
Controladores de Motor Arrancador estático de CA Modelos RSE 22 .. - B, RSE 4. .. - B, RSE 60 .. - B

- Arranque y parada suave de motores trifásicos de rotor de jaula de ardilla
- Tensión nominal: hasta 600 VCArms, 50/60 Hz
- Intensidad nominal: 3 A ó 12 A AC53-b
- Entrada de control libre de potencial
- Indicadores LED para alimentación y funcionamiento
- Protección incorporada contra sobretensión transitoria
- Bypass integrado de los semiconductores

Descripción del Producto

Controlador de motores por semiconductor de CA compacto y de fácil uso. Por medio de este controlador se puede realizar un arranque suave y/o una parada suave de motores trifásicos con intensidades de carga nominales de hasta 12 A. Por medio de potenciómetros es posible ajustar el tiempo de arranque, el tiempo de parada y el par de arranque inicial de manera independiente.

Código de Pedido RSE 40 03 - B Relé de Estado Sólido Controlador de motor Caja E Tensión nominal Intensidad nominal Tensión de control

Selección del Modelo

Modelo Tensión nominal U _e		Intensidad nominal I _e	Tensión de control U _c *)
RSE: Serie E, controlador de motor	22: 220 VCArms, 50/60 Hz 40: 400 VCArms, 50/60 Hz 48: 480 VCArms, 50/60 Hz 60: 600 VCArms, 50/60 Hz	03: 3 A 12: 12 A	-B: 24 a 110 VCA/CC y 110 a 480 VCA

^{*)} La tensión de control nunca debe ser mayor que la tensión nominal.

Espec. de Entrada (Entrada de control) Especificaciones de Salida

_	•		
Tensión de control U _c A1-A2:	24 a 110 VCA/CC ±15%,	Categoría de utilización	AC-53b Bypass integrado de los semiconductores
A1-A3:	12 mA 110 a 480 VCA ±15%, 5 mA	Perfil de intensidad de sobrecarga RSE03-B RSE12-B	3A: AC-53b:3-5:30 12A: AC-53b:3-5: 180
Tensión nominal de aislamiento	630 V rms	AC53b	Categoría de utilización
	Cat. de sobretensión III (IEC 60664)	3	3 veces la intensidad nominal
Resistencia dieléctrica	(120 0000 1)		12A x 3 = 36 A
Tensión dieléctrica	2 kVCA (rms)	5	5 segundos
Impulso de tensión soportada	4 kV (1,2/50 μseg.)	180	Mínimo tiempo de pausa
			entre sobrecargas de 36 A y 5s
		Intensidad de carga mín. RSE03-B RSE12-B	100 mACA rms 200 mACA rms

Especificaciones de Alimentación

Alimentación	Cat. de sobretensión III (IEC 60664)
Tensión de alimentación nominal (U _e) a través	(
de terminales L1-L2-L3	(IEC 60038)
22	220 VCA rms ±15%
	50/60 Hz -5/+5 Hz
40	400 VCA rms ±15%
	50/60 Hz -5/+5 Hz
48	480 VCA rms ±15%
	50/60 Hz -5/+5 Hz
60	600 VCA rms ±15%
	50/60 Hz -5/+5 Hz
Interrupción de tensión	≤ 40 mseg.
Tensión dieléctrica	No
Impulso de tensión soportad	la 4 kV (1,2/50 µseg.)
Potencia nominal	2 VA
alimentado de	L1-L2

Especificaciones Generales

Precisión	
Rampa ascendente	5,5 a 7,5 seg. a máx.
•	≤ 0,5 seg. a mín.
Rampa descendente	6 a 10 seg. a máx.
5	≤ 0,5 seg. a mín.
Par inicial	70 a 100% a máx. 5% a mín.
= 1.0	- /
EMC	Compatibilidad electromagnética
Inmunidad	de acuerdo con EN 61000-6-2
Indicadores para	
Alimentación conectada	LED, verde
Relé bypass rampa	
ascendente/descendente	LED, amarillo
Entorno	
Grado de protección	IP 20
Grado de contaminación	3
Temperatura de funcionamiento	-20° a +50°C (-4° a +122°F)
Temperatura de almacenamiento	-50° a +85° C (-58° a +185° F)
Terminales a tornillo	
Par de apriete	Máx. 0,5 Nm según IEC 60947
Capacidad de los terminales	2 x 2,5 mm ²
Homologaciones	CSA (<7.5 CV @ 600 VCA),UL, cUL
Marca CE	Sí

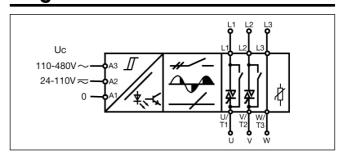
Modo de Funcionamiento

Este controlador de motores está pensado para realizar arranque/parada suave de motores de rotor de jaula de ardilla trifásicos, reduciendo la carga y el desgaste de los engranajes y las tracciones de cintas/cadenas y obteniendo un funcionamiento suave de las máquinas. El arranque y/o la parada suaves se obtienen controlando la tensión del motor. Durante el funcionamiento, la corriente es desviada por un relé de bypass interno.

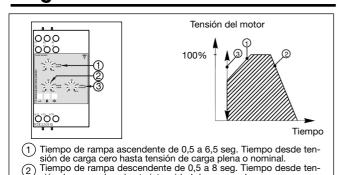
El par inicial puede ajustarse de 0 a 85% del par nominal.

El tiempo de arranque/parada suave puede ajustarse de 0,5 a aproximadamente 7 seg.

Un LED verde indica la alimentación. Dos LED amarillos indican Rampa ascendente/ descendente y Funcionamiento.


Este controlador de motor no está dotado de una protección contra sobrecargas, ésta debe instalarse por separado.

El controlador conecta 2 fases. La tercera está conectada permanentemente a la carga.


Datos de Semiconductor

Intensidad nominal	l²t para fusible t = 1 a 10 mseg.	I _{TSM}	dl/dt
3 A	72 A ² s	120 A _p	50 A/µseg.
12 A	610 A ² s	350 A _p	50 A/μseg.

Diagrama de Funcionamiento

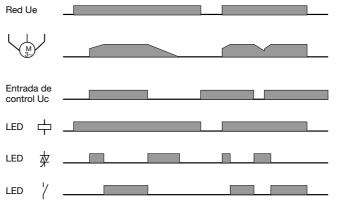
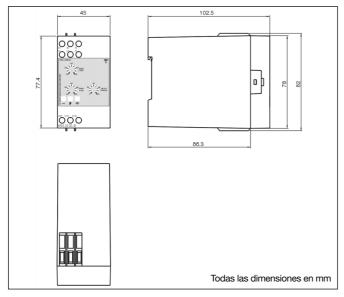


Diagrama de Funcionamiento 1

sión de carga plena hasta intensidad de carga nula. Par inicial de 0 a 85% de tensión al inicio de la función de la rampa


Diagrama de Funcionamiento 2

3 ascendente.

Dimensiones

Especificaciones de la Caja

Peso	270 g
Material de la caja	Mezcla de PC/ABS
Color	Gris claro
Bloque de terminales	PBTP
Color	Gris claro
Abrazadera inferior	POM
Color	Negro
Tapa de diodos	PC
Color	Gris transparente
Potenciómetro frontal	PA
Color	Gris

Aplicaciones

Cambio de arranque directo a arranque suave (Arranque suave controlado por línea) (Fig. 1 y Fig. 2)

El cambio de arranque directo a arranque suave es muy sencillo con el equipo de arranque suave RSE:

- 1) Corte el cable del motor e inserte el equipo RSE.
- Conecte la entrada de control a dos de las fases de red. Ajuste el par inicial al mínimo y las funciones de rampa ascendente y descendente al máximo.
- Vuelva a conectar la alimentación; ajuste el par de arranque de modo que el motor comience a girar inmediatamente después de aplicada la tensión, y ajuste el tiempo de rampa en el valor adecuado.

Cuando el C1 se activa, el controlador del motor realiza un arranque suave del motor. Cuando el C1 desconecta, el motor se detiene, el controlador del motor se pondrá a cero y pasados 0,5 segundos se puede realizar un nuevo arranque suave.

Por favor tenga en cuenta que el controlador no aísla al motor de la red. Por lo tanto, es necesario utilizar el contactor C1 como interruptor general.

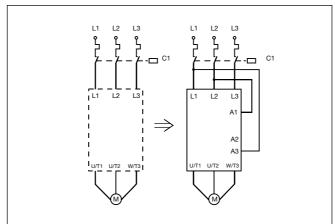


Fig. 1

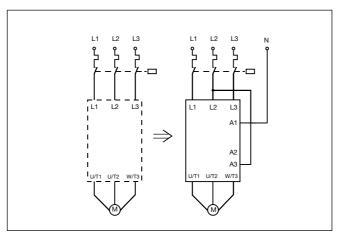


Fig. 2 Para tensiones mayores de 480 VCA

Arranque suave y parada suave (Fig. 3)

Cuando S1 está cerrado, el arranque suave del motor se lleva a cabo con el ajuste del potenciómetro de rampa ascendente y del potenciómetro del par inicial. Cuando S1 está abierto, la parada suave se lleva a cabo con el ajuste del potenciómetro de rampa descendente.

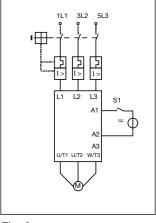


Fig. 3

CARLO GAVAZZI

Aplicaciones

Tiempo entre rampas

Para evitar que los semiconductores se calienten se debe esperar un tiempo entre rampas. El tiempo entre rampas depende de la intensidad del motor durante la rampa y del tiempo de rampa (véanse las tablas a continuación).

Nota:

La tabla es válida para una temperatura ambiente de 25° C. En caso de una temperatura ambiente mayor, sume un 5%/° C a los valores de las tablas. Las áreas sombreadas de las tablas corresponden a un rotor bloqueado. No repita las rampas con un rotor bloqueado.

Consideraciones acerca de los fusibles

El controlador del motor puentea los semiconductores durante el funcionamiento. Por lo tanto, los semiconductores sólo pueden resultar dañados por intensidades de cortocircuito durante las funciones de rampa ascendente y rampa descendente.

limite la intensidad defectuosa. Si el motor está instalado en un entorno donde la alimentación al motor no puede resultar dañada, la protección de cortocircuito puede considerarse acep-table si el controlador está protegido por un relé magnetotérmico tripolar (véase la tabla a continuación).

Un motor de inducción trifásico con una protección contra sobrecarga correctamente instalada y ajustada no produce un cortocircuito completo entre líneas o directamente a tierra como otros tipos de carga, por ejemplo bandas calefactoras. En un motor averiado siempre habrá una parte del bobinado que

Si existe el riesgo de cortocircuito del cable del motor, del controlador o de la carga, entonces debe protegerse el controlador con fusibles ultrarrápidos, por ej. para un modelo 3 A: Ferraz 6.9 gRB 10-10, para un modelo 12 A: Ferraz 6.9 gRB 10-25. Portafusibles modelo CMS10 1P.

RSE .. 03 - B Tiempo entre rampas

Tiempo de rampa (seg.) I rampa (A)	1	2	5	7.5
18	15 seg.	30 seg.	1,5 min	2,5 min
15	12 seg.	20 seg.	60 seg.	1,5 min
12	10 seg.	20 seg.	50 seg.	70 seg.
9	8 seg.	12 seg.	30 seg.	50 seg.
6	5 seg.	9 seg.	25 seg.	40 seg.
3	2 seg.	5 seg.	20 seg.	35 seg.
1,5	1 seg.	2 seg.	5 seg.	5 seg.

RSE .. 12 - B Tiempo entre rampas

Tiompo onitio rampao									
Tiempo de rampa (seg.) I rampa (A)	1	2	5	7.5					
72	2,5 min	5 min	40 min	No disp.					
60	1,5 min	3 min	13 min	17 min					
48	50 seg.	1,5 min	5 min	10 min					
36	30 seg.	1 min	3 min	7 min					
24	15 seg.	40 seg.	1,5 min	2,5 min					
12	10 seg.	20 seg.	50 seg.	70 seg.					
6	5 seg.	9 seg.	20 seg.	40 seg.					

Relé de sobrecarga magnetotérmico recomendado Tabla de selección

Relé de sobrecarga magnetotérmico y controlador de motor

Motor con plena intensidad de carga (ACArms)	0,1 - 0,16	0,16 - 0,25	0,25 - 0,4	0,4 - 0,63	0,63 - 1,0	1,0 - 1,6	1,6 - 2,5	2,5 - 4	4 - 6,3	6,3 - 9	9 - 12
Tipo de relé de sobrecarga GV 2- Fabricante: Telemecanique	M 01	M 02	M 03	M 04	M 05	M 06	M 07	M 08	M 10	M 14	M 16
Tipo de relé de sobrecarga MS 325- Fabricante: ABB	0,16	0,25	0,4	0,63	1	1,6	2,5	4	6,3	9	12,5
Protección de motor disyuntor tipo KTA 3-25- Fabricante: Allan-Bradley/Sprecher + Schuh	0,16	0,25	0,4	0,63	1	1,6	2,5	4	6,3	10	16
Tipo de controlador de motor: 127/220 V red 230/400 V red 270/480 V red 400/690 V red	RSE 40 03 - B RSE 4 RSE 48 03 - B RSE 4					22 12 - 40 12 - 48 12 - 60 12 -	B B				

Ejemplo:

Tensión de línea: 230/400 V Motor 1,5 CV: 1,1 kW Intensidad de carga plena: 2,9 A Paso 1:

Seleccione el relé de sobrecarga:

En este ejemplo se debe utilizar GV 2 - M 08, MS 325 - 4 ó KTA 3-25-4A.

Paso 2:

Seleccione el controlador de motor:

Para tensión de línea 230/400 V y sobrecarga, se puede seleccionar el relé GV 2 - M 08 ó MS 325 - 4 con ajuste de 2,9 A modelo RSE 40 03 -B. Nota: Para motores con intensidad de carga plena de 12 A a 40 A, véanse los modelos RSH y RSC/RSO.