 | 0.95                                                        | 1.70 | 4.00 | 2.00 |  |  |
| 1210                | 3225                   | 1.60                                                   | 1.35 | 2.80 | 5.65 | 3.80 | 1.50                                                         | 1.15 | 2.70 | 4.70 | 3.20 | 1.40 | 0.95                                                        | 2.60 | 4.00 | 2.90 |  |  |
| 1210¹               | 3225                   | 1.50                                                   | 1.60 | 2.90 | 5.60 | 3.90 | 1.40                                                         | 1.40 | 2.80 | 4.70 | 3.30 | 1.30 | 1.20                                                        | 2.70 | 4.00 | 3.00 |  |  |
| 1812                | 4532                   | 2.15                                                   | 1.60 | 3.60 | 6.90 | 4.60 | 2.05                                                         | 1.40 | 3.50 | 6.00 | 4.00 | 1.95 | 1.20                                                        | 3.40 | 5.30 | 3.70 |  |  |

<sup>&</sup>lt;sup>1</sup> Only for capacitance values ≥ 22 μF

**Density Level A:** For low-density product applications. Recommended for wave solder applications and provides a wider process window for reflow solder processes. KEMET only recommends wave soldering of EIA 0603, 0805 and 1206 case sizes.

**Density Level B:** For products with a moderate level of component density. Provides a robust solder attachment condition for reflow solder processes. **Density Level C:** For high component density product applications. Before adapting the minimum land pattern variations the user should perform qualification testing based on the conditions outlined in IPC Standard 7351 (IPC–7351).

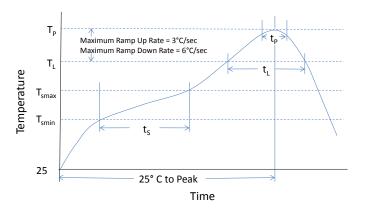
Image below based on Density Level B for an EIA 1210 case size.





## **Soldering Process**

#### **Recommended Soldering Technique:**


- Solder wave or solder reflow for EIA case sizes 0603, 0805 and 1206
- · All other EIA case sizes are limited to solder reflow only

#### **Recommended Reflow Soldering Profile:**

KEMET's families of surface mount multilayer ceramic capacitors (SMD MLCCs) are compatible with wave (single or dual), convection, IR or vapor phase reflow techniques. Preheating of these components is recommended to avoid extreme thermal stress. KEMET's recommended profile conditions for convection and IR reflow reflect the profile conditions of the IPC/J-STD-020 standard for moisture sensitivity testing. These devices can safely withstand a maximum of three reflow passes at these conditions.

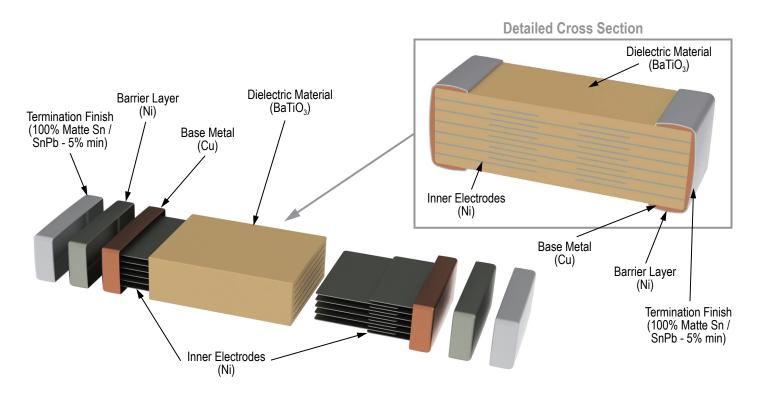
| Profile Feature                                                  | Terminati          | on Finish          |
|------------------------------------------------------------------|--------------------|--------------------|
| Frome reature                                                    | SnPb               | 100% Matte Sn      |
| Preheat/Soak                                                     |                    |                    |
| Temperature Minimum (T <sub>Smin</sub> )                         | 100°C              | 150°C              |
| Temperature Maximum (T <sub>Smax</sub> )                         | 150°C              | 200°C              |
| Time ( $t_s$ ) from $T_{smin}$ to $T_{smax}$                     | 60 – 120 seconds   | 60 – 120 seconds   |
| Ramp-Up Rate (T <sub>L</sub> to T <sub>P</sub> )                 | 3°C/second maximum | 3°C/second maximum |
| Liquidous Temperature (T <sub>L</sub> )                          | 183°C              | 217°C              |
| Time Above Liquidous (t <sub>L</sub> )                           | 60 – 150 seconds   | 60 – 150 seconds   |
| Peak Temperature (T <sub>P</sub> )                               | 235°C              | 260°C              |
| Time Within 5°C of Maximum<br>Peak Temperature (t <sub>P</sub> ) | 20 seconds maximum | 30 seconds maximum |
| Ramp-Down Rate (T <sub>P</sub> to T <sub>L</sub> )               | 6°C/second maximum | 6°C/second maximum |
| Time 25°C to Peak<br>Temperature                                 | 6 minutes maximum  | 8 minutes maximum  |

Note 1: All temperatures refer to the center of the package, measured on the capacitor body surface that is facing up during assembly reflow.





## Table 4 – Performance & Reliability: Test Methods and Conditions


| Stress                 | Reference                          | Test or Inspection Method                                                                                                                                                                                                                         |
|------------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Terminal Strength      | JIS-C-6429                         | Appendix 1, Note: Force of 1.8 kg for 60 seconds.                                                                                                                                                                                                 |
| Board Flex             | JIS-C-6429                         | Appendix 2, Note: Standard termination system – 2.0 mm (minimum) for all except 3 mm for C0G. Flexible termination system – 3.0 mm (minimum).                                                                                                     |
|                        |                                    | Magnification 50 X. Conditions:                                                                                                                                                                                                                   |
| Solderability          | J-STD-002                          | a) Method B, 4 hours @ 155°C, dry heat @ 235°C                                                                                                                                                                                                    |
| Solderability          | J-31D-002                          | b) Method B @ 215°C category 3                                                                                                                                                                                                                    |
|                        |                                    | c) Method D, category 3 @ 260°C                                                                                                                                                                                                                   |
| Temperature Cycling    | JESD22 Method JA-104               | 1,000 Cycles (-55°C to +125°C). Measurement at 24 hours +/- 2 hours after test conclusion.                                                                                                                                                        |
| Diagonal III           | MII. OTD 000 Mathed 400            | Load Humidity: 1,000 hours 85°C/85% RH and rated voltage. Add 100 K ohm resistor. Measurement at 24 hours +/- 2 hours after test conclusion.                                                                                                      |
| Biased Humidity        | MIL-STD-202 Method 103             | Low Volt Humidity: 1,000 hours 85°C/85% RH and 1.5 V. Add 100 K ohm resistor.  Measurement at 24 hours +/- 2 hours after test conclusion.                                                                                                         |
| Moisture Resistance    | MIL-STD-202 Method 106             | t = 24 hours/cycle. Steps 7a and 7b not required. Unpowered. Measurement at 24 hours +/- 2 hours after test conclusion.                                                                                                                           |
| Thermal Shock          | MIL-STD-202 Method 107             | -55°C/+125°C. Note: Number of cycles required – 300, maximum transfer time – 20 seconds, dwell time – 15 minutes. Air – Air.                                                                                                                      |
| High Temperature Life  | MIL-STD-202 Method 108<br>/EIA-198 | 1,000 hours at 125°C (85°C for X5R, Z5U and Y5V) with 2 X rated voltage applied.                                                                                                                                                                  |
| Storage Life           | MIL-STD-202 Method 108             | 150°C, 0 VDC for 1,000 hours.                                                                                                                                                                                                                     |
| Vibration              | MIL-STD-202 Method 204             | 5 g's for 20 min., 12 cycles each of 3 orientations. Note: Use 8" X 5" PCB 0.031" thick 7 secure points on one long side and 2 secure points at corners of opposite sides. Parts mounted within 2" from any secure point. Test from 10 – 2,000 Hz |
| Mechanical Shock       | MIL-STD-202 Method 213             | Figure 1 of Method 213, Condition F.                                                                                                                                                                                                              |
| Resistance to Solvents | MIL-STD-202 Method 215             | Add aqueous wash chemical, OKEM Clean or equivalent.                                                                                                                                                                                              |

## **Storage and Handling**

Ceramic chip capacitors should be stored in normal working environments. While the chips themselves are quite robust in other environments, solderability will be degraded by exposure to high temperatures, high humidity, corrosive atmospheres, and long term storage. In addition, packaging materials will be degraded by high temperature—reels may soften or warp and tape peel force may increase. KEMET recommends that maximum storage temperature not exceed 40°C and maximum storage humidity not exceed 70% relative humidity. Temperature fluctuations should be minimized to avoid condensation on the parts and atmospheres should be free of chlorine and sulfur bearing compounds. For optimized solderability chip stock should be used promptly, preferably within 1.5 years of receipt.



#### Construction





### **Capacitor Marking (Optional):**

These surface mount multilayer ceramic capacitors are normally supplied unmarked. If required, they can be marked as an extra cost option. Marking is available on most KEMET devices but must be requested using the correct ordering code identifier(s). If this option is requested, two sides of the ceramic body will be laser marked with a "K" to identify KEMET, followed by two characters (per EIA–198 - see table below) to identify the capacitance value. EIA 0603 case size devices are limited to the "K" character only.

Laser marking option is <u>not</u> available on:

- C0G, Ultra Stable X8R and Y5V dielectric devices
- EIA 0402 case size devices
- EIA 0603 case size devices with Flexible Termination option.
- · KPS Commercial and Automotive Grade stacked devices.
- · X7R dielectric products in capacitance values outlined below

| EIA Case Size | <b>Metric Size Code</b> | Capacitance |
|---------------|-------------------------|-------------|
| 0603          | 1608                    | ≤ 170 pF    |
| 0805          | 2012                    | ≤ 150 pF    |
| 1206          | 3216                    | ≤ 910 pF    |
| 1210          | 3225                    | ≤ 2,000 pF  |
| 1808          | 4520                    | ≤ 3,900 pF  |
| 1812          | 4532                    | ≤ 6,700 pF  |
| 1825          | 4564                    | ≤ 0.018 µF  |
| 2220          | 5650                    | ≤ 0.027 µF  |
| 2225          | 5664                    | ≤ 0.033 µF  |

Marking appears in legible contrast. Illustrated below is an example of an MLCC with laser marking of "KA8", which designates a KEMET device with rated capacitance of 100  $\mu$ F. Orientation of marking is vendor optional.





# Capacitor Marking (Optional) cont'd

| Capacitance (pF) For Various Alpha/Numeral Identifiers |         |                  |    |     |       |        |         |           |            |             |  |  |
|--------------------------------------------------------|---------|------------------|----|-----|-------|--------|---------|-----------|------------|-------------|--|--|
|                                                        | Numeral |                  |    |     |       |        |         |           |            |             |  |  |
| Alpha                                                  | 9       | 0                | 1  | 2   | 3     | 4      | 5       | 6         | 7          | 8           |  |  |
| Character                                              |         | Capacitance (pF) |    |     |       |        |         |           |            |             |  |  |
| Α                                                      | 0.1     | 10               | 10 | 100 | 1,000 | 10,000 | 100,000 | 1,000,000 | 10,000,000 | 100,000,000 |  |  |
| В                                                      | 0.11    | 1.1              | 11 | 110 | 1,100 | 11,000 | 110,000 | 1,100,000 | 11,000,000 | 110,000,000 |  |  |
| С                                                      | 0.12    | 12               | 12 | 120 | 1,200 | 12,000 | 120,000 | 1,200,000 | 12,000,000 | 120,000,000 |  |  |
| D                                                      | 0.13    | 13               | 13 | 130 | 1,300 | 13,000 | 130,000 | 1,300,000 | 13,000,000 | 130,000,000 |  |  |
| Е                                                      | 0.15    | 15               | 15 | 150 | 1,500 | 15,000 | 150,000 | 1,500,000 | 15,000,000 | 150,000,000 |  |  |
| F                                                      | 0.16    | 16               | 16 | 160 | 1,600 | 16,000 | 160,000 | 1,600,000 | 16,000,000 | 160,000,000 |  |  |
| G                                                      | 0.18    | 18               | 18 | 180 | 1,800 | 18,000 | 180,000 | 1,800,000 | 18,000,000 | 180,000,000 |  |  |
| Н                                                      | 0.2     | 20               | 20 | 200 | 2,000 | 20,000 | 200,000 | 2,000,000 | 20,000,000 | 200,000,000 |  |  |
| J                                                      | 0.22    | 22               | 22 | 220 | 2,200 | 22,000 | 220,000 | 2,200,000 | 22,000,000 | 220,000,000 |  |  |
| К                                                      | 0.24    | 2.4              | 24 | 240 | 2,400 | 24,000 | 240,000 | 2,400,000 | 24,000,000 | 240,000,000 |  |  |
| L                                                      | 0.27    | 2.7              | 27 | 270 | 2,700 | 27,000 | 270,000 | 2,700,000 | 27,000,000 | 270,000,000 |  |  |
| M                                                      | 0.3     | 30               | 30 | 300 | 3,000 | 30,000 | 300,000 | 3,000,000 | 30,000,000 | 300,000,000 |  |  |
| N                                                      | 0.33    | 33               | 33 | 330 | 3,300 | 33,000 | 330,000 | 3,300,000 | 33,000,000 | 330,000,000 |  |  |
| Р                                                      | 0.36    | 36               | 36 | 360 | 3,600 | 36,000 | 360,000 | 3,600,000 | 36,000,000 | 360,000,000 |  |  |
| Q                                                      | 0.39    | 39               | 39 | 390 | 3,900 | 39,000 | 390,000 | 3,900,000 | 39,000,000 | 390,000,000 |  |  |
| R                                                      | 0.43    | 4 3              | 43 | 430 | 4,300 | 43,000 | 430,000 | 4,300,000 | 43,000,000 | 430,000,000 |  |  |
| S                                                      | 0.47    | 4.7              | 47 | 470 | 4,700 | 47,000 | 470,000 | 4,700,000 | 47,000,000 | 470,000,000 |  |  |
| Т                                                      | 0.51    | 5.1              | 51 | 510 | 5,100 | 51,000 | 510,000 | 5,100,000 | 51,000,000 | 510,000,000 |  |  |
| U                                                      | 0.56    | 56               | 56 | 560 | 5,600 | 56,000 | 560,000 | 5,600,000 | 56,000,000 | 560,000,000 |  |  |
| V                                                      | 0.62    | 62               | 62 | 620 | 6,200 | 62,000 | 620,000 | 6,200,000 | 62,000,000 | 620,000,000 |  |  |
| W                                                      | 0.68    | 68               | 68 | 680 | 6,800 | 68,000 | 680,000 | 6,800,000 | 68,000,000 | 680,000,000 |  |  |
| Х                                                      | 0.75    | 7 5              | 75 | 750 | 7,500 | 75,000 | 750,000 | 7,500,000 | 75,000,000 | 750,000,000 |  |  |
| Υ                                                      | 0.82    | 82               | 82 | 820 | 8,200 | 82,000 | 820,000 | 8,200,000 | 82,000,000 | 820,000,000 |  |  |
| Z                                                      | 0.91    | 9.1              | 91 | 910 | 9,100 | 91,000 | 910,000 | 9,100,000 | 91,000,000 | 910,000,000 |  |  |
| а                                                      | 0.25    | 25               | 25 | 250 | 2,500 | 25,000 | 250,000 | 2,500,000 | 25,000,000 | 250,000,000 |  |  |
| b                                                      | 0.35    | 35               | 35 | 350 | 3,500 | 35,000 | 350,000 | 3,500,000 | 35,000,000 | 350,000,000 |  |  |
| d                                                      | 0.4     | 4 0              | 40 | 400 | 4,000 | 40,000 | 400,000 | 4,000,000 | 40,000,000 | 400,000,000 |  |  |
| е                                                      | 0.45    | 4 5              | 45 | 450 | 4,500 | 45,000 | 450,000 | 4,500,000 | 45,000,000 | 450,000,000 |  |  |
| f                                                      | 0.5     | 50               | 50 | 500 | 5,000 | 50,000 | 500,000 | 5,000,000 | 50,000,000 | 500,000,000 |  |  |
| m                                                      | 0.6     | 60               | 60 | 600 | 6,000 | 60,000 | 600,000 | 6,000,000 | 60,000,000 | 600,000,000 |  |  |
| n                                                      | 0.7     | 70               | 70 | 700 | 7,000 | 70,000 | 700,000 | 7,000,000 | 70,000,000 | 700,000,000 |  |  |
| t                                                      | 0.8     | 8 0              | 80 | 800 | 8,000 | 80,000 | 800,000 | 8,000,000 | 80,000,000 | 800,000,000 |  |  |
| у                                                      | 0.9     | 90               | 90 | 900 | 9,000 | 90,000 | 900,000 | 9,000,000 | 90,000,000 | 900,000,000 |  |  |



## **Tape & Reel Packaging Information**

KEMET offers multilayer ceramic chip capacitors packaged in 8, 12 and 16 mm tape on 7" and 13" reels in accordance with EIA Standard 481. This packaging system is compatible with all tape-fed automatic pick and place systems. See Table 2 for details on reeling quantities for commercial chips.

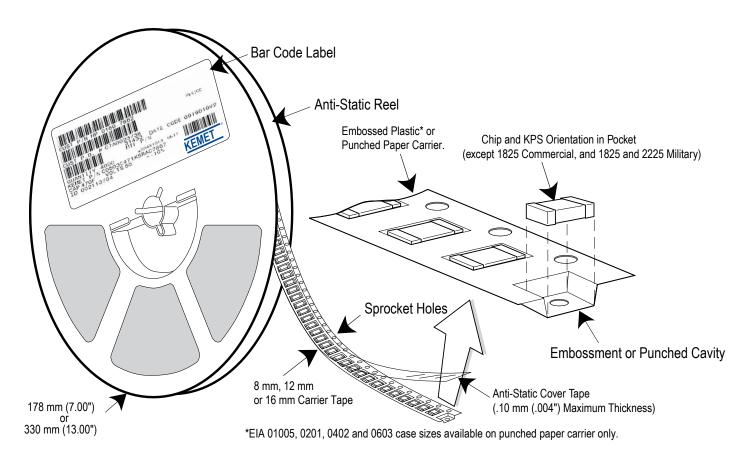
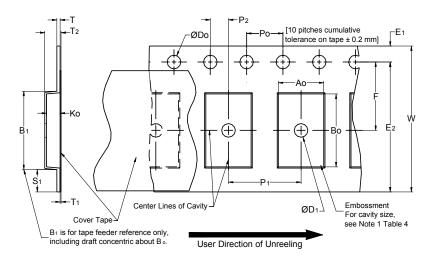



Table 5 – Carrier Tape Configuration – Embossed Plastic & Punched Paper (mm)


| EIA Case Size     | Tape Size (W)* | Pitch (P <sub>1</sub> )* |
|-------------------|----------------|--------------------------|
| 01005 – 0402      | 8              | 2                        |
| 0603 – 1210       | 8              | 4                        |
| 1805 – 1808       | 12             | 4                        |
| ≥ 1812            | 12             | 8                        |
| KPS 1210          | 12             | 8                        |
| KPS 1812 & 2220   | 16             | 12                       |
| Array 0508 & 0612 | 8              | 4                        |

<sup>\*</sup>Refer to Figures 1 & 2 for W and P, carrier tape reference locations.

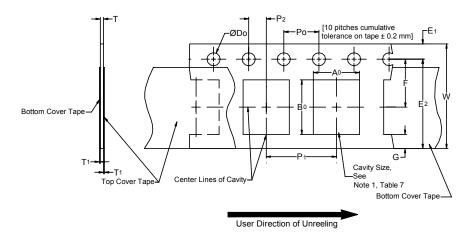
<sup>\*</sup>Refer to Tables 6 & 7 for tolerance specifications.



## Figure 1 – Embossed (Plastic) Carrier Tape Dimensions



## Table 6 - Embossed (Plastic) Carrier Tape Dimensions


Metric will govern

|           | Constant Dimensions — Millimeters (Inches)                                                                                                       |                                  |                              |                             |                              |                       |                                  |                  |                           |  |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------|-----------------------------|------------------------------|-----------------------|----------------------------------|------------------|---------------------------|--|
| Tape Size | D <sub>0</sub>                                                                                                                                   | D <sub>1</sub> Minimum<br>Note 1 | E <sub>1</sub>               | P <sub>0</sub>              | P <sub>2</sub>               | R Reference<br>Note 2 | S <sub>1</sub> Minimum<br>Note 3 | T<br>Maximum     | T <sub>1</sub><br>Maximum |  |
| 8 mm      |                                                                                                                                                  | 1.0<br>(0.039)                   |                              |                             |                              | 25.0<br>(0.984)       |                                  |                  |                           |  |
| 12 mm     | 1.5 +0.10/-0.0<br>(0.059 +0.004/-0.0)                                                                                                            |                                  | 1.75 ±0.10<br>(0.069 ±0.004) | 4.0 ±0.10<br>(0.157 ±0.004) | 2.0 ±0.05<br>(0.079 ±0.002)  | 30<br>(1.181)         | 0.600<br>(0.024)                 | 0.600<br>(0.024) | 0.100<br>(0.004)          |  |
| 16 mm     |                                                                                                                                                  |                                  |                              |                             |                              |                       |                                  |                  |                           |  |
|           | Variable Dimensions — Millimeters (Inches)                                                                                                       |                                  |                              |                             |                              |                       |                                  |                  |                           |  |
| Tape Size | Tape Size Pitch B <sub>1</sub> Maximum E <sub>2</sub> F P <sub>1</sub> T <sub>2</sub> W Maximum A <sub>0</sub> , B <sub>0</sub> & K <sub>0</sub> |                                  |                              |                             |                              |                       |                                  |                  | & K <sub>0</sub>          |  |
| 8 mm      | Single (4 mm)                                                                                                                                    | 4.35<br>(0.171)                  | 6.25<br>(0.246)              | 3.5 ±0.05<br>(0.138 ±0.002) | 4.0 ±0.10<br>(0.157 ±0.004)  | 2.5<br>(0.098)        | 8.3<br>(0.327)                   |                  |                           |  |
| 12 mm     | Single (4 mm) &<br>Double (8 mm)                                                                                                                 | 8.2<br>(0.323)                   | 10.25<br>(0.404)             | 5.5 ±0.05<br>(0.217 ±0.002) | 8.0 ±0.10<br>(0.315 ±0.004)  | 4.6<br>(0.181)        | 12.3<br>(0.484)                  | Not              | e 5                       |  |
| 16 mm     | Triple (12 mm)                                                                                                                                   | 12.1<br>(0.476)                  | 14.25<br>(0.561)             | 7.5 ±0.05<br>(0.138 ±0.002) | 12.0 ±0.10<br>(0.157 ±0.004) | 4.6<br>(0.181)        | 16.3<br>(0.642)                  |                  |                           |  |

- 1. The embossment hole location shall be measured from the sprocket hole controlling the location of the embossment. Dimensions of embossment location and hole location shall be applied independent of each other.
- 2. The tape with or without components shall pass around R without damage (see Figure 6).
- 3. If S, < 1.0 mm, there may not be enough area for cover tape to be properly applied (see EIA Standard 481 paragraph 4.3 section b).
- 4. B, dimension is a reference dimension for tape feeder clearance only.
- 5. The cavity defined by  $A_0$ ,  $B_0$  and  $K_0$  shall surround the component with sufficient clearance that:
  - (a) the component does not protrude above the top surface of the carrier tape.
  - (b) the component can be removed from the cavity in a vertical direction without mechanical restriction, after the top cover tape has been removed.
  - (c) rotation of the component is limited to 20° maximum for 8 and 12 mm tapes and 10° maximum for 16 mm tapes (see Figure 3).
  - (d) lateral movement of the component is restricted to 0.5 mm maximum for 8 and 12 mm wide tape and to 1.0 mm maximum for 16 mm tape (see Figure 4).
  - (e) for KPS Series product, A<sub>a</sub> and B<sub>a</sub> are measured on a plane 0.3 mm above the bottom of the pocket.
  - (f) see Addendum in EIA Standard 481 for standards relating to more precise taping requirements.



## Figure 2 – Punched (Paper) Carrier Tape Dimensions



## Table 7 – Punched (Paper) Carrier Tape Dimensions

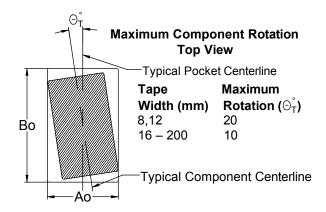
Metric will govern

| Constant Dimensions — Millimeters (Inches) |                                            |                              |                             |                             |                         |                 |                       |  |  |
|--------------------------------------------|--------------------------------------------|------------------------------|-----------------------------|-----------------------------|-------------------------|-----------------|-----------------------|--|--|
| Tape Size                                  | D <sub>o</sub>                             | E <sub>1</sub>               | P <sub>0</sub>              | P <sub>2</sub>              | T <sub>1</sub> Maximum  | G Minimum       | R Reference<br>Note 2 |  |  |
| 8 mm                                       | 1.5 +0.10 -0.0<br>(0.059 +0.004 -0.0)      | 1.75 ±0.10<br>(0.069 ±0.004) | 4.0 ±0.10<br>(0.157 ±0.004) | 2.0 ±0.05<br>(0.079 ±0.002) | 0.10<br>(0.004) Maximum | 0.75<br>(0.030) | 25<br>(0.984)         |  |  |
|                                            | Variable Dimensions — Millimeters (Inches) |                              |                             |                             |                         |                 |                       |  |  |
| Tape Size                                  | Pitch                                      | E2 Minimum                   | F                           | P <sub>1</sub>              | T Maximum               | W Maximum       | $A_0B_0$              |  |  |
| 8 mm                                       | Half (2 mm)                                | 6.25                         | 3.5 ±0.05                   | 2.0 ±0.05<br>(0.079 ±0.002) | 1.1                     | 8.3<br>(0.327)  | Note 1                |  |  |
| 8 mm                                       | Single (4 mm)                              | (0.246)                      | (0.138 ±0.002)              | 4.0 ±0.10<br>(0.157 ±0.004) | (0.098)                 | 8.3<br>(0.327)  | Note 1                |  |  |

- 1. The cavity defined by  $A_{o}$ ,  $B_{o}$  and T shall surround the component with sufficient clearance that:
  - a) the component does not protrude beyond either surface of the carrier tape.
  - b) the component can be removed from the cavity in a vertical direction without mechanical restriction, after the top cover tape has been removed.
  - c) rotation of the component is limited to 20° maximum (see Figure 3).
  - d) lateral movement of the component is restricted to 0.5 mm maximum (see Figure 4).
  - e) see Addendum in EIA Standard 481 for standards relating to more precise taping requirements.
- 2. The tape with or without components shall pass around R without damage (see Figure 6).



## **Packaging Information Performance Notes**


- 1. Cover Tape Break Force: 1.0 Kg minimum.
- 2. Cover Tape Peel Strength: The total peel strength of the cover tape from the carrier tape shall be:

| Tape Width   | Peel Strength                    |
|--------------|----------------------------------|
| 8 mm         | 0.1 to 1.0 Newton (10 to 100 gf) |
| 12 and 16 mm | 0.1 to 1.3 Newton (10 to 130 gf) |

The direction of the pull shall be opposite the direction of the carrier tape travel. The pull angle of the carrier tape shall be  $165^{\circ}$  to  $180^{\circ}$  from the plane of the carrier tape. During peeling, the carrier and/or cover tape shall be pulled at a velocity of  $300 \pm 10$  mm/minute.

**3. Labeling:** Bar code labeling (standard or custom) shall be on the side of the reel opposite the sprocket holes. *Refer to EIA Standards 556 and 624.* 

## Figure 3 – Maximum Component Rotation



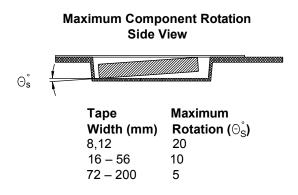



Figure 4 – Maximum Lateral Movement

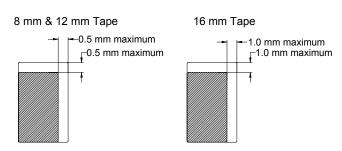
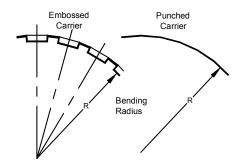
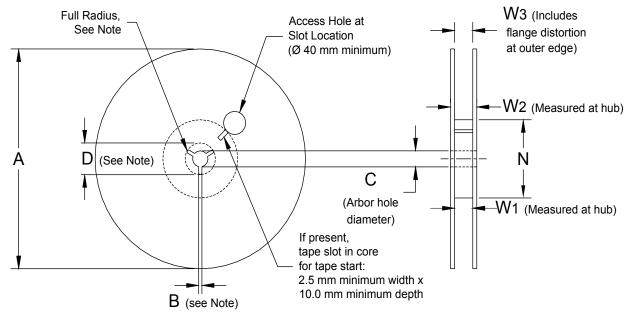





Figure 5 - Bending Radius

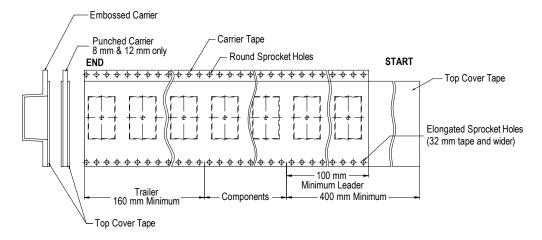




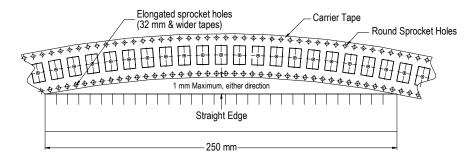
## Figure 6 – Reel Dimensions



Note: Drive spokes optional; if used, dimensions B and D shall apply.

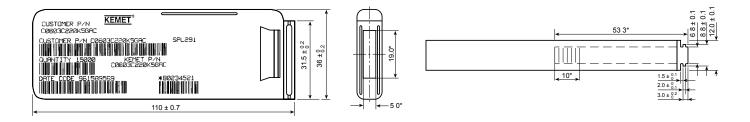

Table 8 - Reel Dimensions

Metric will govern


|           | Constant Dimensions — Millimeters (Inches) |                                       |                                        |                                                   |  |  |  |  |
|-----------|--------------------------------------------|---------------------------------------|----------------------------------------|---------------------------------------------------|--|--|--|--|
| Tape Size | A                                          | B Minimum                             | С                                      | D Minimum                                         |  |  |  |  |
| 8 mm      | 178 ±0.20                                  |                                       |                                        |                                                   |  |  |  |  |
| 12 mm     | (7.008 ±0.008)<br>or                       | 1.5<br>(0.059)                        | 13.0 +0.5/-0.2<br>(0.521 +0.02/-0.008) | 20.2<br>(0.795)                                   |  |  |  |  |
| 16 mm     | 330 ±0.20<br>(13.000 ±0.008)               | ,                                     | ,                                      |                                                   |  |  |  |  |
|           | Variable Dimensions — Millimeters (Inches) |                                       |                                        |                                                   |  |  |  |  |
| Tape Size | N Minimum                                  | $W_1$                                 | W <sub>2</sub> Maximum                 | W <sub>3</sub>                                    |  |  |  |  |
| 8 mm      |                                            | 8.4 +1.5/-0.0<br>(0.331 +0.059/-0.0)  | 14.4<br>(0.567)                        |                                                   |  |  |  |  |
| 12 mm     | 50<br>(1.969)                              | 12.4 +2.0/-0.0<br>(0.488 +0.078/-0.0) | 18.4<br>(0.724)                        | Shall accommodate tape width without interference |  |  |  |  |
| 16 mm     |                                            | 16.4 +2.0/-0.0<br>(0.646 +0.078/-0.0) | 22.4<br>(0.882)                        |                                                   |  |  |  |  |



## Figure 7 - Tape Leader & Trailer Dimensions




## Figure 8 – Maximum Camber



## Figure 9 – Bulk Cassette Packaging (Ceramic Chips Only)

Meets Dimensional Requirements IEC–286 and EIAJ 7201 *Unit mm \*Reference* 



# **Table 9 – Capacitor Dimensions for Bulk Cassette**

Cassette Packaging - Millimeters

| EIA Size<br>Code | Metric Size<br>Code | L Length  | W Width   | B Bandwidth | S Separation<br>Minimum | T Thickness | Number of Pieces/Cassette |
|------------------|---------------------|-----------|-----------|-------------|-------------------------|-------------|---------------------------|
| 0402             | 1005                | 1.0 ±0.05 | 0.5 ±0.05 | 0.2 to 0.4  | 0.3                     | 0.5 ±0.05   | 50,000                    |
| 0603             | 1608                | 1.6 ±0.07 | 0.8 ±0.07 | 0.2 to 0.5  | 0.7                     | 0.8 ±0.07   | 15,000                    |



# **KEMET Corporation World Headquarters**

2835 KEMET Way Simpsonville, SC 29681

Mailing Address: P.O. Box 5928 Greenville, SC 29606

www.kemet.com Tel: 864-963-6300 Fax: 864-963-6521

### **Corporate Offices**

Fort Lauderdale, FL Tel: 954-766-2800

#### **North America**

#### Southeast

Lake Mary, FL Tel: 407-855-8886

#### **Northeast**

Wilmington, MA Tel: 978-658-1663

#### Central

Novi, MI

Tel: 248-306-9353

#### West

Milpitas, CA Tel: 408-433-9950

#### Mexico

Guadalajara, Jalisco Tel: 52-33-3123-2141

#### **Europe**

#### **Southern Europe**

Paris, France Tel: 33-1-4646-1006

Sasso Marconi, Italy Tel: 39-051-939111

#### **Central Europe**

Landsberg, Germany Tel: 49-8191-3350800

Kamen, Germany Tel: 49-2307-438110

#### **Northern Europe**

Bishop's Stortford, United Kingdom Tel: 44-1279-460122

Espoo, Finland

Tel: 358-9-5406-5000

#### **Asia**

#### **Northeast Asia**

Hong Kong

Tel: 852-2305-1168

Shenzhen, China Tel: 86-755-2518-1306

Beijing, China

Tel: 86-10-5829-1711

Shanghai, China Tel: 86-21-6447-0707

Taipei, Taiwan Tel: 886-2-27528585

#### **Southeast Asia**

Singapore

Tel: 65-6586-1900

Penang, Malaysia Tel: 60-4-6430200

Bangalore, India Tel: 91-806-53-76817

Note: KEMET reserves the right to modify minor details of internal and external construction at any time in the interest of product improvement. KEMET does not assume any responsibility for infringement that might result from the use of KEMET Capacitors in potential circuit designs. KEMET is a registered trademark of KEMET Electronics Corporation.



#### **Disclaimer**

All product specifications, statements, information and data (collectively, the "Information") in this datasheet are subject to change. The customer is responsible for checking and verifying the extent to which the Information contained in this publication is applicable to an order at the time the order is placed.

All Information given herein is believed to be accurate and reliable, but it is presented without guarantee, warranty, or responsibility of any kind, expressed or implied.

Statements of suitability for certain applications are based on KEMET Electronics Corporation's ("KEMET") knowledge of typical operating conditions for such applications, but are not intended to constitute – and KEMET specifically disclaims – any warranty concerning suitability for a specific customer application or use. The Information is intended for use only by customers who have the requisite experience and capability to determine the correct products for their application. Any technical advice inferred from this Information or otherwise provided by KEMET with reference to the use of KEMET's products is given gratis, and KEMET assumes no obligation or liability for the advice given or results obtained.

Although KEMET designs and manufactures its products to the most stringent quality and safety standards, given the current state of the art, isolated component failures may still occur. Accordingly, customer applications which require a high degree of reliability or safety should employ suitable designs or other safeguards (such as installation of protective circuitry or redundancies) in order to ensure that the failure of an electrical component does not result in a risk of personal injury or property damage.

Although all product—related warnings, cautions and notes must be observed, the customer should not assume that all safety measures are indicted or that other measures may not be required.